CS-537: Final Exam (Spring 2011)
The “Black Box”

Please Read All Questions Carefully!

There are thirteen (13) total numbered pages, with eight (8) questions.

Name:

Grading Page

Points

Ql

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Total

THE BLACK BOX

With any system, one can treat it as a “black box” in order to study its properties and behaviors. The box has input,
output, and of course does something (which we may or may not know a lot about). Here is a depiction of such a
black-box system.

KKK KK KKK KKK KK

* *
Input ————> x Black Box x ———> Output
* *

KhkKk kKKK KKK KKK

In this exam, we’re going to treat pieces of the the operating system as black boxes, to see if we can learn some
things about them.

Each question will specify some aspects of what you can observe; your job is to fill in the rest. For example, you
might be given a set of inputs and outputs, and be told to discover how the system works; alternately, you might be
given the inputs and, given some knowledge of how the system works, be asked to describe the outputs; you may even
be given the outputs, and asked to explain which inputs led to them.

As always, read each question carefully.

Good luck!

PROBLEM 1: VIRTUAL MEMORY AS A BOX

In this question, we’ll examine a string of memory references to virtual pages (inputs), and use detailed system counters
(outputs) to tell us what happened on such references, i.e., whether a particular memory reference was a TLB hit, TLB
miss, or a page fault.

(a) Here is the first trace, from some system:

Input Output

load to virtual page 0 Page fault
load to virtual page 1 Page fault
load to virtual page 2 Page fault
load to virtual page 3 Page fault
load to virtual page 0 TLB miss
load to virtual page 1 TLB miss
load to virtual page 2 TLB miss
load to virtual page 3 TLB miss

Assuming a TLB with LRU-based replacement, what can we conclude is the size of the TLB? (i.e., the number of
entries it holds?)

(b) On a different system, we see this trace:

Input Output

load to virtual page 0 Page fault
load to virtual page 1 Page fault
load to virtual page 2 Page fault
load to virtual page 3 Page fault
load to virtual page 0 TLB hit
load to virtual page 1 TLB hit
load to virtual page 2 TLB hit
load to virtual page 3 TLB hit

Again assuming a TLB with LRU-based replacement, what can we conclude about the size of the TLB?

(c) Finally, on some third system we see the following stream:

Input Output

load to virtual page 0 Page fault
load to virtual page 1 Page fault
load to virtual page 2 Page fault
load to virtual page 3 Page fault
load to virtual page 0 TLB hit
load to virtual page 1 TLB hit
load to virtual page 2 Page fault
load to virtual page 3 TLB miss

Assume the TLB can hold two entries, and the entire memory can hold three pages. What can we conclude about the
replacement policy used by the OS?

PROBLEM 2: CONCURRENCY IS THE BOX

A multi-threaded program can be viewed as one of our “black boxes”. Here, however, you are given the initial state
(the “inputs”) of the system, and can peer into the “box” a little to see what code is in there. Your task is to figure out

the possible outputs of the code.
Here is the initial state of some variables in the first program we examine:

int g = 10;
int xf = NULL;

Here are the code snippets for each of two threads:

Thread 1 Thread 2

lock (m) ; lock (m) ;

f = &g; f = NULL;
// do some other stuff unlock (m) ;

printf ("$d\n", xf);

unlock (m) ;

(a) What are all the possible outputs of this system, given an arbitrary interleaving of Threads 1 and 2?

The code gets rewritten as follows, to make the lock more “fine grained” by moving the “other stuff” out of the critical
section:

Thread 1 Thread 2

lock (m) ; lock (m) ;

f = &g; f = NULL;

unlock (m) ; unlock (m) ;
// do some other stuff

lock (m) ;

printf ("$d\n", xf);

unlock (m) ;

(b) What are all the possible outputs of the system now?

(c) You’ve been taught that locks around critical sections prevent “bad things” from happening. Is that true in part (b)?
If so, why? If not, why not?

Let’s examine another program, again with two threads:

Thread 1 Thread 2

pending = 1; pending = 0;
while (pending) {

printf ("hello\n");
}

(d) What are the possible outputs of this system, given an arbitrary interleaving of Threads 1 and 2?

(e) How could we re-write the code such that Thread 2 would only run after “hello” has been printed at least one time?

PROBLEM 3: DISK SCHEDULER FUN

This question examines a disk’s internal scheduler as a black box, to see if we can learn anything about its behavior.
The inputs we give to the disk are a bunch of requests; the outputs we observe are the order the requests are serviced.

For example, we might issue requests to blocks 0, 100, and 200 at the same time. The disk might decide to service
100, then 200, and then 0, depending on its internal scheduling algorithm.

We also know some details of the disk. It has one surface with 100 tracks, each of which have 100 sectors. The
outer track (track=0) contains sectors 0...99, the next track (track=1) contains sectors 100...199, and so forth.

In this question, each question gives a workload to a particular disk; you are then asked to determine what you
think the scheduler of that disk is doing by servicing requests in that order. In other words, what can you say about the
algorithm in use? What about the initial state of the disk, before the requests arrived?

(a) Disk Model A

Requests : 0, 1, 2, 3, 4, 5
Completed in order : 0, 1, 2, 3, 4, 5

What do you think Disk A’s scheduler is doing? What might the initial state of the disk have been?

(b) Disk Model B

Requests : 0, 500, 200, 400, 300, 100
Completed in order : 0, 100, 200, 300, 400, 500

What do you think Disk B’s scheduler is doing? What might the initial state of the disk have been?

(c) Disk Model C

Requests : 0, 500, 200, 400, 300, 100
Completed in order : 200, 300, 400, 500, 100, O

What do you think Disk C’s scheduler is doing? What might the initial state of the disk have been?

(d) Disk Model D

Requests : 0, 50, 110, 600
Completed in order : 0, 110, 50, 600

What do you think Disk D’s scheduler is doing? What might the initial state of the disk have been?

(e) Could these disks (A through D) actually be using the same scheduler? If so, why? If not, why not?

PROBLEM 4: UNVEILING THE RAID BOX

RAID disk systems can also be treated as black boxes. In this question, you can see the inputs to a RAID (i.e., a read()
or write() request for a particular block) and observe the low-level outputs of the RAID (i.e., which disk or disks it

reads from or writes to in order to service the request).

The requests that come into the RAID are either read(blk) or write(blk), which read or write the given block “blk”
respectively. The outputs are in the form of low-level block-read (bread) or block-write (bwrite) commands, which

read directly from or write directly to a specific disk.

Your task, for each question, is to observe the high-level read/write operations, as well as their underlying block
reads/writes to one or more disks, in order to determine what type of RAID the system is.
Possible answers are: RAID-0 (striping), RAID-1 (mirroring), RAID-4 (parity), RAID-5 (rotating parity), or in

fact more than one of these (e.g., RAID-0 or RAID-1).
All systems have 4 disks.

(a) What type of RAID is this?

write(0) -> [bwrite(disk=0, block=0), bwrite (disk=
write(l) -> [bwrite(disk=2, block=0), bwrite (disk=
write(2) -> [bwrite(disk=0, block=1), bwrite (disk=
write(3) -> [bwrite(disk=2, block=1l), bwrite (disk=
(b) What type of RAID is this?
read (0) —-> [bread(disk=0, block=0)]
(c) What type of RAID is this?
write(0) -> [Dbread(disk=0, block=0), bread(disk=
followed by
[bwrite (disk=0, block=0), bwrite (disk=
write(3) -> [Dbread(disk=0, block=1), bread(disk=
followed by
[bwrite (disk=0, block=1), bwrite (disk=
(d) What type of RAID is this?
read(0) -> [bread(disk=0, block=0)]
read(l) -> [bread(disk=1, block=0)]
read(2) -> [bread(disk=0, block=0), bread(disk=1,
read(3) -> [bread(disk=0, block=1l)]
read(4) —-> [bread(disk=1, block=1l)]
read(5) -> [bread(disk=0, block=1l), bread(disk=1,

1, block=0

3, block=0

1, block=1

3, block=1

3, block=0)]
3, block=0)]
3, block=1l)]
3, block=1l)]
block=0),

block=1),

in
in
in

)]
)]
)]
)]

in

in
in
in

in

bread (disk=3,

bread (disk=3,

parallel
parallel
parallel
parallel

parallel,

parallel
parallel,

parallel

block=0)

block=1)

]

]

in parallel

in parallel

PROBLEM 5: INPUTS TO THE BLACK BOX FS

The INITTAL STATE, or state(i), of a very simple file system is shown:

Inode Bitmap : 10000000

Inode Table : [size=1,ptr=0,type=d] [] [] []1 [1 [1 [1 I1]
Data Bitmap : 10000000
Data (™. 0y, ("..m0)1 10y 1 o1 orr 1ol

There are only eight inodes and eight data blocks; each of these is managed by a corresponding bitmap. The inode
table shows the contents of each of eight inodes, with an individual inode enclosed between square brackets; in the
initial state above, only inode O is in use. When an inode is used, its size and pointer field are updated accordingly
(in this question, files can only be one block in size; hence a single inode pointer); when an inode is free, it is marked
with a pair of empty brackets like these “[]”. Note there are only two file types: directories (type=d) and regular
files (type=r). Data blocks are either “in use” and filled with something, or “free” and marked accordingly with “[]”.
Directory contents are shown in data blocks as comma-separated lists of tuples like: (“name”, inode number). The
root inode number is zero.

Your task in this black-box experiment: figure out what file system operation(s) must have taken place in order to
transition the file system from some INITIAL STATE to some FINAL STATE. You can describe the operations with
words (e.g., file “/x” was created, file “/y” was written to, etc.) or with the actual system calls (e.g., create(), write(),
etc.).

Note that these questions build as they go, i.e., the file system starts in the initial state “state(i)” (as above), and
then goes through states(a), (b), (c), (d), (e), and finally (f) in the questions below. Thus, your task is to figure out what
operation(s) caused these changes as the question progresses.

(a) INITIAL STATE: state(i) as above to FINAL STATE (a):

Inode Bitmap : 11000000

Inode Table : [size=1,ptr=0,type=d] [size=0,ptr=-,type=r] []1 []1 [1 [] [1 []
Data Bitmap : 10000000
Data N G O I G) B G S B N D N

Operation that caused this change?

(b) INITIAL STATE: state(a) as in part (a) of this question to FINAL STATE (b):

Inode Bitmap : 11000000

Inode Table : [size=1,ptr=0,type=d] [size=1l,ptr=7,type=r] [1 []1 [1 [] [1 []
Data Bitmap : 10000001
Data o [(m.m o), (" " 0), ("E™ 1)1 [1 [1 [l [1 [1 [1 [SOMEDATA]

Operation that caused this change?

(c) INITIAL STATE: state(b) to FINAL STATE (c):

Inode Bitmap : 11000000

Inode Table : [size=1,ptr=0,type=d] [size=1l,ptr=7,type=r] []1 []1 [1 [] [1 T[]
Data Bitmap : 10000001
Data s [(m.m o), (" " 0), ("E" 1), ("b™ 1)1 [1 [1 [1 [1 [1 [] [SOMEDATA]

Operation that caused this change?

(d) INITIAL STATE: state(c) to FINAL STATE (d):

Inode Bitmap : 11000000

Inode Table : [size=1,ptr=0,type=d] [size=1,ptr=7,type=r]
Data Bitmap : 10000001
Data s (M. 0y, ("o " 0), ("™ 1)1 1 01 01 01 01 I

Operation that caused this change?

(e) INITIAL STATE: state(d) to FINAL STATE (e):

Inode Bitmap : 11000000

Inode Table : [size=1l,ptr=0,type=d] [size=1l,ptr=7,type=r]
Data Bitmap : 10000001
Data S I G O o G D I G R I R I A I A R O A B A

Operation that caused this change?

(f) INITIAL STATE: state(e) to FINAL STATE (f):

Inode Bitmap : 10000000

Inode Table : [size=1,ptr=0,type=d] [] [] [] [1 [] [] T[]
Data Bitmap : 10000000

Data .m0y, ("o 01 101 orrorr oty 1ol

Operation that caused this change?

10

(r 01 mn

[SOMEDATA]

(r 1

[OTHERDATA]

PROBLEM 6: CRASH CONSISTENCY AS A BLACK BOX

File systems crash. One sad outcome of a crash is that the file system is left in an inconsistent state. In this question,
you’ll be given the final output (on-disk state) of a file system, and try to determine if an inconsistency has arisen. If
one has, write “inconsistent” and suggest a fix! Otherwise, write down that the file system is “consistent”.

We use the same basic notation as in the previous file system question (Q5); refer to that question for details.

(a) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11111111

Inode Table : [size=1,ptr=0,type=d] []1 [] [1 [1 [1 [1 T[]
Data Bitmap : 10000000

Data om0, (M. o)1 [y 1 1 L1 10l

(b) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11100000

Inode Table : [size=1l,ptr=0,type=d] [size=1l,ptr=1,type=r] [size=1,ptr=2,type=r] [] [] [] []1 T[]
Data Bitmap : 10000000
Data s (. 0), ("o " 0), ("b™ 1), ("c"™ 2)] [DATA] [DATA] [] [1 [1 [1 I1

(c) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 10000000

Inode Table : [size=1,ptr=0,type=d] [] [] [1 [1 [1 [1 T[]
Data Bitmap : 11110000

Data (. o)y, ("o " 0)1 101 orr oty orr 1ol

(d) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11000000

Inode Table : [size=1,ptr=0,type=d] [size=1,ptr=1,type=d] [] [] [1 [] [1 T[]
Data Bitmap : 11000000
Data (.m0, (M. 0y, (a1 et), (e)1 11 ool

(e) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11000000

Inode Table : [size=1,ptr=0,type=d] [size=1,ptr=1,type=r] [] [] [1 [] [1 T[]
Data Bitmap : 11000000
Data N G O I (O P G- I B G L (e S N N D O N D O

(f) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11100000

Inode Table : [size=1,ptr=0,type=d] [size=1,ptr=1,type=r] [size=1,ptr=2,type=r] [] []1 [] []1 T[]
Data Bitmap : 11100000
Data c [("." 0), (".." 0)] [DATA] [DATA] [] [1 [1 [1 I[I

11

PROBLEM 7: THE LOG-STRUCTURED BLACK BOX

The log-structured file system buffers updates in memory (in segments) and then writes them out to disk sequentially.
In this question, you’ll be able to watch the traffic stream of writes to disk performed by LFS. Your task is to figure
out what the inputs to the system (i.e., the system call(s) that took place) that caused these writes to happen.

Before these writes, you can assume the file system was basically empty (save for a root directory). You can also
assume that a single inode takes up an entire block (for simplicity). The LFS inode map is called the “imap” below

and of course is also updated as needed.

(a) Segment written starting at disk address 100, in a segment of size 4:

block 100: [("."™ O0), (".." 0), ("foo" 1)] // a data block

block 101: [size=1,ptr=100,type=d] // an inode

block 102: [size=0,ptr=—,type=r] // an inode

block 103: [imap: 0->101,1->102] // a piece of the imap

What file system operation(s) led to this segment write?

(b) Segment written to disk address 104, in a segment of size 4:

block 104: [SOME DATA] // a data block

block 105: [SOME DATA] // a data block

block 106: [size=2,ptr=104,ptr=105,type=r] // an inode

block 107: [imap: 0->101,1->106] // a piece of the imap

What file system operation(s) led to this segment write?

(c) Segment written to disk address 108, in a segment of size 4:
block 108: [SOME DATA] // a data block
block 109: [SOME DATA] // a data block

block 110: [size=2,ptr=108,ptr=109,type=r] // an inode
block 111: [imap: 0->101,1->110]

What file system operation(s) led to this segment write?

(d) Segment written to disk address 112, in a segment of size 4:

block 112: [SOME DATA] // a data block
block 113: [SOME DATA] // a data block
block 114: [size=4,ptr=108,ptr=109,ptr=112,ptr=113,type=r] //inode
block 115: [imap: 0->101,1->114] // a piece of the imap

What file system operation(s) led to this segment write?

(e) After all of those writes, how much garbage was left on the disk? (i.e., write down which blocks are filled with

garbage, if any)

12

PROBLEM 8: NFS BLACK BOXES

The NFS client-side file system is responsible for turning its inputs (system calls) into outputs (protocol requests).
Assume you have the following protocol requests at your disposal:

LOOKUP (parent file handle, "name") -> returns "file handle" of "name" (or fails)

CREATE (parent file handle, "name") -> creates "name" in directory of parent,
returns "file handle" of "name"

READ (file handle, offset, size) -> returns "size" bytes of file from "offset"

WRITE (file handle, data, offset, size) -> writes "size" bytes of "data"
to file at "offset"
GETATTR (file handle) -> returns attributes of file

Assume the following sequence of system calls take place, in order from (a) down to (g); these are the inputs to
the client-side NFS file system.

Your job is to write the outputs of the client in the form of protocol requests.

You can assume you know the root file handle to begin with, which you can call ROOT FILE HANDLE or
something equally clever. Assume all requests are made to valid and existing files, and also assume nothing is in the
client-side cache to begin with (but the cache may become populated as the system calls in (a) through (g) execute).

(a) fd = open(“/foo/bar”’, O_RDONLY); // assume file is only 1 4KB block in size

(b) read(fd, buffer, 4096);

(c) close(fd)

(d) fd = open(*“/foo/bar2”, O_-WRONLY | O_CREAT);

(e) Iseek(fd, SEEK_END, 0); // seeks to end of file

(f) write(fd, buffer, 4096);

(g) close(fd);

13

