CS-537: Midterm (Spring 2012)
Subtle Differences |

Please Read All Questions Carefully!

There are nine (9) total numbered pages.

Please put your FULL NAME (mandatory) on THIS page only.

Name: >0 | UTlon

Grading Page

Points | Total Possible

Q1 10
Q2 10
Q3 10
Q4 10
Q5 10
Q6 10
Q7 10
Q3 10
Q9 10
Q10 15
Q11 15
Q12 10
QI3 10
Q14 10
QI5 10
160

“It pays to be obvious, especially if you have a reputation for subtlety.” -Isaac Asimov

In life, sometimes a subtle difference makes no difference: you put on some blue pants instead of some green ones.
Other times, a subtle difference makes all the difference in the world: you forget to put on any pants at all.

In this exam, we’ll examine some subtle differences within an OS; your job is to determine what the effects of these
small changes are on the behavior of the operating system.

Remember to read all of the questions carefully. Also note that two questions are worth a little more than the rest.
Finally, good luck!

1. With the round robin (RR) scheduling policy, a question arises when a new job arrives in the system: should we

put the job at the front of the RR queue, or the back? Does this subtle difference make a difference, or does RR
behave pretty much the same way either way? (Explain)

Moskt answevs @ acceptved assumny
G @ ason able d g cussion © {A
possible e Lfecks on response Clne,
e tront o pOSS ible gtdarve {ron

e fCect on from t Ao{‘“"qt eve « bonus,

2. You write a UNIX shell, but instead of calling fork() then exec() to launch a new job, you instead insert a subtle
difference: the code first calls exec() and then calls fork(). What is the impact of this change to the shell, if any?
(Explain)

New She| [
exec (¢ ""*4/‘7“73)/'
forlc O
Doesin t wovle !
Shell yeplaced wf new cemnrand,
never Hoviks "

3. The multi-level feedback queue policy periodically moves all jobs back to the top-most queue. On a pérticular
system, this is usually done every 10 seconds; the subtle difference we examine is that this value has been

shortened to 1 second. How does this subtle difference affect the MLFQ scheduler? In general, what is the
effect of shortening this value?

General effect:
moves ull /L‘stj; 12 '5"0(9 , Thes
(*f_’S)?c'ut'ﬂ):' S f‘@}”o«’t'ﬁbﬂ = C"/g' 4]
move papdly pe-eval catfing
v of Job
Prablem . (4 done oo © f e ",

S((’\’e d ole V- ‘7‘6: CoweéSs rnermeé Tim oV C :
4

€ b o vid

4. The lottery scheduler relies on random numbers in order to pick the winner of a lottery. This subtly-different
lottery scheduler uses a simplified random number generator, which rotates through the following five pseudo-
random numbers: 133, 12,800,442,917. How does this change affect the behavior of the lottery scheduler?

f\ siall firxed H RN G 1S bad
ﬁ Ve [Q'Hﬁ H/ qs Sovné /‘d s
never he chosen, yopeated /)/ ,

well
S“f‘d Vv ﬁ‘omj Ho{‘ b(—?é,ﬁp’{ﬁﬁ Qs C)(‘V"’C"A/(i(’i/ e f C.

5. The timer interrupt is a key mechanism used by the OS. Usually, it waits some amount of time (say 10 millisec-
onds) and then interrupts the CPU. In this subtle difference, the interrupt is not based on time but rather based
on the number of TLB misses the CPU encounters; once a certain number of TLB misses take place, the CPU
is interrupted and the OS runs. How does this subtle difference affect the timer interrupt and its usefulness?

Tl ne b 1 V, ’-e . r"l,rf? '}_ {:L /q) Clq a0 +Q ,Iy { g
frere 4o allow OS5 f retain
Contrel of He cpuy (£ based on
TLE vnacss €S, o (om@é v posg (%l@
as code (ould v on tighd loop
and Afefke over < yS +emn .

6. A TLB often has a valid bit in each entry; the valid bit tells us whether the the particular TLB entry should be
examined when looking for translations. In this subtle difference, the TLB has no such valid bit. What are the

implications of such a difference?

valid bk o TUR LS vse | 4o
€hable h/in 1o kunew with trang lafrong
Shovld be cheCled for hit.
wfo e, have 1o oge TLE auch

move Cweflly s “”"“9 tentouly

valid tang [dtiong are pres ent of

gl Fwel (S"}?r‘f‘if\ﬁ @ pyot {)

.5

. In a subtly-different system with a software-managed TLB, the OS does not install a translation into the TLB
upon the first TLB miss on a particular virtual address. Rather, it increments a counter in the page table en-
try (PTE). When that counter reaches 3, this subtly-different approach then updates the TLB with the desired
translation. How does this lazy TLB update affect the behavior of the system?

Tuis type of policy can be bad

(it may CIus€ move isses) oy goud

(\ ou (t/ req /[}/ valva b/G 17 ing /g f]png yre PIESen fj
Je peEn d ¢ (,5‘777/’7/@ (/(o wovrt loa cf,

. With base-and-bounds based virtual memory, two registers (base and bounds) are used to implement a primitive
form of virtualization. The subtle change we explore here is to the bounds register. Specifically, in this subtly-
different base-and-bounds, the bounds register is checked only on writes to memory, and not on reads from
memory. What is the impact of this change?

Good © (YW 4 over uritl pem ory Hiaa
(g N { { }/CTUV}”
Pad « Mgh L jeak Sewsitive (ufo
{ 7o proc eSS =2 AroCess dF
OS = procels

. In a page table, a per-page reference bit is sometimes used to help track which pages are being actively used. A
subtle change to the per-page reference bit makes it into a per-page 32-bit counter; when a page is referenced,
the corresponding counter is incremented. What is the impact of this change on page replacement within the
0S? Can (or should) the OS policy be changed to make use of it?

Bad @ move $pace Nee€ ded to stove info
need to chauge OF alg to
us @ @(n/‘z'q }Olfj
Geod . cain (70851‘)9 ly 3@7" o muh
L etter cemse © & how page
Q tre IQQ(",\(? L;S{Jd (O /c'f ve /If%{ey
and Ahvs make be tei—
f/‘\ C P [a - nwen ?F d e C ‘}S]hC‘ i'\u(

10. In this subtle difference, we have changed the theme of the exam entirely to allow you to do this one question
from the homeworks without any subtle changes at all. It is, of course, the multi-level page table question.
Assume (as always) a 15-bit virtual address, with a 32-byte page size, and a two-level page table. The format of
both the page directory entry (PDE) and the page table entry (PTE) is the same: a valid bit followed by a 7-bit
page frame number. The page directory base register (PDBR) is set to decimal 73. Here is a dump of memory
(OK, there is one subtle difference; instead of all of the pages, we only give you the subset of physical memory
you need to see):

P
P9 6: 0a 1c 01 14 0Ob(la)19 Oa Oa la Oc 14 02 Oc lc Oc 15 04 Oe 13 17 11 08 05 08 07 04 13 0f 1d O0f le
pg 73: a2 d2 97 96 d9! 87 b4 b7 f/f4 82 bf 7f be 93 e8 9d 99 9e fl1 7f 7f b0 d8 da eb bl 81 c3 c2 £f6
pg 114: 7f£ 7f£ 7f 7f 82 7f 7f 7f 7f 7f 7f 7f£ 99 7f 7f 7f 7f Uf 7f@/7f 7f 7€ 7f 7€ 7f 8f 7f 7f 7f 7f 7f

The first virtual address is to translate is 0x1787. What happens when you try to load this virtual address? (if
valid, what value do you get back?)

|F8TF =) 0001 3 il
\(!/' ‘X (H,({’
Sh’\e,\? on T :;._ - &8”\ el
ety o [xae) =l

The second virtual address in question is 0x2665. What happens when you try to load it? (if valid, what value

Li1 600 |ootll

do you getback?) . — v -~ A 5“"& 1 Ty_ow

Gx 2665 =2 Ol ““(Loc,,!/ |21 17 .,@,,//7 v lid
] i i ey’ :
U | , : ({1 610
qﬁ,, en ny LM\: ' 209G € '?g — T Ox { Z “") (l]dxr/_;

B (7q9< iy

*ou, b on page 1] =IO 8
Eniy o => QQOL O(/O

11. A simple page table entry (PTE) usually contains at least some kind of valid bit followed by the page-frame o Vsilid P o 0
number. In this subtly-different approach, the order of the two is switched. Thus, the entry contains a PEN J
followed by a valid bit. Assume the following linear page table for a virtual address space of size 128 bytes with
32-byte pages: »

0xFE = (111 "’(Oj not vaid . © 231 faclt s
0x0F ~) oco 111(if valid =pme T 32763 vilid on FN
OxXFE :? S rnat ve lid 6y L?S ("q‘ «_/#

0x09 =) o000 i vofl) vaild =D pey< k| 96 2127 aj(d on PEN Y

-For the following virtual addresses, say whether each is a valid virtual address or a fault; for those that are Vahd B
what physical address results from the t1anslat10n’7
u,((g = 1 (P 010 I

VA 0x065 (decimal: 101) --> ((K L‘ z Qf——r — i
¢
VA 0x00c (decimal: 12) --> 2 C a4 v \ t e M

o /(C'O Q(© 1O (\,/
VA 0x026 (decimal: 38) --> [C\x LC7 2 I o

L— Ox 65

VA 0x058 (decimal: 88) --> ? fFaol i
N et

)
| e
(Ox 26 =20 jo O! 10]
7 L
ke
) ;

12. Assume we have a system that uses segmentation to provide a virtual memory to processes. Assume the seg-
mentation chops the address space into two parts (segment 0 and 1); segment O grows in the increasing direction,
while segment 1 grows backwards. Unfortunately, there is confusion over the interpretation of the base regis-
ter of segment 1; while the hardware thinks it should point to the physical address one beyond the bottom of
the backwards-growing segment, the OS has been subtly changed to assume it points to the last byte of the
backwards-growing segment. Describe what would happen when running processes on this subtly-changed
virtual memory system.

("G“‘SUt\; v ¢ haos (
oS theales it i

OS sets O[C

a SC; L

<,
-
+

fo aceecs [ag _,‘//t'
h Jue tThinks °on stack 2 h/w
i 5 —= Jdoeg

=) /((f'é'(\/ o (T

13. This code snippet provides a “solution” to the producer/consumer problem, in which a bounded buffer is shared
between producer threads and consumer threads. The solution uses a single lock (m) and two condition variables
(fill and empty).

Consumer: Producer

while (1) { for (i = 0; 1 < 10; i++) {
mutex_lock(m); mutex lock(m);
if (numfull == 0) if (numfull == MAX)

wait(£ill, m); wait(empty, m);

tmp = get(); put();
signal (empty); signal (£ill);
mutex unlock(m) ; mutex _unlock(m);

} }

Some subtle changes are made to the condition variable library: wait() is changed so that it never wakes up unless
signaled; more importantly, signal() is changed so that it immediately transfers control to a waiting thread (if
there is one), thus implicitly passing the lock to the waiting thread as well. Does this subtle change affect the
correctness of the producer/consumer solution above? (Describe)

Code apoue U sva (ly do(‘egn’?f
@'(i Gq((u'ﬁ o vye -checCk ¢ 6ud1 b0

W ol e becauleE

Clhange © £ sevamtics s ¢ iﬁ—me/
makes (t MoV [« ,; 95 o a /"ﬁ[ﬂ
ﬁ/?b €4q d kwvows Co V?Q(t%/éd/) (S huf’
e L F Fawnekeyr .
(ho wneed to e clhieck)

g?f Mﬁ\é’f Q US, (‘f oIt S-ernanm T & 1
11 book fo- Jotuils

14. A spin lock acquire() can be implemented with an atomic exchange instruction as follows:

while (xchg(&lock, 1) == 1)
; // spin

Recall that xchg() returns the old value at the address while atomically setting it to a new value. This new
subtly-different lock acquire() is implemented as follows:

while (1) {
while (lock > 0) ’/ﬂ:(o
i // spin - '
if (xchg(&lock, 1) == 0) —
return; ,:(‘ 2
} =

What kind of difference does this new lock make? Does it work? How does it change the behavior of the lock?
Lock wevks/! Jest ,5“[):"/78 veaati]
[f" t+thin kS h e /Q C/c: - ffrf’({ (T{ Q bc’we‘j
:) / A~ e : B i o -
then uses afomic exclange fo 4cquves
('FQ{(;S ¢ il § qQ §ain! q/ Loc T+
fe/listinsegi/o 3 ' C]{/6)((& { $ (L

15. Observe the following multi-thread sa n code: / / /
e _cet lock
typedef struct _ node t { ’f(S 7L q Ha_/ S

int key; (Qge d be cavse KC/y
struct _ node_t xnext; . =
} node t; i< 6)(/)6)7 g‘i'\/f”)
mutex t m = PTHREAD MUTEX INITIALIZER; o

node t xhead = NULL;

int List Insert(int key) {
mutex_lock(&m);
node_t xn = malloc(sizeof(node_t)); & b?C1C! /(4%“
if (n == NULL) { return -1; } // failed to insert-f] ' T
n->key = key;
n->next = head; i

l

head = n; // insert at head ‘,
mutex_unlock(&m); ‘
return 0; // success!

}

The code has some problems alas. In this final question, you need to insert a subtle change to fix the code and
make it work correctly (feel free to augment the code above with your answer).

(ode refvrng t'/L/ lock e (d |
L Vl/)Q//@Cg «Fqllg ,

mutex —wn loct (7”/’)/

reTurn — //

edsy iy’

