Student ID:

CS-537: Midterm Exam (Fall 2010)
Memory Gone Bad

Please Read All Questions Carefully!

There are 13 total numbered pages.

Please put your NAME and student ID on THIS page, and JUST YOURstudent ID (but NOT YOUR NAME)
on every other page Why are you doing this? So | can grade the exam without knowimg you are, of course.

Name and Student ID:

Grading Page

Points| Total Possible
Q1 20
Q2 20
Q3 20
Q4 20
Q5 20
Q6 20
Total 120

Student ID:

Student ID:

You are about to take an exam in which some memory has goneaut worry, it's notyour memory | am
talking about (well, at least, | hope not!). Rather, it's temputer's memory, in a new PC frolmon Systems

As it turns out, the Iron Systems PC has cheap, unreliableangiim which a bit occasionally gets flipped. &
flip takes one single bit in the system memory and changes it todpesite of its current value, thus turning a O into
al,oralintoa0. As you can imagine, this makes the OS of thtesy which stores a lot of its important data in
memory, not behave correctly (sometimes).

Bit flips are challenging to handle because they can charggedilne of a variable that the OS (or a user program)
is using. For example, imagine a simple integer, set to theeda In memory, this integer might look like this:

31 30 29 28 27 26 04 03 02 01 0O
0O 0 0 0 0 O 0 0 0 0 1

In the diagram, the integer is laid out in memory with the hagtder (31st) bit on the left and the low-order (0th)
bit on the right. A single bit flip, of say the 30th bit, can dratically change the value of the integer:

31 30 29 28 27 26 04 03 02 01 0O
0 1 0 0 0 O 0 0 0 0 1

Now the integer is set t8°° + 1, instead of plain old! Quite a change in value, from just one bit getting flipped.

All questions will center arounlllon OS, a new operating system that | just made up for the purpogéssafxam.
Most questions will describe how Iron OS works, and then asktp determine what happens when memory goes
bad, or something like that.

Good luck! Trust in your memory; it will serve you well, or @&dst better than the Iron PC’s memory is serving
poor old Iron OS.

Student ID:

1. Iron Scheduling.

The Iron OS has a scheduler that tries to emulate a multideedback queue (MLFQ) as we saw in class. Iron
OS keeps track of important MLFQ information in a simply grcd structures in memorye{ | pri):

struct priority {
unsigned int priority; // current priority of job
unsigned int tinmeLeft; // time left at this priority (in clock ticks)

b

/l all priorities stored in this array
struct priority al | pri [MAX_PROCS] ;

Thepri ori ty variable tracks the current priority level of each job; ie thon MLFQ scheduler, there are five
levels, and thus priority can be set to 4 (highest priorityptigh O (lowest).
Thet i neLeft variable tracks how much time (in clock ticks) a process tasgiven priority. That is, each

time the timer interrupt goes off, timeLeft (for the curdgmunning job) is decremented by 1; when it reaches
0, the job’s priority level is decreased (as per MLFQ rules).

(a) Before getting into the corruption scenario, describe MLFQ works. What are its major goals as a
scheduling policy?

Now let's consider corruption. It turns out that corrupticen affect both thepri ority field as well the
tinmeLeft field.

(b) What do you think will happen if a bit gets flipped and séis priority too high (i.e., higher than it is
supposed to be)?

Student ID:

(c) What do you think will happen if a bit gets flipped and sées prioritytoo low?

Here is the code that deals with the priority. In fact, alstbode does is get the priority for the process ID (pid)
of interest; later (not shown), the priority is put it intoiatlof all priorities, which is then sorted, in order to
determine which process runs next.

int getPriority(int pid) {

return allpri[pid].priority;
}

(d) Assuming the priority value was changed in memory, houl¢gou rewriteget Pri ori ty() so thatit
returns a valid priority? (if not the correct one)

(e) Discuss the limits of such an approach. Does your nevimegblve the memory corruption problem?

Finally, let’s think about what happens if a bitin theneLef t field gets flipped.

(f) What if the timeLeft field gets flipped tomuch higher number?

(g) What if the timeLeft field gets flipped tolawer number?

(h) Which is worse for the system? Why?

Student ID:

. Iron Segmentation.

An early version of the Iron PC useggmentationin order to place segments of a virtual address space in
memory. Unfortunately, a single bit in one of the base ortliregisters has been flipped! Your job is to figure
out which one, in each of the following examples.

Assume the following about the segmentation system. Theead@pace is a tiny 1 KB in size; physical memory
is 16 KB. The top bit of a virtual address determines whichnaf segments a reference is in; segment 0 grows
in the positive direction, whereas segment 1 grows in thategdirection. Hmm, does this seem familiar?

In this first bit flip scenario, we see the following:

Segnment 0 base (grows positive) : 0x8400

Segnent O limt : 0x100 (note: this is in hex)
Segnent 1 base (grows negative) : 0x0c00
Segnent 1 limt : 0x000

We also know thatirtual address 0x095should translate tphysical address 0x0495

(a) Given that we know how VA 0x095 should be translated, Wsigment base register has the wrong value?
(describe why you think so)

(b) What should the correct value be?

We also find out that theirtual address 767 (decimal) should cause a segmentationolation, but 768
(decimal) should not(i.e., 768 is a valid virtual address).

(c) Which segmentation register (seg 0 base, seg 0 limit] $&pe, seg 1 limit) determines whether these two
virtual addresses (767, 768) are valid? (describe youpreag)

(d) What should the correct value of that register be?

(e) Given the correct value, what physical address shouBdraéslate to?

Student ID:

3. Iron Multi-level Paging.

At some point, some Iron OS mastermind decided to changerdimeMM system to usenulti-level paging
instead of that simple segmentation system. Assudte kit virtual address (i.e., a 32 KB AS), gpage size of

32 bytes and4KB of physical memory (i.e., there are 12 bits in the physical address). Assumbduthat we

are using a simpléwvo-level page table A page-directory base registempoints to the physical frame where
the page directory resides. The format of each page dineetdry (PDE) or page-table entry is pretty similar:
a single valid bit followed by 7 bits of a page frame number. rimvhere have you seen these assumptions
before? Assuming this setup, you are given access to tlwviol) memory dump. The dump shows the contents
of each physical page, from byte 0 of the page on the left te B§ton the right.

page 0: la 16 la 10 17 09 06 11 16 1le 12 Oc 07 10 la Oc 15 06 1d 17 10 00 12 16 18 1c 00 17 0d 08 1le 02
page 1: Oc 08 14 15 18 1c 14 1b 01 16 00 10 08 04 le 1d 09 03 la 1d Oc 17 1d 08 Oa Ob 05 0d 17 1d 03 13
page 2: 00 00 00 00 00 00 00 00 00 00 00 OO0 00 0O OO OO OO OO OO OO OO OO OO OO OO OO OO OO 00O 00 00 00
page 3: 00 00 00 00 00 00 00 00 00 00 OO 00 00 OO OO OO OO OO OO OO OO OO OO OO OO 00 00O 00 00 00 00 00
page 4: 00 00 00 00 00 00 00 00 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO 00O 00O 00O 00 00 00 00
page 5. 7f 7f 7f 7f 7f 7f 7f 7f ¢f 7f v¢f vf vt v¢f vf vf vf vf vf vf vf 7€ 7f 76 7f b1 76 7f 7f 7f 7f Uf
page 6: 7f 7f 7f bb 7f 7f 7f el 7f 7f 7f 7f 7t vf vf vf vf vf vf fa 7f 7f 7f 76 7f 7f 7f 7f 7f da ea 7f
page 7: 17 00 17 07 le Of 1e 09 1d 09 02 Of 0d Ob 03 1b 06 Od Oc 01 14 06 Oa 10 Od Of 1le Of 1d la 13 03
page 8: 00 00 00 00 00 00 00 00O 00 00 OO OO 00 OO OO OO OO OO OO OO OO OO OO OO OO 00 00O 00 00 00 00 00
page 9: 00 00 00 00 00 00 00 00 00 00 OO 00 00 OO OO OO OO OO OO OO OO OO OO OO OO 00 00 00 00 00 00 00

page 10: 15 02 Ob 1d 13 00 08 15 Oa Of 18 11 18 12 18 08 15 12 Oe 17 Of Of 1b 19 17 11 05 04 09 11 la 11
page 11: Of 05 15 0d 05 1b Oc 08 16 1c 11 16 02 04 Of 15 09 07 08 02 Oe 14 13 Oa Od 04 09 Oe 17 16 1c 01
page 12: Oe 10 1e 04 14 Ob Of 06 14 07 Oe 01 le Of Oe 16 Oc 1b 00 19 Oe 19 1d le 05 15 03 04 02 09 00 1la
page 13: Oc 1b 16 Of 14 11 17 la Of 1b 06 01 18 0Oa 0d 02 0d 02 03 Ob 12 07 Oc 07 07 07 Ob 10 Oc 19 11 14
page 14: 19 05 15 03 Oc 09 le 01 1b 10 02 le 01 0d 02 16 03 06 16 Oa 1c Oa 16 01 Oe 00 Oa 09 16 0d 15 01
page 15: 7f 7f 7f 7f 7f 7f 7f 7f 7f ff vf 7f e4 vf v¢f vf vf v¢f vf vf vf vf vf vf vf vf 7f 7f 7f d9 vf 7f
page 16: 7f 7f 7f 7f aa 7f 7f 96 7f 7f vf 7f vf vf ¢f vf vf v¢f vf vf vf vf vf vf vf vf 76 7f 7f 76 7F Uf
page 17: 16 18 0d Oa Oc 00 15 Oa la Oc 17 14 03 17 05 00 14 09 1e 00 09 04 15 12 le la 00 1b 19 1b Oc 16
page 18: 16 12 08 l1a 01 13 Of 19 03 1la Oa Of 06 02 0d 05 O0d 05 02 Oc Oc Oa 03 15 19 18 Oc 05 02 07 Of Oa
page 19: 11 01 15 11 13 03 09 05 le 18 01 12 19 16 05 la 18 17 08 11 11 15 17 Of Of le 14 04 01 Oc 07 16
page 20: 00 00 00 00 00 00 00 00 00 00 00O 00 OO 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO 0O 00 00 00
page 21: 00 00 00 00 00 00 00 00 00 00 00O 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO 0O 00 00 00
page 22: Oc Oc 1c 14 15 02 1c 15 08 1a 14 11 15 1c 12 09 l1la 06 09 16 Ob 12 06 Oa 1b 06 Oa la 18 13 10 05
page 23: 7f by 7f 7f 7f 7f 7f ¢f ¢f 7f v¢f ¢f vf v¢f ¢f vf vf v¢f vf vf vf vf vf vf vf vf 76 vf 76 76 F Uf
page 24: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f ce ¢f vf v¢f v¢f vf vf v¢f vf 7f vf a4 vf vf vf vf vf 7f 7f 76 7F Uf
page 25: 00 00 00 00 00 00 00 00O 00O 00 OO 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO 0O 00 00 00
page 26: 17 15 02 09 Oc Of Of Oe 08 17 01 11 1c 06 Oe 1d Oc 15 15 Oa 12 10 Oc la Oc la 12 Oa la Ob le 03
page 27: 7f 7f 7f 7f 7f ¢f 7f ¢f ¢f 7f v¢f ¢f vf vf ¢f vf vf vf vf 7f db 7f 7f 76 7f 7f 7f ee V6 Vf Vf Uf
page 28: 18 12 00 00 07 1b 19 1b 00 1d 04 Oc 17 06 02 06 06 Ob 1c 15 02 01 08 08 06 Of 18 17 01 1d 19 Ob
page 29: 1b 1c 07 02 Oa 13 0Oa 18 1b 12 00 04 03 1d 01 O0d 02 1b 13 Ob 17 08 Of 15 14 le 1la la 17 01 02 06
page 30: 1le le 09 19 00 04 05 05 Oe 07 le 16 Oc 17 03 14 01 la 06 la 18 18 05 09 19 06 Oe 05 17 08 Oe 00
page 31: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO 00O 00 00 00 00
page 32: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO 00 00 00 00
page 33: 7f 7f 7f 7f 87 7f 7f ¢f ¢f 7f v¢f ¢f vf vf ¢f vf c8 vf vf vf vf vf vf vf vf vf 76 vf 76 76 7F Uf
page 34: 7f 7f 7f 7f 7f 7f 7f £8 7f 7f eb vf vf vf v¢f vf vf v¢f vf vf vf vf vf vf vf vf vf vf 7f 7f 7F Uf
page 35: 08 07 le 06 10 Of 16 01 le Od la 05 09 19 1d 10 05 18 10 06 07 01 05 Ob 15 Of 10 1c Oc 18 Oc 1le
page 36: 05 11 Oc 0d 06 14 Oe 1e 14 12 Oc Of 14 Oe 1d 11 07 14 l1a 1d 01 18 00 1b 15 Ob Oa 01 06 l1la 00 Od
page 37: 1d la 03 Oe Oc 1b l1a 00 le 1c 18 15 Oe Ob 09 18 03 00 Of 04 Oe Of 1b la 0d 18 00 Oa 07 Of 1b 1le
page 38: 7f 7f 7f bf 7f 7f 7f 7f ¢f 7f ¢f ¢f ¢f vf ¢f vf vf fb vf 7f vf 7f 7f b3 7f vf 7f 7f fd 7f 7f Uf
page 39: 7f 7f 9e 7f 7f 7f 7f 7f 7f 7f vf 7f 7f 8a vf vf vf vf vf vf vf vf vf vf 7f 7f 7f 7f cc 7f f4 7f
page 40: 7f 7f 7f 7f 7f 7f 7f 7f ¢f 7f vf a5 vf v¢f v¢f vf vf v¢f vf 7f vf 91 7vf vf vf vf vf 7f 7f 7f 7f cf
page 41: 14 07 1d 07 Oe 02 05 11 01 Oe 01 le Oe Oc 02 14 1b 02 1d 08 11 Od 11 17 1le 13 14 03 00 09 18 0b
page 42: Oe 03 09 09 17 1c 05 1c Of 0d 01 16 17 14 19 17 Of 06 15 18 17 04 02 1d 14 08 01 la 04 1c 15 03
page 43: 00 00 00 00 00 00 00 00O 00 00 00O 00 OO 00 OO OO OO OO OO OO OO OO OO OO OO OO OO 00O 00O 00 00 00
page 44: 7f 7f 7f 7f 7f 7f 7f 7f ¢f 7f vf 7f 7f Qa vf vf vf vf vf v7f vf v7f 7f e6 vf vf vf vf 7f 7f 7f Uf
page 45: 7f 7f 7f 7f 7f 7f 7f 7f ¢f 7f vf 7f 7f 8¢ vf b9 vf vf vf vf vf vf vf vf vf vf vf vf 7f 76 7F Uf
page 46: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO 00 00 00 00
page 47: 1d 17 10 19 09 05 1b 1b l1a Oc la Of le 1b 18 03 Oa 06 Oa 07 Of Of 11 05 le 11 Of 05 06 la 17 19
page 48: 00 00 00 00 00 00 00 00 00O 00 0O 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO 0O 00 00 00
page 49: 02 19 le la 19 05 Of 11 08 Oc 04 Oa 19 1d le Ob 12 04 18 06 01 13 07 1b 03 08 11 09 la 13 04 12
page 50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO 00 00 00 00
page 51: 04 0d 16 02 Oe Oc 1c 04 la 11 Of 1b Oe 18 00 16 1b 07 11 02 12 Oa 08 1d 09 03 Oc Oe 03 Oc 08 16
page 52: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO 00O 00 00 00 00
page 53: Oa Oe 19 15 05 1c 11 18 02 07 la 12 16 1c Oa 14 12 12 Ob 11 19 11 16 07 Ob 01 04 11 1c 07 Oe 1le
page 54: 00 00 00 00 00 00 00 00 00 00 00O 00 OO 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO 00O 00 00 00
page 55: 19 0d 07 02 04 06 1d 16 0d 1d 02 le 0d Oc 1b Oa Of 06 17 11 Oc 1c 08 18 12 13 11 Oc 00 07 Of 09
page 56: 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO 00 00 00 00

page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

Student ID:

Student ID:

You are told that th@age directoryis located withinpage 99(decimal).

Assume we are translating the virtual address 0x778e, whizhalid virtual address for the process in question.
The memory dump above has no bits flipped to some incorreatyedther, we will consider cases where things
go wrong and discuss exactly which bit in memory must be flijpecause the “wrong” thing to occur.

(a) Before flipping any bits, please translate the virtualrads 0x778e; show both the resulting physical
address and value that is read from memory if accessing ddi¢ss. Be detailed and show your work!

Now we’re going to talk about what would happen if some bitsfijgped in memory. In this case, you are an
analyst, and are trying to separate rumor from truth.

(b) You hear about about a case where bits inghge directory get flipped and cause all translations to be
invalid. Is this possible? If so, what bits need to be flipp#dfbt, why not?

(c) You also hear about a case where bits are flippgohige table entriessuch that a load tany virtual
address always returns the value 0x00. Is this possible® Hav could it happen? If not, why not?

(d) Finally, you hear about a problem where a bit flip leads phgsical address that is greater than 12 bits
long. Is this possible? If so, how could it happen? If not, wioy?

Student ID:

4. lron TLB.
One version of the Iron system has a TLB. In this case, the Tt &ire looks like this:
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[VPN [G] I ASID |
| PEN [¢ Ip[v[]

Figure 1: AMHRS Iron TLB Entry.

The VPN and PFN fields should be self-explanatory, as shtweld/tfield (valid); the ASID field (an address-
space identifier field); and the D field (dirty); ignore anyentfields.

On this system, Iron OS has a software-managed TLB. ThuD8és responsible for installing the correct
translation when a TLB miss occurs. When finished with theatiptb the TLB, the OS returns from a trap, and
the hardware retries the instruction.

Unfortunately, just before Iron OS updates the TLB, somesim bit gets flipped and thus the wrong translation
ends up in the TLB! For each of the following fields, both d&scribe what the field is usedor and (2)explain
what you think would happen if a bit gets flippedin said field just before the OS installs the entry in the TLB:

(&) VPN:
i. What is the VPN field for?

ii. What would happen if a bit in the VPN got flipped?

(b) PFN: (same questions)
i. What is the PFN field for?

ii. What would happen if a bit in the PFN got flipped?

10

Student ID:

(c) ASID: (same guestions)
i. What is the ASID field for?

ii. What would happen if a bit in the ASID got flipped?

(d) Valid: (same questions)
i. What is the Valid bit for?

ii. What would happen if the valid bit got flipped?

(e) Dirty: (same questions)
i. What is the Dirty bit for?

ii. What would happen if the dirty bit got flipped?

11

Student ID:

5. Iron Page Replacement.
The Iron OS page replacement algorithm usdsrencebits to approximate LRU.

(&) Why does Iron OS need to approximate LRU? Why not justémgnt LRU directly?

(b) How does a scheme with reference bits work? Describe.

(c) Assume some reference bits get flipped by accident. Wiwditigm(s) would arise? Would the system
work correctly despite these bit flips?

(d) The page table also hpsesencebits. Describe how presence bits work, and why they are eede

(e) Assume some presence bits get flipped by accident. Wollgon(s) would arise? Would the system work
correctly despite these bit flips?

12

Student ID:

6. Towards a Real Iron OS.

In this last question, we discuss how we might actually detd memory corruption, in specific with the page
tables of the system.

To make the problem more tractable, assume the following:
e A bit flip only occurs once per day, to some random bit in oneafnypage tables (thus, the bit flip never
happens to code, which is put in higher quality memory thatendra protection against such flips).
e This version of Iron OS (without any special protection)siaesimpldinear page table(per process) and
asoftware-managed TLB

How would you change your page table structure so that youbc#im detect and recover from a bit flip in
memory? How would your TLB handler access this data stredtuwork correctly despite bit flips? (the more
details here, the better)

13

