The x537
CS 537 Fall ‘22 Midterm

The x537 is a new processor, introduced just for the purpose of examining students on the inner
workings of operating systems. How cruel, to make a new processor just for an exam!

The hardware can be configured to run in a number of different ways. For example, in
base-and-bounds mode, x537 uses base-and-bounds relocation. However, it can also be
configured to use paging, segmentation, and other virtual-memory mechanisms. It can even use
multi-level paging, which for some reason, the designers call “mode 3000”. Why do they call it
that? It is a mystery, one which may never be solved.

The operating system that runs on x537 is called xOS. xOS has a lot of features too, which you
will learn about during this exam. How unusual, to make a new operating system, just for an
exam!
Cheat sheet freebies:

- 1 KB is 1024 bytes; you need 10 bits to refer to 1 KB of address space

- 1MBis 1024 * 1024 bytes; you need 20 bits to refer to 1 MB of address space

The exam has 16 total pages, and 48 total questions (each worth the same amount).
Please fill out a single answer for each one!

On the answer sheet, please fill out your name and student ID number.
Remember, use an Easiest Problem First scheduler (EPF) to maximize your time and score.
And, from the x537/xOS design team, a hearty good luck!

Finally, please hand back the questions when you are finished, as some people are taking the
exam at a later date. You will receive an electronic version later.

AmgweV]ée)/ /

Question 1: Base and Bounds

Assume for this question that the x537 in question has a single CPU, and uses base and
bounds (also called dynamic relocation) to implement virtual memory. Assume a (small)
virtual address space of size 1 KB (1024 bytes).

1. With one CPU, how many base registers are in the system (total)?

tnere S owne bage rey ister
4 per CpPvu
8

®© a0

None of the above

2. Assume the base register is set to 1000, and the bounds to 100. How many accesses to
memory will the following instruction sequence generate, when fetched and then
executed upon that CPU?

load 10, rl £etch im_g“‘rut"ﬁ‘ow .
one access

a. 0

b. 1 - r
<) load data into 1,

d 3 one access

. N f the ab |
e. None of the above "H«us/ 5 *‘Of’q’

3. With base=1000, and bounds=100, what physical address will virtual address 10 be
translated to when it is accessed?

a. 100

b. 1000 PA = VA F base
=)o + |OOO = 1010

e. None of the above (within bounés)

4. With the bounds register set to 100, how many different legal addresses can a process

access?

g' 0 bounds SC+— fo 100

1

€469

Means 0.-- 19 are ___/9_/

d. 1000

e. None of the above :_) 100 /fgq | a ddresses

5. Assume you have the following process table (list of active processes):
[Process A base:100 bounds:10]
[Process B base:1000 bounds:20]
[Process C base:500 bounds:50]

Assume process A is running on a CPU. After the switch to process B, which of the
following is a physical address that process B might legally refer to?

z- g0 B's base K /OOO,bound.s 20
=) (000 ... 1011 ar¢ l«:yc/
e. None of the above ::) 10/5

6. Given the process table above (with processes A, B, C), we observe the following
physical memory accesses over time:
A B c

— — By
M100, 101, 109, 103 1010, 1011, 1012, 1001, 540, 539, 538, 537,

102, 103, 104, 103, 1000, 1002, 1004, 1008, 500, 501, 502, 503
| &

L\ R 3 L_k N |
What could you conclude about the scheduling policy of the system? ‘ + P
a. Itis possibly Shortest Job First (SJF) Lookc like 1T5$
b. ltis possibly Shortest Time to Completion First (STCF) .
Cc.ltis possibly Round Robin (RR)) votatt ng be freen
d. ltis possibly Shortest Job Last (SJL) A/ B, C

e. ltis possibly Least Recently Used (LRU)
=) I@'Q)’bfﬂ ﬁzfa
7. When switching between process A and process B, what would happen if xXOS updated
the base register correctly (changing it from 100 to 1000) but forgot to update the
bounds register (thus leaving it at 10). Boouwds ¢ hoeu ld be _2__0_ Y,
a. E hing would work as expected g /6
ﬁz;%t fault unexpect@ bvt 15 L€
c. Process B might be able 10 access memory it shouldn’t be able to access
d. Process A might be mad B wmij h +] chéra e

e. None of the above IC9¢I addres) (},k{ /f}/

8. Finally, assume you configure a system to have four CPUs (not just one). How many bu -I~
total base registers are in the system now?
a. 1 ‘la q / v & /

b. 2 one pevr CPU/
‘a]d.e ag each 15 run il

e. None of the above O oll'f[eycy\}— PrO(eSS
and tdach ;4 virtuee (eed

Question 2:

xOS uses a

xOS Scheduling

multi-level feedback queue (MLFQ) by default to schedule processes. The queue

has four levels and uses a quantum (time slice) length of 10ms. Processes start at high
priority (4) and then change priority as MLFQ dictates.

Unless stated otherwise, you can assume there is only a single CPU, which means that only
one process can be scheduled at a time. You can also assume that context switches do not take
any time or resources.

You also do

not have to take more advanced MLFQ maodifications into account, such as priority

boosting or variable time-slice length, unless otherwise mentioned.

9. The xOS developers first considered using a Shortest-Job-First scheduler. Which of
these problems does a SJF scheduler not have?

a
b

d

e.

. Long jobs may never run
. A job’s runtime is difficult to predict
Average turnaround time may be greater than with other policies even if all jobs
arrive at the same time (ST+ ! (enl\y B 9oo<\ at vvn qrovnd ,
. Does not support preemptive scheduling
It does have all of these problems

10. The developers then also considered using a Shortest Time-to-Completion First
scheduler. From class you might remember that it is similar to SJF, but supports
preempting processes.

Consider a job A arrives at time T=0 and job length of 500ms. Job B arrives at time
T=100ms with a length of 100ms. What does the schedule for our CPU look like?

a
b

® rreew\p\'S
pe Cavse Sheovier
then ve§ e

ot A

. A runs for 500ms, then B runs for 100ms
. B runs for 100ms, then A runs for 500ms
runs for 100ms, then B runs for 100ms, and then A runs again for 400ms
. Aruns for 100ms, then A and B run in round-robin for 200ms, and then A runs for
another 300ms
. Aruns for 100ms, then B runs for 100ms, then A runs for 100ms, then B runs for
100ms, then A runs for 300ms

11. In what regard is MLFQ better compared to a scheduler like SJF or STCF?

a. Average Response T_irg_e;

b.

c
d.
e

Average Turnaround Time STF g sTCF both
Fewer I{Qs i§sued by processes are bad a - res pon €
CPU Utilization S —

None of the above

12. Let’s focus on MLFQ now. Consider we run a process P1 that uses the CPU for 15ms,
then waits for 1/0 for 5ms, and then keeps using the CPU for another 100ms before it
finishes. It starts at high priority (4). What priority level does P1 have after the first three
time slices (30ms total)? Assume there are no other processes in the system.

a. 1 ' stavy ot N,
MO\J-Q \’O ’3) "\”\V\QV\ 2
c. 3
d 4
e. None of the above

13. Now consider that 5ms after P1 was started, we start another process P2. P2 alternates
between first using the CPU for 5ms and then waiting on /O for another 5ms. P2 runs
for 100ms total. What does the CPU schedule look like for the first five time slices?

a. P1,P2,P2 P2, P2 P \ Sturts dewo{—fj
b. P1,P2,P2, P1, P2 * leeps
c. P1,P1,P1, P2, P2 Py Stas, runs Sms, sleep
o L e Po rums syem

AL tvs Py, Pe , P thus (€D

14. The xOS developers decided not to add boosting to their MLFQ scheduler to reduce

code complexity. What problems could this cause? 4he boos + ensures

a. Interactive jobs might not be scheduled at all . s
. CPU-heavy (batch) jobs might get starved) lown 9~ rvavi ng J)o S

c. Balch jobs will stay at the highest priority level o "\ 1l vrown q’ a1V

d. There can only be one job at the highest priority level
e. None of the above

15. Now let us consider what happens if there are four CPUs available to the scheduler.
What is the maximum number of processes that can be READY at the same time?

ta)l'i CPUs don't Wwmi t the
c. 8 nwwber of pmcenes,

d. 16 : veh
wiith Con e very 1S
on typreal gystems

16. Reconsider the scenario from above, with just a single process P1. P1 uses the CPU for
15ms, then waits for I/O for 5ms, and then keeps using the CPU for another 100ms
before it finishes. With four CPUs, what priority level does P1 have after the first three
time slices (30ms)? Again, assume there are no other processes in the system.

#
2: ; should be gcawe al /Z/
c. 3
d 4
e. None of the above }‘US {_ 5 C(QP‘,‘QCJ

all.

——d

Question 3: Advanced Paging
x0S/x537 has some advanced paging features, which we will now explore.

One of the features is the support for large pages. Instead of just a standard 4KB page, the
system also allows the use of 4MB pages.

17. First, let's do some basic questions. Assuming a 32-bit virtual address space, and
4KB pages, how many page table entries (PTEs) would a linear page table have?

a. Roughly 1,000 [

b. Roughly 10,000 VA r ven / 0161‘53*7
d. Roughly 1,000,00 2

e. None of the above 22%° 2 | wmillion 2 =Yk

18. Now imagine we have a 4MB page size. Assuming the same 32-bit address space,

how many page table entries would a linear page table have?
a. Roughly 1,00 ! '
; oug:jy ;;,;OO ’ v PN I offset ’

c. Roughly 100,000 10 bets | 272 bitg
d. Roughly 1,000,000
e. None of the above b s 2 o000

19. Because large pages make page tables smaller, they are attractive to use. However,
they introduce new problems as well. What is the main problem with using large pages?

a. Large pages are hard to describe to pgple , avger PQ J 5 mean S
b. Large page asted space - 9 &

c. Large pages make page table access slower Same o ‘l' the pa 9 S
d. Large pages use more physical memory wia\ 9 0 uUnvse d b)

e. None of the above

waste (internal -(3"9M.Q~hh)

20. Large pages also can affect TLB usage. Which one of the following is true?

a. Large pages can increase the size of the TLB
c. Largepagesaffect whether processes can share the TLB
d. Large pages change the color of the TLB
e. None of the above
Be (ause yev (an MmIp

nmore of Vour aq ddress
space in the (-F"Xeis')HJ}

TCLR

21. We now investigate a hybrid system, in which xOS/x537 uses both 4KB and 4MB pages
at the same time. In this version of the system, we use a multi-level page table. We
again assume a 32-bit virtual address space.

The system uses a page directory at the top of the tree. However, it is a little different
than what you have already learned about. The contents of each page directory entry
(PDE) are as follows:

[valid bit | large-page bit | physical frame number]
In all cases, page directory entries are 4 bytes in size, as are page table entries.

The top-level page directory has 1024 entries (hence it is 4KB in size). If an entry is
valid, and the large-page bit is set to zero, then the physical frame number (PFN) refers
to a 4KB page of the page table for the relevant portion of the address space (this is
what you learned about already). However, if an entry is valid, and the large-page bit is
set to one, then the PFN refers directly to a large page (size 4MB). Make sense?

And now, finally, some questions. First: if the first and last entries in the page directory
are set to one (valid), and no other entries are set to one (the rest are not valid), and the
first and last entry large-page bit is set to one for each of the valid entries, how much
memory can the process access (total) legally?

a. OMB This peye teble ponts +o

] M
¢ 2ME 4wo valid lerge pages Ejs
d. 4MB st ol

W 2 ¢« MRBES & MR Yme
pEmeme=S d

22. Now assume the first and last page-directory entries are again the only valid entries, but
both large-page bits are set to zero. Now, how much memory can the process access
legally, assuming that any valid page of the page table consists of all valid entries?

—

a. OKB \ B8
b. 8KB POIC E’; 3 102 entries jeach Y€
c. 4MB q ,(B
4 8MB = 2x%(ozY ¥

) -

= é
e. None of the above @g sam = 8MB
23. Given a 32-bit virtual address, which bits are used to index into the page directory?

a. The first 8 bits (i.e., the 8 high- its

. The first 10 bits (i.e., the 10 high-order bits) I j
c. Ihefirst 12 bits (1.e_; the 12 high-order bits) 10
d. The last 10 bits (i.e., the 10 low-order bits) bits

e. None of the above PPir
L———P { ' j 102y enines

24. If we added one more bit to the virtual address (making it a 33-bit virtual address space),
which of the following is true?
a. The page size would have to be bigger
Cﬁ. The page directory would have to be bigger)
c. You couldn’t use large pages
d. You could only use large pages

e. None of the above Pe\)‘r oOH wneed
2x the

l page A
Spoc

(The rest of this page is intentionally blank - don’t worry!)

Question 4: Advanced Page Replacement in xOS

xOS uses a novel approach to page replacement, based on a new policy called 2Q. With 2Q,
there are two queues that are used to manage memory. The top queue manages one chunk of
memory, while the bottom queue manages the rest. When a page is first accessed, it is brought
into the bottom queue (and placed at the “first-in” side). This queue is managed in FIFO
manner (first-in first-out). If a page on the bottom queue is accessed (before being evicted from
the bottom queue), it is moved to the top queue (at the “most recent” side). The top queue is
managed in an LRU manner. When a page is evicted from the top queue, it moves back into the
bottom queue (at the “first-in” side).

25. Assuming there are 4 total pages with 2Q replacement (2 for the top, 2 for the bottom),
how many misses will be generated by the following access pattern: 1, 2, 3,4, 1, 2, 3, 4

o 1,2 =2 vottom & (miss, miss)
c. 4 3,9 =7 betem Q

‘m (ftflnu"? ,2) Comiss IMFSS)
e. none of the above V'QPCO'}' =) @ ymg_(:j

26. If we had instead configured the 4 page cache to simply use LRU, how many misses
would have been generated by that same pattern? (1, 2, 3, 4, 1, 2, 3, 4) -

a. 0
b. 1 €rrst four : mi'sses
d. 8 Hich a“ \'h CaChe - Lm‘s!

e. none of the above

27. Assume again we have 4 pages with 2Q replacement (2 for the top, 2 for the bottom).
Now analyze this access pattern: 1, 2, 1,42_, 3,4,5,6,1,2,1, 2,1, 2. How many misses

are gengrated by this pattern? Livst Gouv mlSS lMl$$ o -l—/ " x
4 b. - T (romote to vpPper
C. next Qeve)
misses d i fare 5 g &"‘f“f (bot top GVl
€. none of the above bl V€vharns)
tuen all hits Aty €

28. Assume the same pattern: 1, 2, 1, 2, 3, 4, 5, 6, 1,2, 1, 2, 1, 2. How many misses would
have been generated using just LRU replacement? -

a 0 xss,muss,ﬂ'm, kit, it
2.'1 2,M,5,6 oll wiss bot Hll Cache

tuen rLSI/Vﬂ_SS, h:f,h/‘)“,kl/‘,l’uf

e. none of the above

2% 28 shw the benett of 2Q (1)

29. One issue with 2Q is the sizing of each queue; making the top queue bigger makes the
bottom one smaller (and vice versa). Assume we again have four pages in memory.
Assume also this access sequence:
1,2,3,1,2,3,4,586,7,1,2,8,1,2,3

What allocation of memory between the top queue (LRU) and bottom queue (FIFO)
leads to the most hits for this access sequence?
all a. 4intop, 0 in bottom
misses 2 b. 3intop, 1in bottom
c._2in top, 2 in bottom
7 s (C d 1tintop, 3in bottom)

6 wits e. Ointop, 4 in bottom

30. Another issue with 2Q is exactly which replacement policies to use in each queue.
Assume now that for both queues, we use FIFO replacement (instead of LRU for the top
queue). Assuming 2 pages in the top queue and 2 in the bottom, how many misses
occur during this access sequence? 1,2, 3,4, 1,2, 3, 4

a 0

1
2
4
. None of the above

o0 o

ﬁ

31. Again assume a FIFO/FIFO 2Q, with 2 pages in each queue. How many misses occur
during this sequence? 1,2, 1,2,3,4,5,6, 5,6, 1,2

a 2 mm hh ananwwmph hy
b 4) | —_—
prome be promo te

d. 8

e. None of the above

32. Overall, what could you say about the 2Q approach, as compared to usual single-queue
approaches?
a. 2Qis always better than a single-queue approach
b. 2Q is always worse than a single-queue approach
c. 2Q s identical to a single-queue approach

d. 2Q.is simpler than a single-queue approach
ﬁm 28 V$ woeve cow\ole?()
but can be vetter
ov wovse de Pehd;m)

on wov leload

Question 5: Multi-level Page Tables

x537 can be configured to use multi-level page tables; this is called, by the designers, “mode
3000” (the reason for this name is lost to history). This is bad news for both users and
exam-takers, because no one really likes multi-level page tables.

In this question, we assume the following:
- The page size is an unrealistically-small 32 bytes
- The virtual address space for the process in question is 1024 pages, or 32 KB
- Physical memory consists of 128 pages

Thus, a virtual address needs 15 bits (5 for the offset, 10 for the VPN).
Thus, a physical address requires 12 bits (5 offset, 7 for the PFN).

The system assumes a multi-level page table. Thus, the upper five bits of a virtual address are
used to index into a page directory; the single-byte page directory entry (PDE), if valid, points to
a page of the page table; the upper-bit is the valid bit. Each page-table page holds 32
single-byte page-table entries (PTEs). Each PTE, if valid, holds the desired translation (physical
frame number, or PFN) of the virtual page in question; the upper bit is the valid bit.

The format of a PTE is thus a valid bit followed by seven bits of the PFN:
VALID | PFNG6 ... PFNO

The format of a PDE is essentially identical:
VALID | PT6 ... PTO

The full contents of physical memory are omitted for brevity; relevant portions are shown as
need be.

33. First, assume you were instead using a linear page table (not multi-level). For the
virtual address space described above, how many pages of memory would such a table
use? Remember PTEs are 1 byte in size; pages are 32 bytes large.
a. l 32 KR vivtua l address spacc
m ; s —
c. 64 [S bits Viry addr, (Z 32k8)
d. 1024 | 2 ' entnsS

e. none of the above Wﬁfiﬂ 1024 bytes _q,
{0 b(ts 4 b’;; 32 byks /pl,f P9y

34. Now assume the multi-level page table structure described above. How many pages of
memory would a multi-level structure use, assuming the address space has just one

valid page in it? Page of page table
?
a. b’ Pdcr/ EN D page
c. 32 [ef dddr
d. 1024 _____,_// Spa e
e. none of the above mv[-l—;'-lfU'E/
S fvuve fure

35. Which of the following is true about multi-level page tables?

a. The an linear page tables . Le c{
. They can be bigger than linear page table l 1L -ﬂu{ l)’ 9 , lD e #
C. ;oo%ups ar i ;es ex Fro paye dir

d. They can only be two levels deep
e. None of the above c) Can pe b.'”er

36. The page directory is found in page 81 of physical memory. Its contents are:

84 fb 8b b7 ed fel|7flec b9 d2 d9 ca 90 b4 £0 86

e3ﬁ99 a4 a27flaa 83 d3 e7@bb eb a5 82(7£]

How many invalid entries does the page directory contain? IDY\ va h J :?
a 0

@ freck brt S
21 2Zero
e. None of the above
9. ox 7t

ot nil

37. The first entry of the page directory is 0x84. Which physical frame (in decimal) does this
refer to?

. O 'm?ooocog
ralid P Frame
d. 84

e. None of the above
38. Let's examine the contents of physical page 2 of the system:

7€ 7€ 7£ 7£ 7£ £ £ 7€ 7£ 7£ 7£ 7f £ /£ 7ab|7f
7€ 7€ 7€ 7f£ Tf(ce|\7f T£ T7f£ £ V£ T£ T£ £ £ TE

It is a page of the page table (i.e., it contains page table entries). How many valid
entries does this page have on it?

a 0 not wvalid : OxF+

b. f
d. 31
e. None of the above

39. If page 2 (above) is a valid page of the page table, the page directory must refer to it.
Which of the following entries in the page directory refers to page 2?

a. 0x84
b. Ox8b / 000 00)D
c. Oxd =P D
Ox®Z =¢ >
e. Ox7f po9e
vaid frone (@

40. Finally, let us examine the contents of physical page 93 of the system:

"1 273y S £ F 8 T
15 08 08 00 11 15 07 02 12 12 Oc 03 lc la 13 11 ShbuH have
12 00 la 16 15 05 17 11 10 Ob 10 18 le 09 09 15 (ﬂ bCCh,vI'V‘h/Q/

Assume this is simply a page of the address space. If th{ré_hysical addresgthat refers to
a byte on this page is 0x48cb, which byte value would be re ad to that
address? 9 ® <

a. 0x00 o0 1 000 1h1ojo 10 11

b._0x12 :
oftse+ ¢ la st
6o five bits

e. None of the above
=
en'!‘ry I)

Shvﬁ‘n} et O

Question 6: x537 TLBs

The x537 has TLBs (translation look-aside buffers) in each CPU’s MMU to speed up memory
access. The system is configured to use a 16-bit virtual address space, with 4-KB pages.
Physical memory is 128 KB. x537 is configured to use a linear page table.

Cﬂ”"}’ Assume these are the contents of the (linear) page table of a currently running process:

0x8018
0x0000
0x0000
0x800c

0x8009 T—VPN i O—H‘se g _I

0x0000 i
6 0x801d (fbl};l 17 bi1t¢ (2 =1EB)
Z 0x8013
8 0x0000 4
Q 0x801f =) 2 "'=1l6
0x801c
: 0x0000 Virtua/ prvges
¢ 0x800f
d 0x0000
e 0x0000
£ 0x8008

wLpwep ~0

Each line represents a page table entry (PTE). The topmost bit is the valid bit; the rest, if valid,
is the physical frame number (PFN) of the translation.

41. To begin, let’s start with a simple translation. The process accesses virtual address

Oxce16 (ce16 in hex notation). What physical address does this translate to? ? 9)Q
a. Oxcelb c € lé th ' hb’f .
b. 0x18el6 LJ C en hy S
veN OxB8o0F
d. Oxcece w —
top bit pesk -

e. Fault (not a legal virtual address)

IS valid PEN

42. Let’'s do one more translation, but in reverse. Assume that physical address 0)@98
has been accessed. What virtual address was issued to result in this physical address

?
accztss 0x18398 +yle above hay one enhy
=M w/ PFN Ox18 = O™ entry

c. 0x98
d. 0xffo8 U
e. None of the above h s /6)‘3 378

veN 0+€$'€’

43.

45.

5y

accepitd

either =

The next few questions deal with the TLB. Assume we have a four-entry TLB. Its entries
are replaced in LRU fashion, i.e., when the TLB is full, the least-recently-used entry is
the one that gets removed, to make room for the new entry.

We now have the following stream of four virtual address references from the process
above (you know, the one whose page table is on the previous page):

Oxcel6, Oxcel7, Oxcel8, 0Oxcel9

How many TLB hits will this reference stream generate, assuming the TLB was empty

atfhe sart? all refer to Virt Page Ox ¢
b. 1 fhes ml‘fs/ht‘f'/hl{‘,l"lf
C.
d 3
e. None of the above

. Now assume the following series of virtual address accesses, again from the same

process and again using the page table above:

0x0000, 0x3001, 0x4002, 0x6003, 0x0001, 0x3002, 0x4003, 0x6004

How many TLB hits will this reference stream generate, again assuming the TLB was
empty at the start?

a 0 Vlﬁ pﬁ9€ O} 3/ \4/'6
b. 2 m m m vh

<
. ©,3, 4,46 3 bty

e. None of the above
h h h h

Each TLB entry, in X537, has the following contents:
[valid bit | virtual page number | physical frame number]

Which of the following is false? .

The TLB can never be empty (i.e., it can never have zero valid translations)
b. The TLB should be flushed (i.e., valid bits set to zero) when xOS switches
between processes
The TLB valid bit is equivalent to the valid bit in the page table
d. The TLB is located in the MMU of the x537 processor
e. None of the above (the above statements are all true)

46. Assume the following contents of the 4-entry TLB, with the 1st entry at the top, and the
last (4th entry) at the bottom:

[1 | 0x3 | 0x0c]
[1 | OxO | 0Ox08]
[1 | Ox4 | 0x09]
[1 | Ox6 | Ox1d]

Unfortunately, there may be a bug in the TLB! Which entry, assuming the page table
above, contains a bad entry?

a. The 1st th e, /9 ("n Arst €Vl’h'\/
o™ Vhge=> 0K of page table)

" S0
d. The 4th
e. None of the above (they all are good)

47. Assume now the following contents:

[O | Ox7 | 0x13] . . ,
[110x9 | Oxif]] [N TLE/ vy lid !
[1 | 0x3 | 0x0c] ‘

[0 | Oxf | 0x08]

With the following virtual address accesses, how many TLB hits will be generated?

0x9000, 0x9001, 0x9002, 0x9003

1 all ret virt page Ox 9
§ all h/"‘_ﬁl

o T

e. None of the above

48. Finally, the xOS designers are trying to convince the x537 processor team to switch to a
software-managed TLB. Which of the following is true about software-managed TLBs?

(choose t : (
a. It allows more flexible page table structures havd warf doe (7] '}

b. It makes the TLB miss lookup Taster
c. It makes the MMU more complex need +o do

d. It adds more bits to each TLB entry
v
) [cokup , S0

None of the above (they are all false)
OS5 coutrols

S’hxuc ﬁ.m" of
N ble

