CS-537: Midterm Exam (Fall 2008)
Hard Questions, Smple Answers

Please Read All Questions Carefully!

Thereare seven (7) total numbered pages.

Please put your NAME and student 1D on THIS page, and JUST YOUR student 1D (but NOT YOUR NAME)
on every other page. Why are you doing this? So | can grade the exam anonymouslyp&a®ticularly important if
you think | have something against you! But of course, | darreally do wantall of you to do well. Really! OK,

most of you.

Name and Student ID:

Grading Page

Points| Total Possible
Q1 25
Q2 25
Q3 25
Q4 25
Total 100

1. Bit by Bit. Assume you have a small virtual address space of size 64 Kithéruiassume that this is a system
that usepaging and that each page is of size 8 KB.

(&) How many bits are in a virtual address in this system?

(b) Recall that with paging, a virtual address is usuallytspto two components: a virtual page number
(VPN) and an offset. How many bits are in the VPN?

(c) How many bits are in the offset?

(d) Now assume that the OS is usindj@ear page table, as discussed in class. How many entries does this
linear page table contain?

Now assume you again have a small virtual address spaceeob4iKB, that the system again ugeging, but
that each page is of size 4 bytem(e: not KB!).

(a) How many bits are in a virtual address in this system?

(b) How many bits are in the VPN?

(c) How many bits are in the offset?

(d) Again assume that the OS is usindi@ear page table. How many entries does this linear page table
contain?

Finally, the OS tracks the linear page table for a processebyembering it'sbase address, which we will
assume for this problem to be the address where the pagegdbtated in kernel physical memory. Given the
address of the start of the page tablel§pse), and a VPN that you wish to translate into a PPN (physacge
number), write some code to thedlculates a pointer to the right page table entry (pte) for this VPN and
returns it to the caller:

struct pte *p
find_pte(void »pt_base, int VPN
{

struct pte *xp = 2?7

return p;

}

(a) Write your code here:

2. Scheduling with Uncertainty.

Assume we have three jobs that enter a system and need todxuseth. The first job that enters is called A,
and it needs 10 seconds of CPU time. The second, which ajuseafter A, is called B, and it needs 15 seconds
of CPU time. The third, C, arrives just after B, and needs D@sds of CPU time.

For all questions involving round-robin, assume that there cost to context switching. Also assume that if
job X arrives just before Y, a round-robin scheduler will edaile X before Y.

(a) Assuming a shortest-job-first (SJF) policy, at what taoes B finish?

(b) Assuming a longest-job-first (LJF) policy, at what tineed B finish?

(c) Assuming a round-robin policy (with a time slice lengthlssecond), when does job A finish?

(d) Assuming a round-robin policy (with a time-slice lengihl second), when does job B finish?

(e) Assuming a round-robin policy (with amknown time-slice which is some value less than or equal to
2 seconds), when does job B finish?

(f) Assuming a round-robin policy (with annknown time-slice), for what values of the time-slice will B
finish before C?

Of course, SJF is unrealistic, because usually the OS ddasmv how long jobs are. In this system, though,
the user gives the OS an estimate. The problem is that the asan't so good at estimation. In fact, if they tell
you a job will lastN seconds, it might last anywhere betwe¥n- 5 and N + 5 seconds. But, being a nice,
trusting OS, the OS assumes the user is exactly right.

(a) Assuming SJF, what estimates (by the user) will lead tB¢dOmake the worst decisions for these jobs in
terms of achieving the lowest average response time?

(b) In this case, what will the average response time of eatclb¢?

(c) What would the average response time of each job be ifystead had used LIF?

(d) Assume we can arbitrarily change the run-time of job B.athould the run-time of B be changed to so
that SJF delivers the best average response time to jobsadBC, even if there are bad estimates?

3. Trandation station.

Assume a 32-bit virtual address space and further assurhe¢hare using paging. Also assume that the virtual
address is chopped into a 20-bit virtual page number (VPN)aah2-bit offset.

The TLB has the following contents in each entry: a 20-bit VRN2O-bit PPN, and an 8-bit PID field. This
TLB only has four entries, and they look like this:

VPN PPN PID
00000 OOFFF 00
00000 00AAB 01
00010 FOOOA 00
010FF O00ABC 01

Note all these numbers are in hex. Thus, each representbitsue.g., hex “F” is “1111", hex “A” is “1010”,
hex “7” is “0111”, and so forth). That is why the 20-bit VPN aR#PN are represented by five hex numbers
each.

Now, for each of the followingirtual address, say whether we have a TLB hit or a TLB mid84 PORTANT:
If it is a hit, provide the resulting physical address (in hex). Note: unless said otherwise, virtual addresses
are also in hex.

(a) PID 00 generates the virtual address: 00000000

(b) PID 01 generates the virtual address: 00000000

(c) PID 00 generates the virtual address: FFOOFFAA

(d) PID 00 generates the virtual address: 0010FFAA

(e) PID 01 generates the virtual address: 0010FFAA

(f) PID 00 generates the virtual address: 000000FF

(g) PID 01 generates the virtual address: 00000FAB

(h) PID 00 generates the virtual address: 010FFFFF

(i) PID 01 generates the binary virtual address 0000000Q00011111010100001111

()) PID 00 generates the binary virtual address 0000000000011111010100001111

(k) PID 02 generates the virtual address: 00000000

4. A Simple File System. In this question, we are going to unearth the data and metdidah a very simple file
system. The disk this file system is on has a fixed block sizésdfytes (pretty small!) and there are only 20
blocks overall. A picture of this disk and the contents ofteblock is shown on the next page.

The disk is formatted with a very simple file system, whichie@ lot like that old Unix file system we have
talked about in class. Specifically, the first block is a supeck, the next 9 blocks each contain a single inode,
and the final 10 blocks are data.

The super block (block 0) has just four integers in it: 0, 1a@g 3, in that order.
The root inode of this file system is in inode number 2 (at biddk the diagram).
The format of an inode is also quite simple:

type: 0 neans regular file, 1 neans directory

si ze: nunber of blocks in file (can be 0, 1, or 2)
direct pointer: pointer to first block of file (if there is one)
direct pointer: pointer to second block of file (if there is one)

(assume that each of these fields takes up 4 bytes of a block)
Finally, the format of a directory is also quite simple:

nane of file

i node nunber of file

name of next file

i node nunber of next file

(again assume that each field takes up 4 bytes of a block)

Finally, assume that in all cases, no blocks are cached inanefhus, you always have to read from this disk
all the blocks you need to satisfy a particular request. Alssume yomever have to read the super block (just
to make your life easier).

That's it! Well, not quite; now you have to answer some questi

(a) To read the contents of the root directory, which bloakydu need to read?

(b) Which files and directories are in the root directory?tltiee names of each file/directory as well as its
type (e.g., file or directory).

(c) Starting at the root, what are all the reachable reguks fn this file system?

(d) What are all the reachable directories?

(e) What is the biggest file in the file system?

() What are the contents of the biggest file?

(g) What blocks are free in this file system? (that is, whiabdies/data blocks are not in use?)

A

HINT: INODES

\

HINT: HINT:
SUPER ROOT
BLOCK INODE
0 1 1 1 0 0 0 0 0 1
1 1 1 1 1 2 1 1 1 2
2 10 18 14 1 12 3 15 19 0
3 0 0 0 17 13 0 0 0 8
BlockO Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block 9
foo 3 7 hi a 10 1 i cs 0
3 4 8 10 0 goo bar luv 6 0
bar 5 9 you b 1 oof cs 537 0
4 6 10 12 1 goo da 537 7 0
Block 10 Block 11 Block 12 Block 13 Block 14 Block 15 Block 16 Block 17 Block 18 Block 19

