537 Final Exam
a d School Style

"The Job Interview

Thi s exam contai ns 13 ol d-schoo

pages.

THE JOB | NTERVI EW (page 2)
You are on a job interview. Unfortunately, on job interviews |ike this one,
all they really want to see is that you can wite code. So on this exam
you' Il have to wite some code. Even worse, you' |l have to wite code that
shows that you understand how an operating system works. Yikes!

The good news: if you answer the questions well enough, you' |l get the job!
The bad news: this is not true; it is just an exam

Good | uck!

The conpany is old school, and hence the examis brought to you in 100%
pure ol d-school style.

GRADI NG PAGE

1.

10.

Tot al :

___ 1 100

(page 3)

PROBLEM 1: MAXI NG OUT THE FI LE SYSTEM (page 4)

What is the maxinmnumfile size on a typical Unix systemthat uses an inode, an
i ndirect pointer, and a doubl e-indirect pointer? Assune a 4KB bl ock size, and
12 direct pointers within the inode, and di sk addresses that are 32 bits.

Expl ai n your worKk.

Now, write a programthat figures out the maximumfile size on the file system
you are running. What is the nost efficient programyou could wite to do
this? You are to use the followi ng subset of the classic file-system API,
i.e., open(), read(), wite(), close(), Iseek().

PROBLEM 2: JOURNAL RECOVERY (page 5)

You are to wite the journal -recovery code. Actually, just a small piece of
it: you are to wite the piece of code that replays one journal entry. Assune
that for this single transaction, all relevant blocks are already in nenory.
Here is the structure you should use to figure out what is in the transaction

struct transaction {
i nt nunbl ocks;
unsi gned int destinations[MAX BLOCKS];
unsi gned char =*bl ockarray[MAX_BLOCKS] ;

b

struct transaction *t; // use this pointer to access the struct

Init:

- " nunbl ocks’ includes the nunber of blocks in the transaction

- 'destinations’ is an array that includes, for each block to be replayed,
the on-di sk bl ock address to which that bl ock should be witten.

- "blockarray’ is an array of pointers to the bl ocks, which are all in nenory
ri ght now

Your task: Go through the transaction structure, and wite each block to
its final destination. You can use the following primtive to wite to the
di sk:

- WRI TE(i nt bl ock, char =xdata);

whi ch takes a bl ock nunber and a pointer to the data and wites the data to
t hat bl ock number.

PROBLEM 3: LOG STRUCTURED FUN (page 6)

In this question, we have a highly-sinplified version of the |og-structured
file system (LFS). You are supposed to wite sone code that enul ates the
cleaner. Specifically, go through each update in a segnent and figure out
whet her the update has a *live inodex init. If you find a live inode, print
"LIVE", otherw se print "DEAD'.

Here are sonme data structure definitions to help you out:

/1 the inode map: records (inumber) -> (disk address) nmapping
unsi gned i nt i map[MAX_ | NODES]

typedef struct _ _inode_t {
i nt direct[10]; // just 10 direct pointers
} inode_t;
typedef struct _ update_t {
i nt i nunber ; /1 inode number of the inode in this update
i node_t inode; /1l the inode
i nt of f set; /] offset of data block in file, fromO ... 9
char dat a[4096]; // the data bl ock
} update_t;

typedef struct _ segnent _t {
i nt di sk_addr; /1 disk address of this segment (in bytes)
updat e_t updat es[MAX_UPDATES]; // the updates in this segnent
[l (assune all MAX_ UPDATES are used)
} segnent _t;

segnment _t *segnent; // start with this pointer to the segnent in question
Assume you are given a pointer to a segnent_t (called 'segnent’). Then

go through each update in the segnent, figure out whether the inode referred
toin that update is live or not, printing "LIVE'" or "DEAD' as you go:

PROBLEM 4: TLB M SSI NG (page 7)

TLB m sses can be nasty. The followi ng code can cause a | ot of TLB ni sses,
dependi ng on the val ues of STRIDE and MAX. Assune that your system has a
32-entry TLB with a 8KB page si ze.

int value = 0;
int dataf] MAX]; // a big array

for (int j =0; j < 1000; j++ {
for (int i =0; i < MAX;, i += STRIDE) {
val ue = value + data[i];

}
}

VWhat shoul d you set MAX and STRIDE to so that you can achieve a TLB ni ss
(but *not* a page fault) upon pretty much every access to the array 'data’ ?
(descri be)

VWhat happens if MAX is too high? Too | ow?

VWhat happens if STRIDE is too high? Too | ow?

PROBLEM 5: SEG FAULTIN FUN (page 8)

Soneti mes badly-witten C code dereferences a null-pointer, causing the
programin question to crash. Wite sone code that does this; be brief!

Then, explain, in as nmuch detail as needed, what the OS does in reaction to
the null-pointer dereference, i.e., why it causes a programto fault, and how
all the machinery behind it works. Be as detailed as you need to be!

Assume a systemwith |inear page tables and 4KB pages.

PROBLEM 6: RAI D (page 9)
Sone RAID code has been lost. You have to wite it!

Assune you have a RAID-4 (parity-based RAID + a single parity disk),
with a 4KB chunk size, and 5 disks total as foll ows:

Dl SK-0 Dl SK- 1 Dl SK-2 Dl SK-3 Dl SK- 4

bl ockO bl ockl bl ock2 bl ock3 parity(0..3)

bl ock4 bl ock5 bl ock6 bl ock?7 parity(4..7)
Fill in the routine SMALLWRI TE() bel ow

/1 SMALLWRI TE()

/1

/1 This routine takes a |ogical block nunmber ’'block’ and wites
/'l the single block of 4KB referred to by 'data’ to it.

/1

/1 1t may have to use the underlying printives:

/1 READ(i nt disk, int offset, char =*data)

/1 WRI TE(i nt disk, int offset, char =*data)

/1 XOR(char *dl1l, char *d2) (xors one block w th another)

voi d SMALLWRI TE(i nt bl ock, char xdata) {

PROBLEM 7: DEADLOCK? DEADLOCK. (page 10)

You are given the foll owing code, which adds two vectors together, and
does so in a nultithread-safe way.

voi d
vector _add(vector =*v1, vector *v2) {
mut ex_| ock(v1->l ock);
mut ex_| ock(v2->l ock);
for (i =0; i <vl->size; i++) {
v1i[i] = vi[i] + v2[i];
}

nmut ex_unl ock(v1->l ock);
mut ex_unl ock(v2- >l ock);

}

Then you are told that two different concurrently-executing threads, 1 and 2,
call this code as follows:

Thread 1: Thread 2:
vector _add(&ectorA, &vectorB); vector _add(&ectorB, &vectorA);

Unfortunately, this can |l ead to a DEADLOCK*, in which the program gets stuck
with each thread waiting for the other to nake progress.

- Wiy does this happen? (describe, or showwith a picture)

- How could you wite vector_add() so that this deadl ock never happens?

* Sorry, a deadl ock question. But it should not be too hard++, should it?
*x Probably not true.

PROBLEM 8: OUT OF CONDI TI ON (page 11)

Your co-worker inplenents the follow ng code for condition variables
(and specifically, the cond_wait() and cond_signal () routines) using
semaphor es:

typedef struct _ cond_t {
semt s;
} cond_t;

void cond_init(cond_t *c) {
sem.init(&->s, 0);

}

/1 cond_wait(): assunes that the lock 'm is held
void cond wait(cond_t *c, nutex_t *m {
mut ex_unl ock(&m; // release |lock and go to sleep
sem wait (&c->s);
mut ex_| ock(&M ; /1 grab lock before returning

}

voi d cond_signal (cond_t *c) {
sem post (&c->s); [// wake up one sleeping waiter (if there is one)

}

Unfortunately, it is buggy. Wiy doesn’t this code work properly?

PROBLEM 9: FETCH, FIDO, FETCH (page 12)

You are given a new atomc primtive, called FetchAndSubtract(). It executes
as a single atonmic instruction, and is defined as foll ows:

i nt FetchAndSubtract(int =location) {
int value = *xlocation; // read the value pointed to by |ocation
x| ocation = value - 1; // decrement it, and store result back
return val ue; /1 return old val ue

}

You are given the task: wite the lock_init(), lock(), and unlock() routines
(and define a lock t structure) that use FetchAndSubtract() to inpl enment
a wor ki ng | ock.

PROBLEM 10: DI STRI BUTED FI LE SYSTEMS (page 13)

NFS and AFS are two fanpus distributed file systens, yet they each have cases
where one perforns noticeably different than the other

Assumi ng you can only access a single file (and using only the linmted API
open(), read(), wite(), close(), and Iseek() calls), wite a programthat
runs MJCH MJUCH faster when run upon NFS than AFS.

Usi ng the same assunptions as above, wite a programthat runs MJCH MJCH
faster when run upon AFS than NFS.

