
CS-537: Midterm Exam (Fall 2013)

Professor McFlub: The Solutions Edition

Please Read All Questions Carefully!

There are fourteen (14) total numbered pages.

Please put your NAME (mandatory) on THIS page, and this page only.

Name:
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Professor McFlub always makes mistakes, especially when teaching the undergraduate operating systems course.

In this exam, you get to correct all of McFlub’s mistakes, so that the world won’t be misinformed about how operating

systems function. Unfortunately, sometimes Professor McFlub is actually correct; in those cases, you should just point

that out. Also unfortunately, sometimes McFlub is wrong in more than one way; you have to identify all of them!

Finally, sometimes it is hard to tell; if that is the case, say so! You can’t always know if McFlub is wrong.

Please save the world from McFlub - if you can!

Tips for good answers: just make a short, concise bulleted list of what is wrong, and please make sure to include the

correction. For example:

• Uses term Foo incorrectly; should be calling it Bar instead.

• Computes average Foo incorrectly; should be 10 not 5.

• The missing code is x = x + 1 just after line 10 (with arrow to point to location where code goes).

If McFlub is completely correct, just say so.

If, in the question, McFlub asks you for specific help, help out! Be the good student that you know you are deep down.
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Grading Page

Points Total Possible

Q1 10
Q2 10
Q3 10
Q4 10
Q5 10
Q6 10
Q7 10
Q8 10
Q9 10
Q10 10
Q11 10
Q12 10
Q13 10
Q14 10
Q15 10
Q16 10
Total 160
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1. Scheduling

“The picture here shows the scheduling of two processes: A, B, and C over time. Let’s look at it.”

(McFlub now draws this on the board)

|

Job | ABCABCABCABC ...

|____________________________

Time -->

“As you can clearly see, this is the behavior of a lottery scheduler, rotating between A, B, and C randomly. And

you can trust the results: I traced this behavior on a lottery scheduler I built late last night.”

• Probably not a lottery scheduler (though you can’t be sure, can you?). More likely Round Robin

• Some people pointed out three processes, not two. This, alas, was Professor A-D’s mistake, not

McFlub’s

2. Shortest Time To Completion

“Shortest Time to Completion First is a great policy, if you care about response time. But today we’re going to

worry about turnaround time. Let’s compute the turnaround times for STCF for these three jobs, which arrive

at about the same time: Job A (which needs to run for 10 time units), Job B (needs 20), and Job C (needs 30).

Let’s assume this happens when the jobs are run:

ABBCCC

The Turnaround for A is thus 0, 10 for B, and 20 for C. Thus, average turnaround for STCF is 10, which is great.

See, I told you.”

• STCF is good for turnaround, not response time

• Calculate turnaround for A, B, C: 10, 30, 60, respectively, with average of 33.33

• (You could have calculated response time too, depending on your correction, which would be 0, 10,

and 30, respectively)
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3. MLFQ

“The Multi-level Feedback Queue has an intricate set of rules, used to build up a scheduler that achieves many

different goals. It starts with a set of queues, ordered from highest to lowest priority. And then it adds rules for

moving jobs among the queues. Let’s look at the rules, and see if they make sense:

- If Priority(A) > Priority(B), A runs (B doesn’t).

- If Priority(A) == Priority(B), A and B run in round-robin style.

- When a job enters the system, it is assigned a random

priority and put in the queue corresponding to that priority.

- Once a job uses up its time allotment at a given level (regardless of how

many times it has given up the CPU), its priority is reduced

(i.e., it moves down one queue).

That’s it! Amazingly, these rules are all you need. Well, that and a drink of coffee, if you’re tired like I am most

of the time.”

• Jobs enter at top priority, not random

• Need periodic bump to avoid starvation, detect changes in job behavior

4. Traps and Interrupts

“Traps, like system calls, and interrupts, such as from a programmable timer or disk, are handled very similarly

in OSes. For example, when each occurs, the hardware saves some state (such as the program counter) and

jumps into the OS. At that point, the OS handles the trap or interrupt. When finished, the OS returns, through a

normal return instruction, and then retries the trapping or interrupted instruction.”

• Returns from the kernel require a different instruction, which both undoes what the trap did (re-

stores saved state), and changes privileged mode back to user mode

• Retry only happens in some cases (e.g., TLB miss); in other cases (e.g., syscall trap), the return must

return to the instruction after the trapping instruction
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5. Base and Bounds

“Base/bounds-based virtual memory is really easy. Imagine you have a base register and a bounds register in

each CPU. The base points to the physical memory location where an address space is relocated; the bounds

tells us how big such an address space can be. Let’s do an example to understand this better.

Assume we have the following base/bounds pair:

Base : 0x1000

Bounds : 0x10

Now assume we have the following virtual memory references by a process:

0x0

0x4

0x8

0xc

The corresponding physical addresses that will be referenced are:

0x1000

0x1004

0x1008

FAULT (because this one is out of bounds)

Make sense?”

• No, because 0xc is a legal virtual address (clearly less than the bounds of 0x10)

• Should have translated to 0x100c instead of faulting

6. OS Involvement With Paging

“In a hardware-managed paging system, the OS has to get involved sometimes. For example, when a process

starts running, the OS has to set the page-table base register (PTBR) to point to the page table of the process.

Actually, that’s about it for OS involvement with paging, so now you know what you have to know. You’re

welcome!”

• Actually the OS has to do lot more stuff when using paging.... like:

• Switch PTBR on context switch

• Change page tables appropriately on memory allocation and free (e.g., on sbrk() call into kernel for

malloc, or perhaps automatically for stack)

• Monitor accesses to be able to perform page replacement (e.g., approximate LRU)

• Other examples are possible
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7. Simple Paging

“With simple linear (array-based) page tables, assume we have the following page table, starting with the first

entry and going to the last:

0x8000002a

0x00000000

0x00000000

0x00000000

0x8000003e

0x00000000

0x80000017

0x00000000

0x00000000

0x8000000e

0x00000000

0x00000000

0x8000001f

0x00000000

0x8000001a

0x80000001

Assuming this is the entire page table, and that each page is 1K, we can see that we have a virtual address space

of size 32KB.

Now let’s look at how to do a translation. The format of each page table entry (PTE) above is as follows:

A single valid bit followed by the PFN (page frame number); you might recall this from the homework (run

it with SEED=1000 and PAGESIZE=1k).

Let’s translate the following virtual address: 0x33ef. As you can quickly see, this is an INVALID ACCESS.

Stupid program!”

(Is McFlub right? If not, please show him how the address really translates)

• There are clearly only 16 entries in the page table above

• Thus, assume address space size is 16 KB (could also assume page sizes are actually 2k as alternative)

• 0x33ef becomes 11001111101111 in binary

• Broken down into VPN and offset: VPN=1100, offset=1111101111

• Thus entry VPN=12 above, is used in translation: result is 0x8000001f

• Page is valid (high bit set); PFN=0x1f

• Final physical address (PA) is thus pfn=11111 offset=1111101111 or 111111111101111 or 0x7fef
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8. Segmentation

“With segmentation as our virtual memory system (not paging), assume we have a system with a 1KB virtual

address space. Assume the segmented address space has two segments: a code/heap combined segment that

grows in the positive direction, and a backwards-growing stack. The top bit of the virtual address is used to

differentiate between these segments.

Here is some segment register information:

Segment 0 base (grows positive) : 0x00000000 (decimal 0)

Segment 0 limit : 1

Segment 1 base (grows negative) : 0x00000064 (decimal 100)

Segment 1 limit : 1

Now let’s do some address translations!

Because the base of segment 0 is 0, translations are super easy. Here are three easy virtual address translations

in segment 0:

VA 1: 0x00000065 (decimal: 101) --> 0x65 (101)

VA 2: 0x00000169 (decimal: 361) --> 0x169 (361)

VA 3: 0x000002ad (decimal: 685) --> 0x2ad (685)

See, easy!”

• Limit for each segment is 1 byte

• Thus, all of the virtual addresses above are faults; only virtual addresses 0 and 1023 are valid

• The last address is in segment 1, btw

9. The Advantages of Paging

“Paging has a number of advantages over segmentation. They are... well... paging sounds better, looks better,

and in general feels better. That’s about it. Oh yeah, paging also makes address translation much faster than

segmentation. And, it removes fragmentation of some kind. Yup, that’s it.”

• Lots of advantages for paging, including avoiding external fragmentation and super flexible address

space usage

• Paging generally is not faster (indeed it might be slower with all of the page table accesses needed,

depending on TLB)

• Paging is more complex

• Paging can lead to internal fragmentation (waste within each page)
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10. TLBs

“TLBs make paging systems run faster. Let’s imagine the following code snippet without TLBs:

int a[4096];

int b[4096];

int c = 0;

for (i = 0; i < 4096; i++) {

c = a[i] + b[i];

}

Without TLBs, on a system with 4-byte integers and a 4KB page size, and assuming a linear page table, this

code would access memory an additional 8192 times (due to page table accesses) – this is a worst-case analysis.

With TLBs, the page tables are only accessed 8 times in the worst-case. What a reduction! Oh, hold on: I think

I might have forgotten to think about instruction references...”

• Have to make lots of assumptions here to make sense of it

• First, code lies on one or two pages (depending on page alignment)

• Data, assuming arrays laid out next to each other, lies on either 8 or 9 pages (each array is 16KB,

which fits into four pages; combining the two could fit into eight, or maybe nine if not aligned);

assume the other variables are register allocated for simplicity

• Best case is a TLB that has enough room for these nine to eleven translations, thus resulting in that

many page-table accesses

• Without a TLB, each data reference to the arrays leads to 8K memory accesses to page tables;

instruction references depend on the exact machine language but would probably be something like

8 instructions per loop, or 32K instruction references total

• A smart compiler would probably optimize away much of the code; McFlub actually meant to write:

c += a[i] + b[i]; (but did not expect people to get this, though one or two did notice it)
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11. Multi-level Page Tables.

“I want to make multi-level page tables clearer for you. Imagine you have a linear page table for a process with a

64-byte address space (yes, tiny) and 4-byte pages. Assume each PTE is 1 byte in size. A multi-level page table

lets us chop the page table into page-sized chunks, and only allocate those chunks if there is a valid mapping in

the page of PTEs. The page directory points to those valid chunks, as follows.

Page directory:

PageDirEntry00 (valid; points to A below)

PageDirEntry01 (not valid)

PageDirEntry02 (not valid)

PageDirEntry03 (not valid)

PageDirEntry04 (valid; points to B below)

PageDirEntry05 (not valid)

PageDirEntry06 (not valid)

PageDirEntry07 (valid; points to C below)

Page table pages:

PTE00 (valid) <---- A

PTE01 (not)

PTE02 (not valid)

PTE03 (not valid)

PTE04 (not valid)

PTE05 (not valid)

PTE06 (not valid)

PTE07 (not valid)

PTE08 (not valid) <----- B*
PTE09 (not valid)

PTE10 (valid) <---- B

PTE11 (not valid)

PTE12 (not valid) <----- C*
PTE13 (not valid)

PTE14 (valid) <---- C

PTE15 (valid)

Make sense?”

If the page size is 4 bytes, we need to chop up the page table into page-sized chunks. This would group

them into four groups of four, not eight groups of two. The page directory (PD) then would only have four

entries (and also nicely fit into a page). The first entry of the PD would be valid, the second not, and the

third and fourth valid. The first entry would point to A, the third to B* (added above), and the fourth to

C* (also added).
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12. Spin Locks

“Assume we have a new instruction called the Load-and-Store-Zero, and it does the following atomically (here

is C pseudo-code):

int LoadAndStoreZero(int *addr) {

int old = *addr;

*addr = 0;

return old;

}

Let’s use it to build a spin lock. Oh, I forgot my notes. Can someone write down how to build a spin lock out

of this instruction? Yeah, write down the code for both lock and unlock, as well as some kind of initialization

routine. No, I don’t remember how it should work; this is why I asked you to do it!”

(please help McFlub by using the LoadAndStoreZero instruction to build a working spin lock)

Here is one solution. The key idea is to realize that the free state of this lock should be 1, and locked 0;

then LoadAndStoreZero (LASZ) works fine:

void init(int *lock) { *lock = 1; } // 1 means free, 0 means locked

void acquire(int *lock) { while(LASZ(lock) == 0) ; } // spin while locked

void release(int *lock) { *lock = 1; }

13. Atomic Operations

“Fetch-and-add is a primitive that is useful in building many concurrent structures. Some architectures support

it as a base instruction. On others, you have to build it. Assume here you only have the atomic exchange

instruction, as we talked about before. This is how you build Fetch-and-add, which atomically increments the

value at the given address by a specified amount:

int FetchAndAdd(int *addr, int amt) {

int should;

do {

should = *addr + amt;

} while (atomic_exchange(addr, should) != should);

}

Thus we have a fetch and add. Tada!”

The fetch-and-add doesn’t work, because atomic exchange always blindly overwrites what is there. Best

solution uses atomic exchange to build a lock and then just add a lock around the fetch-and-add. Alternate

is to suggest more powerful compare-and-swap.
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14. Producers and Consumers

“Here is some code for the producer/consumer problem we are trying to solve. We’ll use a new primitive:

Pthread cond broadcast(). Unlike traditional signaling, this wakes up all threads waiting on a condition. Here

is some code using such a broadcast:

void *producer(void *arg) {

int i;

for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);

while (count == MAX)

Pthread_cond_wait(&cv, &mutex);

put(i);

Pthread_cond_broadcast(&cv); // here!

Pthread_mutex_unlock(&mutex);

}

}

void *consumer(void *arg) {

int i;

for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);

while (count == 0)

Pthread_cond_wait(&cv, &mutex);

int tmp = get();

Pthread_cond_broadcast(&cv); // here!

Pthread_mutex_unlock(&mutex);

printf("%d\n", tmp);

}

}

Now I think that this code doesn’t work. Or does it? Oh, I don’t know! Anyone have any ideas?”

This code seemingly makes the mistake of only using one condition variable in the producer/consumer

problem, but solves it by using broadcast to wake all waiting threads. Because each thread re-checks the

condition when awoken, only those who should be able to make progress will do so. Of course, this can be

inefficient, which is why we normally use two CVs and signal accordingly thus waking up only those who

need to be awoken.
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15. Semaphores

“Semaphores are useful for lots of things. I found this code that uses semaphores. Pretty sure this is useful for

something, though I don’t remember what.

typedef struct _foo_t {

sem_t lock1;

sem_t lock2;

int count;

} foo_t;

void foo_init(foo_t *f) {

f->count = 0;

sem_init(&f->lock1, 1); // init value of lock to 1

sem_init(&f->lock2, 1); // same thing here for lock2

}

void do1(foo_t *f) {

sem_wait(&f->lock1);

f->count += 1;

if (f->count == 1)

sem_wait(&f->lock2);

sem_post(&f->lock1);

}

void undo1(foo_t *f) {

sem_wait(&f->lock1);

f->count -= 1;

if (f->count == 0)

sem_post(&f->lock2);

sem_post(&f->lock1);

}

void do2(foo_t *f) {

sem_wait(&f->lock2);

}

void undo2(foo_t *f) {

sem_post(&f->lock2);

}

Any ideas what’s going on here?”

This is actually a reader/writer lock. You can acquire exclusive access to the resource (i.e., like a writer)

by running do2() (and then undo2() when done); you can get shared access to the resource (i.e, like a

reader) by running do1() (and then undo1() when done). Successfully calling do1() guarantees that

no call to do2() will succeed until all users of the shared resource are done; this is a potential starvation

problem.
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16. Deadlock?

“I wrote some code and it keeps deadlocking. How frustrating! Here is how the code works. Thread 1 grabs

Locks A and B (in some order); Thread 2 grabs Locks B and C (in some order); Thread 3 grabs Locks C and

D (in some order); Thread 4 grabs Locks D and A (in some order). Why in the world does this code deadlock?

Somebody help me; I just find concurrency hard.”

Assume Thread 1 grabs A, but then is waiting for B; Thread 2 grabs B and is waiting for C; Thread 3

grabs C but is waiting for D; Thread 4 grabs D but is waiting for A. Thus a cycle and a deadlock.

Solve in many possible ways. A good way is to order the lock acquistions: always grab A before B before

C before D. Doing so would prevent deadlock.
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