
segmentation.py

This program allows you to see how address translations are performed in a
system with segmentation. The segmentation that this system uses is pretty
simple: an address space has just *two* segments; further, the top bit of the
virtual address generated by the process determines which segment the address
is in: 0 for segment 0 (where, say, code and the heap would reside) and 1 for
segment 1 (where the stack lives). Segment 0 grows in a positive direction
(towards higher addresses), whereas segment 1 grows in the negative direction.

 --------------- virtual address 0
 | seg0 |
(unallocated)

seg1
 --------------- virtual address max (size of address space)

With segmentation, as you might recall, there is a base/limit pair of
registers per segment. Thus, in this problem, there are two base/limit
pairs. The segment-0 base tells which physical address the *top* of segment 0
has been placed in physical memory and the limit tells how big the segment is;
the segment-1 base tells where the *bottom* of segment 1 has been placed in
physical memory and the corresponding limit also tells us how big the segment
is (or how far it grows in the negative direction).

To run with the default flags, type either of the following:
prompt> ./segmentation.py

You should see this:
 ARG seed 0
 ARG address space size 1k
 ARG phys mem size 16k

 Segment register information:
 Segment 0 base (grows positive) : 0x00001aea (decimal 6890)
 Segment 0 limit : 472

 Segment 1 base (grows negative) : 0x00001254 (decimal 4692)
 Segment 1 limit : 450

 Virtual Address Trace
 VA 0: 0x0000020b (decimal: 523) --> PA or segmentation violation?
 VA 1: 0x0000019e (decimal: 414) --> PA or segmentation violation?
 VA 2: 0x00000322 (decimal: 802) --> PA or segmentation violation?
 VA 3: 0x00000136 (decimal: 310) --> PA or segmentation violation?
 VA 4: 0x000001e8 (decimal: 488) --> PA or segmentation violation?

For each virtual address, either write down the physical address it
translates to OR write down that it is an out-of-bounds address (segmentation
violation). For this problem, you should assume a simple address space with
two segments: the top bit of the virtual address can be used to check whether
the virtual address is in segment 0 (topbit=0) or segment 1 (topbit=1). Note
that the base/limit pairs given to you grow in different directions, depending
on the segment (seg 0 grows in the positive direction, seg 1 negative).

