CS-537: Midterm (Spring 2016)
The Timeline

Please Read All Questions Carefully!

There are eighteen (18) total numbered pages, with fourteen (14) questions.

Please put your FULL NAME (mandatory) on THIS page only.

w [MASs TER]
_ W,

Grading Page

Points | Total Possible
Q1 10
Q2 10
Q3 10
Q4 10
Q5 10
Q6 10
Q7 10
Q8 10
Q9 10
Q10 10
QI1 10
Q12 10
QI3 10
Q14 10
Total 140

Directions

Welcome to the 537 Midterm! It shouldn’t be too hard, unless, of course, you haven’t prepared! Then it will be hard,
unless you are a genius.

The theme of the exam is the timeline. Timelines show the behavior of things over time (naturally), and so in this exam
we will mostly look at timelines to see what the system is doing, or create timelines to describe various behaviors.

Please read each question carefully.

Exam-taking strategy should be: easiest-problem-first. This scheduling discipline will ensure you finish as much of
the exam as possible, and also builds your confidence. Don’t get stuck working on one hard problem.

Good luck!

1. Base And Bounds Blues

cACH

WORTH

A system uses simple base/bounds to virtualize address spaces. In each of the
traces below, your job is to fill in the missing values of either virtual

addresses, physical addresses, base register,
holds the size of the valid region of the address space.
won’t be able to precisely know the values,

or bounds register.

The bounds
In some cases, you

so just put as precise of an

answer as you can (i.e., perhaps a range, not a single number).

All numbers are in decimal format.

Virtual Address
0
100
1999
2000

Virtual Address
0
100
1999
2000

Virtual Address
100
2000
2001
3000

Virtual Address
0
100
2000
2001

Virtual Address
400 =

© 60

2S00

7 3000

Virtual Address
9000
100
2000
2001

LESVIREVIGN]

=2

->

—->

->

Physical Address
1000
1100
2999
[fault]

Physical Address
1000
1100
2999
3000

Physical Address
3400
5300

6300

Physical Address
6£0SQ ?
©150 ?
®o 50 ?
[fault]

Physical Address
0900
1100
3000
[fault]

Physical Address
10001
1101
3001
3002

Base?

Bounds?

Base?

Bounds?

Base?

Bounds?

Base?

Bounds?

Base?

Bounds?

Base?

Bounds?

1000

2000

500

3000

j00 |

> 9000

NPT

2

EACH WORTH | %2 PTS

MAY [=1 o)
2. Deadlock Or Not Deadlock ;

Some of the following arrangement of threads, and the locks that they
will grab, can lead to deadlock. Which ones?

Thread 1: will try to grab locks 1 and 2 in an arbitrary order.
Thread 2: will try to grab locks 1 and 2 in fixed order, 1 then 2. ,

. heids T <« L
Could this deadlock? 57 {, > L 'W‘"fx

'~ T > g
Yt:S Vg |« T &=

Thread 1: will try to grab locks 1 and 2 in fixed order, 1 then 2.
Thread 2: will try to grab locks 1 and 2 in fixed order, 2 then 1.

ou is deadlock? i -
Could this deadlock T —2 \P T,
\/E 5 2 B | &

Thread 1: will try to grab locks 1 and 2 in fixed order, 1 then 2.
Thread 2: will try to grab locks 1, 2 and 3 in fixed order, 1 then 2 then 3.

Could this de

\)O/ (no ayc’f‘)

(

'II—E;;/EO grab locks 1 and 2 in arbitrary order.

Thread 1:

Thread 2: will try to grab locks 2 and 3 in arbitrary order.

Thread 3: will try to grab locks 1 and 3 in arbitrary order. g3

Could this deadlock? T —7> | 2 5 i 2
N4

A - |
\(ES T 9
Thread 1: will try to grab locks 1 and 2 in arbitrary order.
Thread 2: will try to grab locks 2 and 3 in arbitrary order.
Thread 3: will try to grab lock 1.

Could this d ad&ctkﬁy\

3

Thread 1: wi try to grab locks 1 and 2 in fixed order, 1 then 2.
Thread 2: will try to grab locks 2 and 3 in fixed order, 2 then 3.
Thread 3: will try to grab locks 1 and 3 in fixed order, 1 then 3.

Could this deadlock?

5 | (o,,deﬂa qu/wVe)

Thread 1: wi try to grab locks 1 and 2 in fixed order, 1 then 2.
Thread 2: will try to grab locks 2 and 3 in fixed order, 2 then 3.
Thread 3: will try to grab locks 1 and 2 in arbitrary order.

Could this deadlock? ///)? ’
N) g— T’
NE: ! :
€S | S o B

—

——

!

W

EACH LINE

M kX -10

3. Fork Exec Wait Oh My

Remember fork(), exec(), and wait()? In this question, we trace

S uecesshl

=
when each of these system calls is CALLED, and when they RETURN. Q&(’ c (\L“ € S
Thus, write down something like "fork called" if fork() has s
been called, and "fork returned" if it returns. A particular -\ ()d’ ve *"UVV\

answer may have more than one action.

()
System call(s) called/returned: 5
(if there are any)

€

ccesstul fock

fums fwee

Process A is,running; it starts k —Fo &k. \‘ C A’L L ((n A T/ (i"u' I (‘)

to make a child process B (a nearly
exact copy of itself)

Process A then continues running just (?O R K— \ RE-‘\U RM &

after the 0OS has been told to create B
S

(;FOQK,’RETuRM &

Process B runs for the first time

Process B now overlays its address l/j—] 2
space with a new program and starts l/E_}f__&__L_/ (A’LL

running in its main ()

Process B runs for a while, A N —
then A runs for a while,
then B, etc. s

Process A now ensures that it will \>
/
be notified when B exits, blocking b\) Al C A L L

until that is the case.

/.

B now creates C il QF;&)‘Q?\/ C A LL

Cc s:tarts running <FD (LK 26-‘-\-’ iz M

'/_—_ : . -
ries to overlay its address \ EC FTU RM
(s:che buE failsltz dz sodd Ex GC I C ALL/ @\g

and decides to exit L

Process B runs again, then creates

B and D run, each doing some disk I/O 60 KL)ZET"URM

. B finally exits and A runs 6} RGTU R M

<Poad RETURN @g}’:'ﬁ/

AL L

4. Hardware Or Software Or User Program Or Give Up

This question is about the Limited Direct Execution protocol. Some of

these steps are performed by the 0S; some are handled by hardware (HW);

some are in the user program itself (USER). Mark (by circling the correct
answer), in the timeline below, which steps are taken by 0S, HW, or USER
program in this example of a process being created, running, issuing a system
call, and exiting.

7=

Create entry for process list <18§/ HW USER

Allocate memory for program (E%; HW USER
. —

Load program into memory 0s) HW USER

Setup user stack with argv 0Ss HW USER
Fill kernel stack with reg/PC HW USER
execute return-from-trap instruction USER
restore regs from kernel stack 0os USER
switch to user mode 0os USER
set PC to main() oS

Start running in main() 0Ss HW

Call a system call 0s HW

execute trap instruction [oF] HW

save regs to kernel stack 0s H%\

switch to kernel mode USER
set PC to OS trap handler USER
Handle trap USER
Do work of syscall USER
execute return-from-trap instruction USER
restore regs from kernel stack USER
switch to user mode USER
set PC to instruction after earlier trap USER
Call exit () system call USEg

(-_—
ENCH WI/H P

5. Physical Memory Is Just A Cache

Here is a timeline of virtual memory references, given by the virtual page number:
0 1 4 0 1 3 0 1 4 1

Your job is simple: for each scenario below, determine whether the virtual

page access will lead to a HIT ("H") as the page is FOUND in the memory of the

system or a MISS ("m") as it is not (the page must be retrieved from the

disk’s swap space).

All pages begin on disk; no pages are in memory at the start (and thus must be
referenced to be brought into memory) .

Polico:y FIi‘O, Czche ;izei 5 .) , '1 p/ //ZO ‘ \.{
MMM H,,M”‘W‘M@ |

Policy FIFO, Cache Size 5
0 1 4 0 1 3 0 1 4 1

M M N\@@N)

Policy LRU, Cache Size 3) @/ /)(¢ /()% 0 \ Y

no\"ze; M M M@/G{) v @@ M H
SQV’\Ae

Nsul“f
. . Policy LRU, Cache Size 1000
be(d"se o 1 4 0o 1 3 0 1 4 1

cacle
L M MM
b)

_—

cacH QuesTiov [72 PT

6. Producers And Consumers: We Need Both

Assume the following producer/consumer implementation for the famous bounded
buffer problem.

int buffer[max];

void #producer (void =*arg) {
for (i = 0; i < loops; i++) {

Pthread_mutex_lock (&mutex); // pl
while (count == max) // p2

Pthread_cond_wait (&éempty, &mutex); // p3
put (i) ; ' // p4
Pthread_cond_signal (&fill); // p5
Pthread_mutex_unlock (&mutex) ; // p6

void *consumer (void =*arg) {

while (1) {
Pthread_mutex_lock (&mutex) ; // cl
while (count == 0) // c2
Pthread_cond_wait (&fill, &mutex); // c3
int tmp = get(); // c4
Pthread_cond_signal (&empty) ; // c5
Pthread_mutex_unlock (&émutex) ; .// cé6

printf ("$d\n", tmp);

Assume further that the only way a thread stops running is when it explicitly
blocks in either a condition variable or lock (in other words, no untimely
interrupts switch from one thread to the other).

Also assume there are NO SPURIOUS WAKEUPs from wait ().

In the following, show which lines of code run given the particular scenario.
For example:

Thread Pa: plp2p4p5p6plp2p3
Thread Ca: clc2c4c5c6elc2

You can also show this more concisely if you like, e.g.:

Pa: 1,2,4,5,6,1,2,3
Ca: 1,2,4,5,6,1,2

Trace 1: 1 producer (Pa), 1 consumer (Ca), max=l. Producer Pa runs
first. Stop when consumer has consumed one entry.

;;_l 24661273
Ca: i 2/‘1

Trace 2: 1 producer (Pa), 1 consumer (Ca), max=3. Producer Pa runs first. Stop
when consumer has consumed one entry. —— ==

124956 \2456 12466 123

Pa:

ca: ‘y//-—‘\//—\“’/
<2 41 €S

1™

void +producer (void xarg) { void *consumer (void =xarg) {

for (i = 0; 1 < loops; i++) { while (1) {
Pthread_mutex_lock (&mutex) ; // pl Pthread_mutex_lock (¢mutex) ; // cl
while (count == max) // p2 while (count == 0) // c2
Pthread_cond_wait (&empty, &mutex);// p3 Pthread_cond_wait (&fill, &mutex); // c3
put (i) ; // p4 int tmp = get(); // c4
Pthread_cond_signal (&£fill); // p5 Pthread_cond_signal (&empty) ; I/ ¢5
Pthread_mutex_unlock (&mutex) ; // p6 Pthread_mutex_unlock (&mutex) ; // c6

} }

Trace 3: 1 producer (Pa), 1 consumer (Ca), max=1l. Consumer Ca runs first. Stop
when consumer has consumed one entry.

Pa:] 2/ L‘ S;é) l:Z/'g
Ca:] :l ﬁ; (fg} k‘
cvibvealy recheck

Trace 4: 1 producer (Pa), 2 consumers (Ca, Cb), max=1l. Consumer Ca runs first,
then Cb, then Pa. Stop when producer Pa has produced an entry.

Pa: ‘,2/ \1
Ca:) 1L'S

Cb: i ?LEZ

Trace 5: Now we change the "while" loops to "if" statements. Show a trace of behavior,
using one producer and two consumers, where this leads to problems may :;,
(assume max is set to whatever you like). d"uﬂc 23

¥ s

Pa i 24 %’6 (2%
rz*s'w* walke
Cb: ’ 2<:£9'6 / Z‘ig

congreéS

2 Wﬂr\/

q‘) fvies to o surty
oty 1§ Herd

Trace 6: Now we use "while" loops but only one condition variable, not two as above. na X :L)
Show a trace of behavior, using one producer and two consumers, where this

leads to problems (assume max is set to whatever you like).
Fa 1245 (‘-’ngiwwf‘ 5 cou [d weke |
Ca: I’LZ lwﬁﬁ‘ ‘J./gc Z"‘ 6‘&59!’7&’ COWSOW‘er b(,f‘ W)(,S} v»d,l.’("
' /
s [R[als produ e
e

10

£ ACH | PT
MmAY "®>

The following timelines show a set of jobs arriving, and then being executed
on a processor. What is the TURNAROUND TIME for job A?

7. Remember Scheduling

Assume A arrives at the beginning of the time unit where the "+" is on the
timeline, A ends at the end of the time unit where "x" and that each tick
moves time forward 1 time unit.

Example

ABABA This means that A starts at time=0, runs

* x right away, and then finishes at time=5.
B runs from time=1-2 and time=3-4.

0 :1 Turnaround Time (A) ? B

o (a-0)

ZABABABABAB

*) % g

? lemamannaal 10 (10-0)

* X

’Ol\ABCﬁABCAEdA{\l l I ([l"(})
BBBBBEAAAA{ 5 (fO = 6)

Now do the same for RESPONSE TIME for A (note that the traces
are not identical to those above):

Response Time (A)?

(ABABABABAB O__ _
* X

BE{ABABABABAB
* X

‘AAAAABBBBB
* X

Z
O
sesscharan 5
O
5

* X

(ABCBABCABCA
%

BBBBB{AAAAA ’\‘ Don \T G-r\a A DL‘-

" % // CngME f\i))

i o
VAL (D EVTRIES 172 PTS €ACH

(NVACLID l PT €ACH

8. Reverse Engineering The Page Table

In this problem, we consider address translation in a system with a simple
linear page table (an array of page table entries, or PTEs).

Parameters: O“Q&K SQ{‘ \ .
— Virtual address space size is 32KB 5 : D i
YR % 12 RS

— Page size is 4KB

— Physical memory size is 64KB T 3 'V\QY d\ 5 i *»S
: ’! i I S
———

Here is a trace of virtual addresses and the physical addresses —
they translate to (or perhaps an invalid access):

VA 0x1063 ——> PA 0x2063 | =2 /rl’\US / VPN U‘R PEN

VA 0x67b4 ——> PA 0x67b4

VA 0x584a —-> PA Oxe84a é: =2 6 t < +G ? \O,E)E (\i?‘?‘

VA 0x4dfe —-—> Invalid

VA 0x388a ——> Invalid (5 e it &

VA 0xlc6b ——> PA 0x2cé6b) . pd

VA 0x50a9 --> PA 0xe0a9 Y x T eq- O X G

VA 0x0bc6 ——> Invalid ; . of&kserl
VA 0x2a9f —-> PA 0x9a9f VN

VA 0x742b —--> Invalid

VA 0x4b5e ——> Invalid @
.

g% %

VA 0x5597 —-—> PA 0xe597

= 9

Can you reconstruct the page table entries from this? For each entry that you
can construct, please do so; otherwise, mark down the entry as "UNKNOWN".

Format: Valid bit followed by Physical Frame Number (PFN)
[1 or 0 then PFN]

Valid PEFN

Page Table Entry 0: Ci)
Page Table Entry 1:)

I s
%

Page Table Entry 2:

Page Table Entry 4:

Page Table Entry 3: ())

—
Page Table Entry 5: l O)(t’
Page Table Entry 6: l

Page Table Entry 7: l) a—

12

EACH [PT

M Ay -wqj

Segmentation is another approach to supporting virtual memory. In this
question, you will examine some timelines of virtual memory addresses and try
to set the base and bounds registers, per segment, correctly so as to NEVER
GENERATE a SEGMENTATION FAULT, and to make sure that the virtual addresses in
the trace get translated to the proper physical address.

9. Segmentation Is Fun Until The Stack Segment

All other virtual addresses (not seen in the trace) should generate a
SEGMENTATION FAULT.

Here we assume a simple segmentation approach that splits the virtual address
space into two segments. The top bit of the virtual address determines which
segment it is in.

Segment 0 acts like a code and heap segment; the heap grows towards higher
addresses.

Segment 1 acts like a stack segment; it grows backwards towards lower
addresses. For this segment, we follow convention that the book follows: the
base register points to the physical address one past the last byte of the
stack.

In both segments, the bounds (or limit) register just contains the "size" of
the segment, i.e., the number of bytes valid.

Trace 1: Assume a l6-byte (4-bit) virtual address space (tiny!).

— Virtual address trace: 0,1,2,3,15,14,13 (all of these accesses should be valid)
— Virtual address 1 translates to physical address 101

— Virtual address 13 translates to physical address 998

o (00|

Segment 0 Base? 21 Segment 1 Base?

Segment 0 Limit? j Segment 1 Limit? TS

Trace 2: Assume a 64-byte (6-bit) virtual address space.

— Virtual address trace: 0,1,63 (all of these accesses should be valid)
— Virtual address 1 translates to physical address 1001

— Virtual address 63 translates to physical address 899

Segment 0 Base? [OOU Segment 1 Base? qOO
Segment 0 Limit? 21— Segment 1 Limit? l

Trace 3: Assume a 8-byte (3-bit) virtual address space.
— Virtual address trace: 0,1,2,3 (all of these accesses should be valid)
— Virtual address 3 translates to physical address 100

Segment 0 Base? C‘Tq. Segment 1 Base?

Segment 0 Limit? L* Segment 1 Limit? g:z

13

x> 499%
(4> 999
€ =21 000

EACH .6 PTS

10. Spin Locks For The Win

Assume we are using a spinlock to protect a critical section. In the

timelines below, "c" means a thread is doing some computation; "S" means a thread
is spinning on a lock, waiting for it to become available; "A" means a thread
acquired a lock; "R" means a thread has released the lock.

Describe, in words, what happened in each of the following timelines.
In some cases, the timelines shouldn’t be possible. If so, say so, and

describe why. In all cases, there is ONLY ONE LOCK that is being used.

Thread 1: ccccAccccRecccece

Thread 2: - ccceccAcceccRecce
Hron
What happened? (6'4 / c]C 3 "l‘ Q\\ A Cane
y . , \ped re leas 6 / 2
T | Qacqui /
Thread 1: ccccAccccccc ceccecRececee
Thread 2: cccccSSSSSSSSSSSSSSSSS d
” qn spvn,
What happened? : , RQI ' 7_7’ ran .) ,
-, 90_\, lock 3 was fater vvp / Coul'elh"} 794‘ [(JL/(/

/‘V?HVVL/[)H({/ T, vn and
Thread 1: ccccAcc cccccR E f . -
Thread 2: ccceccAccecR 0’(_’ /ch/ /0 ¢ /C

What happened?

Looks like T,/TL both 90+ lock

Thread 1: ccccAcc
Thread 2: cccSSSSSSSSSSSSSS ... (forever)

What happened? 5 .
T 90{’ ’C)Ck/ IH?L€W’V‘0(’€C‘/ IZ’) ‘
l trie S 17’ q(C[V”/e/
Thread 1: AR AR AR AR Sf’/n(ﬁr(av€r
Thread 2: AR AR AR AR

What happened? ‘ s .-r-
lotx of rTaferrvpts s‘w(ﬁhlry befvreen T, T,
edch grabs/ veledés lock
Thread 1: ccccSSSSSSSS SSSSSSSSss ... (forever)

Thread 2: cccccSSSSSSSs SSSSSSSSSS ... (forever)

What happened?

B.prr)' no oneé waf qblf’ ’/‘0 3(’“" loc
' Cg?m 'Gorf‘l/fr)

14

iy @ Wigher prxity

=

covve et ones miged

) ba d

PART 2

11. The Dreaded MLFQ Question

EACH

ones C(vcled

| PT

The MLFQ (multi-level feedback queue) is a scheduling discipline.
It consists of a number of rules. First, circle the rules that

are actually part of the final MLFQ policy:

pr (@ If Priority(a) > Priority (B),

———N

A runs (B doesqz%;;)
A _runs (B _doesnt)

If Priority(A) = Priority(B),

A & B run in round-robin fashion,

2T IfPricrity (A) < Priority(B),

1T Priority(A) = Priority (B), K runs to completion, then B.
g y

| when a job enters the system, it is placed at the highes
G ‘ eV iori the topmost queue).

6. When a job enters the system,
When a Jjob enters the system,

it is placed in any queue.
it is placed in the lowest queue.

s reduced.

Once a job uses up its time slice at a given level, its priority‘\\\

Once a job uses up its

. ime slice at a given level, it moves
to the end of the round-robin queue.

10. Once a job uses up its time slice at a given level, it exits.

11. After some time period, move each job up to a higher priority queue.

-5 PT

(rMny ~5)
(mAY -5)

1,3,5,8,13

. After some time period, move each job down to a lower priority queue.

After some time period, move all the jobs in the system 3
o the top-most (highest-priority) queue.

Now, write down the rule (or rules) that come into play in each of the
following example traces of MLFQ behavior (use the numbers from above) .

Note that * marks when A arrives, if the information is relevant.

Q3: A

Q2: AA

Q1 AAAAAAAAARAA .
*

Q3: A

Q2: AA

Ql: BBBBBBBB

Y

*

03: Aa/.s

02: AAa/&>
Ql: BBBBBBBB AAAABBBB ...

e —

3

Q3:
Q2
Ql: AAAABBBBAAAARBBBAAAABBBB

Q3: AB AB
Q2: AABB
Ql1: AAABBBAAABBB

AABB

Rule(s)?

5 e

5(6«13)/3,8,’/(}‘ '3

AAABBB...

(1 when

==

\

A S done

at 35\/@\" leve ‘)

15

12. The Even More Dreaded Multi-Level Page Table

Assume you have a 15-bit virtual address, with page size = 32 bytes.
Assume further a two-level page table, with a page directory which
points to pieces of the page table. Each page directory entry is

1 byte, and consists of a valid bit and PFN of the page of the page
table. Each page table entry is similar: a valid bit followed by
the PFN of the physical page where the desired data resides.

The page directory resides in physical page 18.
) o e SR ¢
The following physical page contents are made available to you:

page 10: 7f 7f 7f£ 7f£ 7f 7f 7f 7f 7f £0 7f a4 7f 7f 17f If
7€ 7f 7€ 7£ 7f£ 7€ 7€ £ 7£ £ 7f 7£ £ 7f 7£ £

7f cO ea £9 ed 8b db ba d9 cl 84 8a b3 7f |daleb
9a 85 ab 87 e5 97 bl df 86 ec e7 ad £2[b9)d5 £8

13 1b 03 11 le 12 16 18 0f 08 12 10 0a la Ob Oe
17 19 1b 14 07 la\lcllG 17 Of O0f 12 04 14 1a O

]

F%ge Df(

-

al 7f£ 7f 7f 7f 7f 7f7f 7f£ 7€ 7£ 7f 7f£ 7£ £
7f 7f£ 7£ 7£ 7£ 7f£ 7£ 7£ 7f 7f£ 7f 7f 7f e0 £ V£

?Dage 04‘ page 90: 7f£ 7f£ 7f 7f£ 7f 7f 7f 7f 7£ 7f£ £ 1f 7f £ 7f £

oT © 7£ [e2)7£ 7£ £ T£ £ 7 If £ £ £ £ Tf £ UE
page 98: 16 0d 18 10 02 Oe 01 1c 1d 0a 09 17 06 05 05 Oa
Tata 13 1d 06 1d 11 1b 19 04 14 03(00]oc 17 11 05 1a

page 126: 16 Oe 14 07 07 01 Oc 11 03 05 Oc 00 19 05 1c 1
09 02 13 01 Oa 1le 19 16 12 13 17 1b 03 1b le 1

In translating virtual address 0x3a3a, which physical pages are accessed?
—
] EB (1 () (‘ES ‘E; ?:> (j;
) /
What is the final data value returned?
In translating virtual address 0x74f6, which physical pages are accessed?
8, 5%, 30 j S PTS
/ /

What is the final data value returned?

16

=y BT
eACH WLONS STRTE 2

@/}M ”le

We have a system with three processes (A, B, C) and a single CPU.
Processes can be in one of three states: Running, Ready, Blocked.
If the process does not exist (yet), or has exited, just put a
"———" down or leave the entry blank.

13. Too Many Forking Questions

Below is a timeline of process behavior. Fill in the states of each process in
the diagram:

State?
A B Cc

X ///.;“\
Process A is loaded into CR ON/ I e,

memory and starts executing
in main() .

AT
//' \
Process A calls fork() and O / DY ————
creates Process B (but A, (F\UN R‘Eﬂ

the parent, keeps running)

Process A issues a request to i i -—
the disk; B starts executing EL O(kED @

at the return from fork().

B calls fork(), creating Process C; BLOCKED QOW ngﬁpy

B keeps running.

SR
BLOCKED| ROy (RN

B’s timeslice expires; C runs.

=
A’s I/O completes ggﬂpy R—Gﬁoy \f{_(’)m/l

(but there are no other changes)

C waits for user input. A runs.

2o) penoy BLOCKED

17

14. You Put The T In TLB

The following question traces TLB behavior over time. Each question will give
you a few assumptions; you should then produce a series of hits ("H") and
misses ("m"). The string "mHmH" would mean "TLB miss" followed by a "TLB hit"
followed by a "miss" followed by a "hit".

In all cases, ignore instruction references (i.e., do not worry about their
effects on the TLB).

Also, always assume the array (discussed below) is PAGE ALIGNED.

[a4]
Assume you have a l-entry TLB. Assume you access contiguous 4-byte integers Q
in a large array, starting at index 0 and going to the max size. Assume the "
page size is 32-bytes. What is the hit/miss pattern for that access pattern? S
———Id
Pattern: §
P - HH HHH re ‘QQ"i‘ecl
7, 1 S m H H P, 1 d
((outl dewe)
Assume you have a 2-entry TLB with LRU replacement of TLB entries. Assume you
access contiguous 4-byte integers in a large array, again starting at
0. Assume the page size is 32-bytes. What is the hit/miss pattern for that
access pattern?
Pattern:
~ ; H Ve eated ng -
2 CW\HHHHHH J v o as Abow®
é’v‘wl‘(\ dov{)
Assume you have a l-entry TLB. Assume you access *every otherx 4-byte integer
in a large contiguous array, starting at index=0, then index=2, etc. Assume
the page size is 32-bytes. What is the hit/miss pattern for that access pattern? m
H
Pattern: y
o

B vaHHH] repeated (untl dene)

Assume you have a l6-entry TLB with FIFO replacement. Assume you repeatedly 2

access all 4-byte integers in a small contigous array of 24 integers, in a E; 'h*S/PQ}P
loop. Assume the page size is 32-bytes. What is the hit/miss pattern for that 23

access pattern, for the xfourth* run through the loop?

Pattern:

H repeated 2 i e
(<11 ff)

18

