CS-537: Midterm (Spring 2012)
ubtle Differences

Please Read All Questions Carefully!

Therearenine (9) total numbered pages.

Please put your FULL NAME (mandatory) on THIS page only.

Name:

Grading Page

Points

Total Possible

10

10

10

10

10

10

10

10

10

15

15

10

10

10

10

160

“It pays to be obvious, especially if you have a reputatiarsidbtlety.” -Isaac Asimov

In life, sometimes a subtle difference makes no differegoe: put on some blue pants instead of some green ones.
Other times, a subtle difference makes all the differen¢kénworld: you forget to put on any pants at all.

In this exam, we’ll examine some subtle differences withinGs; your job is to determine what the effects of these
small changes are on the behavior of the operating system.

Remember to read all of the questions carefully. Also no# tiwo questions are worth a little more than the rest.
Finally, good luck!

1. With the round robin (RR) scheduling policy, a questidees when a new job arrives in the system: should we
put the job at the front of the RR queue, or the back? Does tihidesdifference make a difference, or does RR

behave pretty much the same way either way? (Explain)

2. You write a UNIX shell, but instead of calling fork() therex() to launch a new job, you instead insert a subtle
difference: the code first calls exec() and then calls foM(hat is the impact of this change to the shell, if any?

(Explain)

3. The multi-level feedback queue policy periodically mead jobs back to the top-most queue. On a particular
system, this is usually done every 10 seconds; the subfiereliice we examine is that this value has been
shortened to 1 second. How does this subtle differencetafiecMLFQ scheduler? In general, what is the

effect of shortening this value?

4. The lottery scheduler relies on random numbers in ordeido the winner of a lottery. This subtly-different
lottery scheduler uses a simplified random number generakiach rotates through the following five pseudo-
random numbers: 133, 12, 800, 442, 917. How does this chdfege the behavior of the lottery scheduler?

5. Thetimerinterruptis a key mechanism used by the OS. Usitalaits some amount of time (say 10 millisec-
onds) and then interrupts the CPU. In this subtle differetfeinterrupt is not based on time but rather based
on the number of TLB misses the CPU encounters; once a centanver of TLB misses take place, the CPU
is interrupted and the OS runs. How does this subtle differaffect the timer interrupt and its usefulness?

6. A TLB often has a valid bit in each entry; the valid bit telis whether the the particular TLB entry should be
examined when looking for translations. In this subtleeti#nce, the TLB has no such valid bit. What are the
implications of such a difference?

7. In a subtly-different system with a software-managed Tt OS does not install a translation into the TLB
upon the first TLB miss on a particular virtual address. Ratiténcrements a counter in the page table en-
try (PTE). When that counter reaches 3, this subtly-difieegproach then updates the TLB with the desired
translation. How does this lazy TLB update affect the betrani the system?

8. With base-and-bounds based virtual memory, two regigberse and bounds) are used to implement a primitive
form of virtualization. The subtle change we explore her®ithe bounds register. Specifically, in this subtly-
different base-and-bounds, the bounds register is chesklydon writes to memory, and not on reads from
memory. What is the impact of this change?

9. In a page table, a per-page reference bit is sometimega$etp track which pages are being actively used. A
subtle change to the per-page reference bit makes it into-pgage 32-bit counter; when a page is referenced,
the corresponding counter is incremented. What is the iinpfaihis change on page replacement within the
0OS? Can (or should) the OS policy be changed to make use of it?

10. In this subtle difference, we have changed the themeeoétlam entirely to allow you to do this one question
from the homeworks without any subtle changes at all. It fs;ourse, the multi-level page table question.
Assume (as always) a 15-bit virtual address, with a 32-bsttgesize, and a two-level page table. The format of
both the page directory entry (PDE) and the page table eRfFi] is the same: a valid bit followed by a 7-bit
page frame number. The page directory base register (PDBs$} ito decimal 73. Here is a dump of memory
(OK, there is one subtle difference; instead of all of thegzagve only give you the subset of physical memory
you need to see):

pg 6: Oa 1c 01 14 Ob la 19 Oa Oa la Oc 14 02 Oc 1c Oc 15 04 Oe 13 17 11 08 05 08 07 04 13 Of 1d Of 1le
pg 73: a2 d2 97 96 d9 7f 87 b4 b7 f2 f4 82 bf 7f be 93 e8 9d 99 9e f1 7f 7f bO d8 da eb bl 81 c3 c2 f6
pg 114:. 7f 7f 7f vf 82 vt 7t vt 7t vt 7f vt 99 vf vf vt 7f vt 7f 86 vf vf vf vf vf vf 8 vf vf vf 7f 7f

The first virtual address is to translate is 0x1787. What bappvhen you try to load this virtual address? (if
valid, what value do you get back?)

The second virtual address in question is 0x2665. What hregolen you try to load it? (if valid, what value
do you get back?)

11. A simple page table entry (PTE) usually contains at Ieaste kind of valid bit followed by the page-frame
number. In this subtly-different approach, the order oftthe is switched. Thus, the entry contains a PFN
followed by a valid bit. Assume the following linear pagel&afor a virtual address space of size 128 bytes with
32-byte pages:

OXFE
OxOF
OxFE
0x09

For the following virtual addresses, say whether each idid vattual address or a fault; for those that are valid,
what physical address results from the translation?

VA 0x065 (deci mal: 101) --> ?
VA 0x00c (decinmal: 12) -->?
VA 0x026 (decimal: 38) -->7?

VA 0x058 (decinal: 88) -->7?

12. Assume we have a system that uses segmentation to peovideal memory to processes. Assume the seg-
mentation chops the address space into two parts (segmedtl);asegment 0 grows in the increasing direction,
while segment 1 grows backwards. Unfortunately, there ifuion over the interpretation of the base regis-
ter of segment 1; while the hardware thinks it should pointht physical address one beyond the bottom of
the backwards-growing segment, the OS has been subtly edldangassume it points to the last byte of the
backwards-growing segment. Describe what would happemwiening processes on this subtly-changed

virtual memory system.

13. This code snippet provides a “solution” to the produmarsumer problem, in which a bounded buffer is shared
between producer threads and consumer threads. The salsts a single lock (m) and two condition variables

(filland empty).

Consurner : Pr oducer
while (1) { for (i =0; i < 10; i++) {
mut ex_| ock(m; mut ex_| ock(m;
if (nunfull == 0) if (nunfull == MAX)
wai t(fill, m; wait(enpty, m;
tnp = get(); put () ;
signal (fill);

signal (enpty);
mut ex_unl ock(m;
} }
Some subtle changes are made to the condition variableyibsait() is changed so that it never wakes up unless

signaled; more importantly, signal() is changed so thatihediately transfers control to a waiting thread (if
there is one), thus implicitly passing the lock to the wajtthread as well. Does this subtle change affect the

correctness of the producer/consumer solution aboveZ(ibe}

mut ex_unl ock(n ;

14. A spin lock acquire() can be implemented with an atomahexge instruction as follows:

15.

whil e (xchg(& ock, 1) == 1)
; /1 spin

Recall that xchg() returns the old value at the address vatdenically setting it to a new value. This new
subtly-different lock acquire() is implemented as follows

while (1) {
while (lock > 0)
; /1 spin
if (xchg(& ock, 1) == 0)
return;
}

What kind of difference does this new lock make? Does it watlk® does it change the behavior of the lock?

Observe the following multi-thread safe list insertamue:
typedef struct _ node_t {
i nt key;
struct _ node_t =*next;
} node_t;
mutex_t m PTHREAD MUTEX | NI TI ALI ZER;

node t *head NULL;
int List_Insert(int key) {
mut ex_| ock(&m ;
node t *n = mall oc(sizeof (node_t));
if (n == NULL) { return -1; } // failed to insert

n- >key = key;

n- >next = head;

head = n; /'l insert at head
mut ex_unl ock(&m ;

return O; /'l success!

}

The code has some problems alas. In this final quesgmnneed to insert a subtle change to fix the code and
make it work correctly (feel free to augment the code abovk ywour answer).

