Student ID:

CS-537 Exam: The Final Conflict (Spring 2002)

Please Read All Questions Carefully!

There aretwelve (12) total numbered pages

Please put your name on this page, and your Student ID on thisand all other pages

Name:

Student ID:

Grading Page

Points| Total Possible
1 25
2 30
3 25
4 20
5 20
6 30
Total 100

Student ID:

Questions

All questions are in the long answer style. There are si¥ tpiastions, and then you are out of here!

1. Be AfRAID, bevery AfRAID (25 points)
This question explores RAID storage technology.

a) Assume you have a RAID-4 based system, which uses parity adumdancy mechanism. In RAID-4,
something called the “small write” problem occurs. Whatie small write problem, and why is it bad?

b) RAID-5 is a slight variant of RAID-4. How does RAID-5 work?

¢) In what way does RAID-5 address some of the problems of RAPD-4

Student ID:

Be AfRAID, be very AfRAID (Continued)

d) One idea to improve the performance of RAID-4 and RAID-5 basgstems is talelay the update of the
parity block. For example, assume that under a write, thigypalock does not need to be immediately updated,
but only after some amount of time. How could this improvefpenance?

€) What problems are introduced by delaying updates to theydalock?

Student ID:

2. A Quest for Information (30 points)

In this question, we explore the addition of new interfacethe OS. Specifically, we addforming operations,
which can be called to gather information about what the Gf®isg or some of its internal state.

One informing operation is callefll oat Fi | e_Get Per cent | nCache(char *file). When called,
this routine informs the caller of the percent of the file (rahby the string i | e) that is in the file system
buffer cache. For example, before any process has accegsaticular filef 0o. ¢, none of the file will be in
the cache. Thus, iFi | e_Get Per cent | nCache(' * foo.c’) is called, it will return 0. If a user reads
f 00. c in its entirety, and the file is not “too big” (i.e., bigger théhe size of the buffer cache), the entire file
will likely reside in the buffer cache. IFi | e_Get Per cent | nCache(‘ ‘' foo.c’ ') is called, it will thus
return 100. As blocks of the fileoo. ¢ get evicted from the cache, a percentage between 0 and 10Genay
returned.

Let's examine the following bit of pseudo-code:
int cnt = 0; // global variable

voi d search(char *file) {
int fd = open(file, O RDONLY); // open file for reading

char c;
while (read(fd, &, 1) >0) { // read file, one byte at a tine
if (c =="a)
cnt ++;
}

close(fd); // close up properly
}

/1 idea: search through all files for total number of a's
int main(int argc, char *argv[]) {
foreach file (in a list of files obtained fromargv) {
search(file);
}

printf(‘‘total nunber of a's in files: %\n' ', cnt);

}

a) Assume that the time to run this program is completely doteihdy the time to read the files, i.e., that all
other operations take near-zero time. Assuming that thegrpro reads in 100 4KB files, and that the disk takes
on average 10 ms to read a 4KB block, how long will it take talrath 100 files from disk when the program is
run? Assume that all of the files are on-disk and not cachetistsow your wor k!

Student ID:

A Quest for Information (Continued)

b) Now assume that you have run the program once, and all of #eedik in main memory in the buffer cache.
Assume that reading 4KB from main memory takes 50 microsgeodow long will it take to read in all of the
files now?Show your work!

¢) An interesting case occurs when repeatedly reading the setr# files over and over again, but when the
total size of the files islightly bigger than the size of the buffer cache. Assuming LRU replacemibloaks
within the cache, a cache that can fit 999 4KB blocks, and assuthat the program is run twice (2 times),
each time accessing 1000 4KB files (the same 1000 files arsssxtduring each run), how long will it take to
read the 1000 files durindpe second run of the program?

Student ID:

A Quest for Information (Continued)

d) Finally, we getto use the informing interface. Re-write div@ve code to use the | e_Get Per cent | nCache()
interface. Your goal should be tnaximize the performance of the code, i.e., reduce its total running time.

€) Now, again assume the scenario in part (c), i.e., that thiebadiche can fit 999 4KB blocks and does LRU
replacement, the program is run twice, each time acceskimgame 1000 files, each of which is 4KB in size.
How long does your improved code take to read the 1000 filemgtine second run of the program?

Student ID:

3. Pardon the Interruption (25 points)

In this problem, we revisit the concepts of critical secti@md locking, with a focus on using interrupt masking
to synchronize access to shared data.

a) What is a critical section, and why are they important to eorent programs?

b) One technique used to implement a lock was to turn off infgsusay with a routindur nOf f | nt er -
rupt (), and then re-enable interrupts when unlocking nOnl nt err upt s() . Why is it dangerous to
expose this functionality to user-level programs?

¢) We introduce a new primitive, calleBur nOf f | nt er rupt (f1 oat anount), that turns off interrupts
for a bounded amount of time, namely fambunt seconds. After that time, interrupts are automatically re-
enabled in the hardware. How does this primitive solve tlodlem introduced by the traditional interrupt off/on
lock described in part (b)?

d) Paired with this new routine is the traditional routifier nOnl nt er r upt s() , which re-enables interrupts
on the processor. Does this new routine have any value? ([$bsers bother calling it?)

€) What aspects of modern systems would make a timed interraphamism like this one difficult to use?

Student ID:

4. It'sAll A Game (20 points)

In this question, we explore the process of “gaming” the dakber. In gaming, the idea is to exploit aspects of
the scheduler design or the behavior of other processeste@as an unfair share of the CPU for your process.

a) Assume a priority-based scheduler that works as follows. edvlp created process enters at the highest
priority. If the process uses up its entire time quantum wiheuns, it moves to the next lowest priority. If a
process initiates an I/O request, it is moved back to the tapity, and its time quantum begins anew. How
would you “game” this scheduler?

b) Assume a lottery-based scheduler, and that you only havegéedicket. Also assume there is a single lock
in the system that most processes periodically grab, inrdcdexamine some shared state. What could you do

here in order to gain an unfair share of the CPU?

¢) Assume a shortest-job first scheduler, which somehow “kfdinesrun-time of each process, and schedules
the shortest ones first. How could you (re)write your progsam as to take advantage of this scheduler?

d) Finally, assume an “efficiency-based” scheduler that gjweference to programs that exhibit good file
cache behavior. In our efficiency-based scheduler, a psabashas a higher file-cache hit rate will be run more
frequently by the scheduler. How could you exploit this kiexge to game the scheduler?

Student ID:

5. Your Losing Your Memory (20 points)

In this problem, you have to design a virtual memory systenmTfoyOS, an operating system for a handheld
device. Unlike a traditional modern OS, you don't have a lbim@mory to fool around with, and so saving
space is important.

For this question, assume that your TinyOS is running on akheld with 1K pages, and on this handheld in
particular, there is 128KB of physical memory. Assume agdsks (virtual and physical) are 20 bits long.

a) Let's say we want to use a single linear array as the page tdldeprocess. Assume that each page table
entry needs, in addition to any translation information,it3 or protection information, and 4 other bits for
miscellaneous stuff. How much memory will the page tableupg®

b) Now let’s try a different structure to track translationsjled MiniTable. MiniTable is a linear array that
is proportional to the size gfhysical memory, with one entry pegphysical page. Each entry specifies which
process has the page mapped (i.e, a process ID), as well asttizd page number of the page that maps to this
physical page. How much space does a MiniTable occupy?rfesthat a PID is 6 bits in length)

¢) One problem with MiniTable is thBme over head to perform a translation. How much time does a virtual to
physical translation lookup take in MiniTable, as compdcethe linear array described in part (a)? Please state
your assumptions.

d) Another problem with MiniTable is that it does not easilyoallprocesses tehare a page. Describe why this
is, and how you might fix MiniTable to allow sharing.

10

Student ID:

6. Scalable File Systems (30 points)

You are in charge of designing a new file system for Linux. Unfoately, the Linux community won't accept
the standard Berkeley FFS — they need more. In each of th@violyy questions, we will try to address some of
the scalability limits of FFS in our new file system, XFS.

a) Assume the standard FFS supports an 8KB block size, and de s 12 direct pointers, a single pointer
for indirect blocks, and a single pointer to a doubly-indirblock. Assume also that each pointer is 32 bits in
size. What is the maximum file size supported in FFS?

b) Let’s say in XFS, we want to support larger files. Name at leastthings we can change about FFS that will
allow us to support larger files.

¢) In FFS, the number of inodes that can be allocated is fixed heefile system is first created. Describe why
it is fixed (i.e., describe how inodes the allocation andldeation of inodes are managed).

d) In XFS, we want to have a more flexible system, that allows thmher of inodes to grow over time. Describe
how you could implement this.

11

Student ID:

Scalable File Systems (Continued)

€) Directory operations (such as looking up a file in a directdake too long when there atets of files in a
directory in FFS. Describe how FFS (or most Unix file systearganize data in a directory, and why a directory
operation would take a long time when there are a lot of files directory

f) In XFS, we want to have fast directory operations, even ifdinectories have lots of files in them. Describe
how you might solve this scalability problerdint: caching the directory dataisnot the answer!

12

