
CS-537: Final (Spring 2012)
Your Life, FLASHing Before Your Eyes

Read All Questions Carefully! (Or At Least Read Them)

There are seventeen (17) total numbered pages. For this, I amtruly sorry.

Please put your FULL NAME (mandatory) on THIS page only.

Name:

1

Grading Page

Points Total Possible

Q1 20
Q2 20
Q3 20
Q4 20
Q5 20
Q6 20
Q7 20
Total 140

2

“Pathetic earthlings. Hurling your bodies out into the void, without the slightest inkling of who or what is out here. If
you had known anything about the true nature of the universe,anything at all, you would’ve hidden from it in terror.”

– Emperor Ming (from “Flash Gordon”, probably talking aboutfinal exams)

A new technology is sweeping the storage-systems landscape. It is calledflashand is the current best example of a
more general trend towardssolid statestorage, in which electronics without any moving parts are used to persistently
store data. The contrast, of course, is the more traditionalstorage approach of using hard-disk drives.

In this exam, your goal is simple: to understand the impact offlash on all of the file and storage systems we learned
about this semester. To do so, of course, you’ll need to know alittle more about flash and how it works, so read the
next few paragraphs very carefully!

A basic flash chip is composed of a large number ofblocks; we’ll assume in this exam that blocks are each 128 KB
in size. Each block is further sub-divided intopages, each of which is 4 KB. Thus, a 1-MB flash chip consists of 8
blocks (128 KB per block× 8 blocks= 1 MB); each block consists of 32 pages; there are thus 256 pages in a 1-MB
chip (8 blocks× 32 pages per block). Here is a (bad) diagram of such an arrangement:

| Block 0 | Block 1 | ...
| Page0 | Page1 | ... | Page 31 | Page32 | Page33 | ... | Page 63 | ...

We’ll now see why we differentiate between blocks and pages.As it turns out, each flash chip exposes three operations.
The simplest is aread(page), which reads a specific page and returns the data therein; this is quite similar to devices
with which you are already familiar. Writing a flash is more complicated, however, and requires the use of two
operations in tandem. Specifically, one must first callerase(block)to erase an entire block of the flash; erasing resets
the contents of the entire block (thus losing all the data in the block!). Only after an erase can one then use the
program(page)interface to write new data (one page at a time) to the block.

The costs of these operations is also uneven. Reads are quitecheap, taking on the order of10 microseconds to
read a page. Program operations are slightly more expensive, around50 microseconds to program a page. Erase
operations, however, are terribly expensive, and take1 millisecond (1000 microseconds) to complete.

That’s it! Read each question carefully, and don’t forget toSHOW YOUR WORK!

One more piece of advice:DO PROBLEM #1 FIRST , it will make your life (somewhat) easier.

Thanks for a fun semester (really!). And, sorry about the long exam.

3

1. Basic Flash Performance.

(a) Let’s start with an easy calculation. Given the performance characteristics described above, how long does
it take to perform 32 reads, of size 4 KB, to random locations on a flash device?

(b) Now let’s focus on writes. How long will it take to perform32 writes, of size 4 KB, to different random
locations on the flash device? Assume there is no live data anywhere on the device (and thus it is OK to
erase a block without worry).

(c) Now let’s do 32 random 4-KB writes to different random locations on the device, but with a key difference:
the rest of the data on the device (and thus each block) is live. Thus, you can’t just erase a block and then
program a page within it, because that would lose data; instead, you need to perform a read-modify-write
of any block you are updating. How long will these 32 writes take?

(d) Let’s do some sequential reads. How long does it take to read 32 consecutive 4-KB chunks from the flash?
(assume the first read is aligned with the underlying flash block; i.e., all 32 4-KB reads will read from a
single flash 128-KB block)

4

(e) Our next focus is on sequential writes. How long does it take to write 32 consecutive 4-KB chunks to the
flash? (assume the first write is aligned with the underlying flash block; i.e., all 32 4-KB writes will write
to a single flash 128-KB block)

(f) Finally, how long does it take to write 32 consecutive 4-KB chunks to the flash, in the worst case where
you can no longer make any assumptions about alignment?

5

2. Hard Disk Drives. Let’s now do the same set of calculations for a hard drive. Assume, for this question, the
disk we are using has an average seek time of 4 milliseconds; assume further an RPM (rotations per minute) of
15,000. Finally, assume a transfer rate of 100 MB/sec.

(a) Let’s start with an easy calculation. Given the performance characteristics described above, how long does
it take to perform 32 reads, of size 4 KB, to random locations on the hard disk?

(b) Now let’s focus on writes. How long will it take to perform32 writes, of size 4 KB, to random locations
on the disk?

(c) Let’s do some sequential reads. How long does it take to read 32 consecutive 4-KB chunks from the disk?

6

(d) Our next focus is on sequential writes. How long does it take to write 32 consecutive 4-KB chunks to the
disk?

(e) Given what you know from the previous question (about flash) and this question (about hard drives), when
should you use flash? When should you use hard drives?

7

3. File System Basics.In this question, we now examine file system performance on flash devices and hard drives.
Assume something like the very simple file system we first studied in class, with a single super block, a single
data bitmap block (DB), a single inode bitmap block (IB), a series of inode blocks (I), and a series of data blocks
(D); all blocks are 4 KB. Assume, for simplicity, that each inode is of size 4 KB (i.e., each inode takes up one
full 4-KB block on disk, which is outrageous but makes your life easier).

(a) Assume we are reading two files in the root directory, “foo” and “bar”, each of which is 4 KB in size. In
reading these two files in their entirety, which blocks will the file system read from disk? (assume that
no file systems blocks save the superblock are in memory to begin with; assume also that blocks, once
read, stay in the memory cache; assume there is no write traffic of any kind; finally, assume that the root
directory only has these two files in it)

(b) We are interested in how long this sequence of reads will take. Let’s first assume we are running it on
a hard drive , as described earlier (average seek of 4 ms, rotation of 15000 RPM, transfer rate of 100
MB/sec). Assuming we first read “foo”, and then read “bar”, how long will it take to read both files from
disk?

(c) Now assume we are reading the files (first “foo”, then “bar”) from aflash device, as described earlier (10
microseconds to read a page, 50 microseconds to program a page, and 1 ms to erase a block). How long
does it take to read “foo” then “bar” from the flash?

8

(d) Now assume we are reading the files from a smarter file system, such as the Fast File System (FFS). How
much does performance change when reading “foo” then “bar” from a disk, using FFS instead of a simple
file system? Assume the same disk (4 ms average seek, 15000 RPMrotation, 100 MB/sec transfer) as
before. Estimate costs if you need to.

(e) Finally, assume we are running FFS on top of a flash. How much does performance change when reading
“foo” then “bar” from a flash, using FFS instead of a simple filesystem? Is FFS needed on this device?

9

4. Journaling File Systems.We now turn our attention to journaling file systems, such as Linux ext3. Such file
systems use a small “journal” (or “write-ahead log”) to record information about pending file system updates
before committing said updates, in order to be able to recover quickly from a crash.

(a) Before getting into journaling, let’s review what happens when we’re creating a file on disk. Assuming
a basic file system structure (such as the very simple file system with bitmaps for inode and data block
allocation, inodes, and data blocks), what blocks are written to disk during the creation of a 4-KB file in
the root directory? (assume there is no journaling)

(b) Assuming there is nowdata journaling , in which all blocks are logged; what exact sequence of writes
takes place to the underlying storage device during the file creation described above?

(c) Now assume this traffic is directed to a hard disk, with thesame basic parameters (4 ms average seek, 15000
RPM, 100 MB/s transfer). How long does it take to complete allof the writes under the file creation? (to
both the journal and the regular file system)

10

(d) Now assume the write traffic is directed to a flash device, as described above (50 microseconds to program
a page and 1000 microseconds to erase a block). Making any assumptions you need to about the locations
of various file system structures; how long will the file creation on this journaling file system take on a
flash device?

(e) Finally, let us now think about the nature of journaling and the problem it solves. Given that writing to
the device at an arbitrary location requires a read-modify-write cycle (as described in Problem 1), is your
journaling strategy safe?

11

5. Network File System (NFS).Sun’s Network File System (NFS) makes server crash recoverysimple by handling
failures in a uniform and simple way. In this question, we’llexplore how a server side flash cache affects NFS
performance.

(a) First, let’s understand how NFS basically works. When a client issues a request and fails to get a response,
it simply waits a while and tries again. What are the different cases where the client won’t get a reply back
from the server?

(b) What property of each protocol request is needed for it tobe OK to keep retrying a request?

(c) Sometimes not all requests in NFS have the property described in the question above. For example, con-
siderNFS Create(pfid, filename), which creates the filefilename in the directory referred to
by pfid, if the file doesn’t already exist. If it does exist, the request returns an error. What odd thing can
happen upon retry of this request?

12

(d) Caching plays a major role in achieving reasonable NFS performance. On the client side, writes can be
buffered for a while before flushing them to the server upon close (i.e., when the file is closed, the client
file system will flush all of its dirty blocks to the server). Can a block be written to the serverbeforethe
file is closed? Describe.

(e) Now finally we get to the server side. EachNFS Write() request must be written to stable storage (e.g.,
a disk) before replying to the client. Why is that?

(f) Because each request must be written to stable storage before replying, some companies put a flash-based
cache in the server to absorb those writes. Estimate what thepossible performance impact of such a cache
is on write performance, making whatever assumptions you need.

13

6. A RAID of Flash Devices.RAID is used on hard-drive based systems to tolerate the lossof one drive (and with
some advanced schemes, more). In this question, we examine how traditional RAIDs work, and how to adapt
them to work on a flash-based medium.

For most of this problem, we’ll focus on RAID-4 with 4 data disks and 1 parity disk. The chunk size of this
RAID is 128 KB; this means that in a stripe, the first 128 KB of data are placed on disk 0, the next 128 KB
on disk 1, and so on. Assume further that all reads and writes to the RAID (from a file system above) occur in
multiples of 128 KB.

Assume again the usual flash characteristics: 10 microsecond read, 50 microsecond program, 1000 microsecond
erase.

NOTE: Assume that everything is “aligned” to make reads and writestake as little time as possible.

(a) How long does a large aligned read of 512 KB take on our flash-based RAID?

(b) How long does a large aligned write of 512 KB take?

(c) How long does a single aligned 128-KB read take?

14

(d) How long does a single aligned 128-KB write take?

(e) How long do two random aligned 128-KB writes take? Is there any way for such random “small” writes
to occur in parallel on RAID-4? Explain.

(f) Finally, when a device “fails” in a RAID, its data can bereconstructedfrom the other devices. How long
does a random read of a 128-KB block that is on a failed device take?

15

7. Log-structuring. Log-structuring is a concept we saw in the discussion of the log-structured file system. In this
problem, we apply the idea of log-structuring to build a better flash-based device.

The basic idea is simple, and starts by organizing the flash device into a log. When a file system writes a 4-KB
page to locationX , the device does not write it to that location; rather, the device instead writes it to the end of
its log (at locationY), and then records the mapping (fromX to Y) in an in-memory mapping table known as
theflash translation layer or FTL .

For example, imagine that the file system wrote three 4-KB blocks to locations 1000, 500, and 4050, respectively.
Assuming these were the first writes to the flash, the flash would then look like this:

| Page=0 holds 1000 | Page=1 holds 500 | Page=2 holds 4050 | ...

The FTL would then contain the following “file-system block”to “flash page” mappings:
(1000→ 0), (500→ 1), and (4050→ 2).

One main reason for this log-structuring is performance. Now, when writing to a flash device, erases take place
only once per (128-KB) block, when the flash log crosses from one block to the next. Further, there is no read
for a read-modify-write cycle; in the common case, the blockthat is about to be erased is empty to begin with.

(a) Given such a design, how much mapping information is needed in the FTL to map a 1 gigabyte (GB) flash
device?

(b) Given such an FTL design, how long would a file creation on afile system such as FFS take? (Ignore
reads, and assume all writes fit within a single 128-KB flash block)

(c) How long would a file creation take on this device, now using a journaling file system?

16

(d) In all of these cases, what is the impact of this FTL designon read performance?

(e) One final problem that arises in log-based FTLs is one ofgarbage collection, similar to the same problem
in LFS. Describe a simple example in which garbage is created, and how the flash device might go about
fixing this problem.

17

