
1

Deadlock

CS 537 Lecture

Deadlock: Why does it happen?

z When all entities (threads, processes) are
waiting for a resource held by some other
entity in a group

z None will release what they hold until they
get what they are waiting for

Example: Unordered Mutex

z Two threads accessing two locks

z What happens if Thread1 grabs m[0] and
Thread2 grabs m[1]?

Semaphore m[2] = {1,1}; // binary semaphore
Thread1 Thread2
m[0].P(); m[1].P();
m[1].P(); m[0].P();
//access shared data // access
m[1].V(); m[0].V();
m[0].V(); m[1].V();

Representing Deadlock

T1 T2

• Different ways to represent problem

“Waits-for” graph

waiting

waiting

“Resource-allocation” graph

M1

M1

T1 T2

holds

Waits-for
holds

Waits-for

Four Necessary Conditions

z Mutual exclusion
y >=1 resource held non-sharable
y requests delayed until release

z Hold and wait
y Exists a process that is holding >=1 resource, waiting

for another that is held by some other process

z No preemption
y Resources only released voluntarily

z Circular wait
y Exists set of processes s.t. P0->P1->..->Pn->P0

z All 4 conditions must hold for deadlock to occur!

Handling Deadlock: Options

z Prevention
y Ensure system never enters deadlock
y (make sure >= 1 condition does not hold)

z Detection/Recovery
y Allow deadlocks, but detect!
y Somehow recover and continue

z Ignore
y Fairly common approach, seems bad
y (When could this be the right solution?)



2

Prevention: Stopping 1 of 4

z 1 - Mutual exclusion
y If not required, do not use (e.g., read-only file)

y (but, sometimes needed, of course)

z 2 - Hold and wait
y Guarantee all P’s grab resources at once

y (must be done atomically)

y Why is this a bad idea (sometimes)?

Prevention (cont.)

z 3 - No preemption
y If holding some resources and trying to get

others, must wait (could be a problem)

y Instead, force others to release!

y Why is this hard to do (in general?)
x Must undo state of P that is preempted

Prevention (cont.)

z 4 - Circular wait
y Impose total order on locks

y If all P’s follow order, no circular wait occurs

y E.g., Locks M1, …, Mn acquired in order only!

y Advantages: Simple to follow, works
x Common in practice

y Disadvantages: Arbitrary ordering

Avoidance

z Different than prevention
y By having knowledge of what processes will

request, can schedule carefully so as to avoid
deadlock

y Must know maximal requests
possible/process

y E.g., Banker’s algorithm

z Not commonly used: too much knowledge

Detect and Recover

z Detection
y Notice waiting processes and dependencies
y Inform human, or handle automatically
y Might be expensive, so run infrequently

z Recovery: Abort processes!
y Abort all that are deadlocked (good/bad?)
y Abort one@time until deadlock doesn’ t exist
y Why hard?

x Must undo effects of process (lock1, remove $$ from
account, lock2, put $$ in other account, release 2, release 1)

x Could starve if repeatedly aborted (one that gets most locks)

Summary

z Deadlock
y Mutual exclusion, Hold and wait, No

preemption, and circular wait all required

z Solve by
y Preventing one of four conditions
y Avoidance via clever scheduling
y Detect and recover by aborting processes
y Ignoring altogether!


