CS-537: Midterm Exam (Spring 2002)
The Mid-Semester Blues. A Tour of Proper Answers

Please Read All Questions Carefully!

There are nine (9) total numbered pages

Please put your name on every page.

Grading Page

Points | Total Possible

Part |: Short Answers | 60 (12 x 5) — 60

Part 11: Long Answers | 40 (2 x 20) — 40

Total 100 100

Part |: Short Questions

The following questions require short answers. Each of 12 is worth 5 points (60 total).

1. Processes (or threads) can be in one of three states: Running, Ready, or Blocked. For each of the following
four examples, write down which state the process (or thread) is in:

(a) Waiting in Domai n_Read() for a message from some other process to arrive.
Blocked. Waiting for a message in the OS.

(b) Spin-waiting for a variable x to become non-zero.
Running. By definition, it’s spin-waiting, therefore it must be running.

(c) Having just completed an 1/0, waiting to get scheduled again on the CPU.
Ready. Unblocked but not running means ready.

(d) Waiting inside of pt hr ead_cond_wai t () for some other thread to signal it.
Blocked. Wait gives up the processor, also by definition.

2. An operating system runs in privileged mode, a hardware state where it has full access to machine resources.
Why is such a mode needed, and why can’t normal user processes and threads enter privileged mode?

Need a privileged mode to allow OS (and only OS) to have full access to machine resources (timer inter-
rupts, MMU, all of physical memory, etc.). If user processes could enter privileged mode, they could do
anything they want, including corrupting other processes or even the OS. Protection and multiplexing
(basic OS services) could not be reliably provided.

3. Inasystem with pure paging, assume we have a 32-bit address space, and a 4 KB page size.

a) How many bits of an address specify the logical page number (a.k.a. the virtual page number), and how many
bits specify the offset?

4KB page implies 12 bits needed for the offset. This leaves 20 bits for the VPN.

b) Let’s say we are translating the logical address 0x00010033; if each logical page is mapped to a physical
page that is a single page number higher (i.e., logical page 10 is mapped to physical page 11, logical page 11 is
mapped to physical page 12), what is the final translated physical address?

Have to take VPN and increment it by one. The VPN is the top 20 bits (0x00010). Adding one gets you
0x00011. Combining back with the offset gets you the final answer: 0x00011033.

4. Three jobs (A, B, and C) arrive to the job scheduler at time 0. Job A needs 10 seconds of CPU time, Job B needs
20 seconds, and Job C needs 30 seconds.
a) What is the average turnaround time for the jobs, assuming a shortest-job-first (SJF) scheduling policy?

Turnaround time the total time the job spends in the system (from when it was submitted to when it
completes). SJF runs A to completion, then B to completion, then C to completion. A finishes in 10
seconds (A’s run time), B in 10 (waiting for A) + 20 (B’s run time) = 30 seconds, and C in 10 (A’s run time)
+20 (B’s run time) + 30 (C’s run time) = 60. Average turnaround is thus 193260 or 130 seconds.

b) What is the average turnaround time assuming a longest-job-first (LJF) policy?

Similar reasoning, but in reverse order. C finishes in 30, B in 50, A in 60. Average turnaround is thus
30+50+60 g 140 gaconds
3 ! 3 '

c¢) Which finishes first, Job C in SJF or Job A in LIF?
C finishes last in SJF, and A finishes last in LJF. Thus, neither, as they both finish at the same time.

5. In class, we gave the following code as an implementation of mutual exclusion:

bool ean | ock[0] = lock[1] = fal se;
int turn = 0;
void deposit (int amount) {
| ock[pid] = true;
turn =1 - pid;
while (lock[1l-pid] & (turn == (1 - pid)))
; Il spin
bal ance = bal ance + anount;
| ock[pid] = false;

}

Let’s say we replace the statement turn = 1 - pi d with the statement t urn = Bi nar yRandon(),
where the function Bi naryRandon() returns a 1 or 0 at random to whomever calls it.
Will the code still function properly? If so, why, and if not, what problem could occur?

Does not work. Imagine if two processes enter at roughly the same time. Both could set their respective
locks to true, and then set turn equal to Bi nar yRandon{) . What if Bi nar yRandon() returns 0 for
thread 0 and 1 for thread 1? Mutual exclusion is broken.

6. A number of threads periodically call into the following routine, to make sure that a pipe that is shared between
them has already been opened (after calling this routine, a thread might go ahead and call write() on that pipe,
for example). Assume there is a global integer pi pe, which is set to -1 when the pipe is closed, and a global
lock | ock, which is used for synchronization. Here is the code:

voi d MakeSur ePi pel sOpen() {
mut ex_| ock(& ock) ;
if (pipe == -1)
pipe = open('‘/tnp/fifo’’, O WRONLY);
mut ex_unl ock(& ock);

}

However, you get clever, and decide to re-write the code as follows:

voi d MakeSur ePi pel sOpen() {

if (pipe == -1) {
mut ex_| ock(& ock) ;
if (pipe == -1)

pipe = open(‘‘/tmp/fifo’’, O VWRONLY);
nmut ex_unl ock(& ock) ;

}

Does this code still work correctly? If so, what advantage do we gain by using this implementation?
If not, why doesn’t it work?

Turns out this is OK. Just reading the value of pipe is not a problem, because we are not updating it. What
this saves you is the overhead of getting the lock if pipe has already been set to something other than -1.

7. Assume you are implementing a producer-consumer shared buffer (which can be used by producer threads to
pass data to consumer threads), but that the buffer is unbounded; in other words, it does not have a limit as to
how big it can get.

a) How many condition variables will you need in order to implement this buffer properly, and why?

This solution only requires one condition variable, in order to wake up consumers when some data is
placed into the queue.

b) How is this different than a standard bounded buffer implementation?

The traditional bounded buffer requires two condition variables; the additional one is needed to wake
producers when the buffer is not full anymore.

8. For deadlock to occur, four conditions must hold: mutual exclusion, hold and wait, no preemption, and circular
wait. If any one condition does not hold, no deadlock can occur. Assume we want to allow “preemption”, and
thus get out of deadlocks; in other words, if a deadlock is detected, we will forcibly take a lock away from a
thread; by repeatedly doing this, we will eventually undo the deadlock. What new problems are introduced by
this preemptive approach?

Preemption implies that the process that gets preempted to rollback the state changes it has made during
the critical section. If you don’t do this, preemption simply doesn’t work. Rollback is a pain because you
must track a lot of extra state in order to be able to do it. Another problem that may be introduced is
livelock, depending on how the rollback is implemented.

9. Someone has written new memory allocator to replace the standard malloc()/free() implementation. It works as
follows: one half of available memory is divided into fixed-sized units of 4KB, and the other half is managed by
a best-fit free list. If an allocation request is less than or equal to 4KB and there is space in the fixed-sized half,
a 4KB unit is allocated from the fixed-sized half; otherwise, the best-fit algorithm is used over the other half of
memory, and the requested size is returned (if space is available).

a) Assuming 32KB of total memory is available, what series of allocation requests will most quickly lead to all
of memory getting allocated, all while requesting the least total amount of memory?

Four 1-byte requests and one request for 16KB. The four 1-byte requests each take up one of the 4 4KB
pages, and the remaining 16KB is allocated from the best-fit side.

b) What type(s) of fragmentation occurs with this new allocator?

Both types. Internal, because we are allocating pages from one-half, and external, because we have a
best-fit managed list.

10.

11.

12.

A mechanism that can be used for synchronization is the ability to turn on and off interrupts.
a) How can you use this to implement a critical section?

Simple. Turn off interrupts, execute the critical section, turn them back on again.

b) Why does does it work?

It works because you are preventing the timer interrupt (or any interrupt) from letting the OS get control
again; when the OS gets control, it could run another job. Without interrupts, the process that is running
owns the CPU until the interrupts are enabled or until the processor is voluntarily relinquished.

c) Why is this generally a bad idea?
Bad idea because of trust. If you can turn off interrupts, you can keep the processor all to yourself (even
by accident). This is not a good idea if you want the OS to arbitrate the resources for you.

In class, we talked about two kinds of message sends: blocking and non-blocking. In communicating through
a Unix pipe, consider the sender side (i.e., the side doing the wri t e() call to the pipe). Isthewrite() toa
pipe blocking, non-blocking, or both? Explain.

Both blocking and non-blocking. A write to a pipe is usually non-blocking in that it copies the data into
the fifo and then returns, not waiting for anyone to read the data. However, if the pipe is full, the write
will block until someone reads fromiit.

For the following question, please circle all answers that apply. A translation lookaside buffer (TLB) is
generally used to:

(a) translate virtual page numbers into physical page numbers. yes

(b) translate physical page numbers into virtual page numbers.

(c) make segmentation have the benefits of a pure paging approach.

(d) translate the addresses generated by loads. yes

(e) translate the addresses generated by stores. yes

() translate the addresses generated by instruction fetches. yes

(9) remove the need for a full-sized page table.

(h) make translations happen quickly. yes
A TLB translates virtual page numbers into physical page numbers (item a) for addresses generated

by loads (d), stores (e), and instruction fetches (f). The idea behind the TLB is to make the process of
translation speedy (h).

Part I1: Longer Questions
The second half of the exam consists of two longer questions, each worth 20 points (total 40).

1. Staying In-Bounds.

You are dealing with a system that performs static relocation. In static relocation, a loader rewrites the addresses
of a process as it is getting loaded into the system so as to “relocate” the address space of that process to an
arbitrary address in physical memory. In this system, all programs are compiled as if they will get loaded at
address 1000. Then, when the loader is “loading a process”, it must re-write any addresses within the program
in order to generate addresses at the correct offset in physical memory.

load O(R1l), R2 # |l oads value at address 'R1 + 0" into R2
add R2, 5, R2 # add 5to R2
store O(Rl), R2 # store value at address 'Rl + 0° back into R2

a): Assuming that the process gets loaded at physical address 2500, how would the loader re-write the
statements above so as to provide proper static relocation?

| oad 1500(R1l), R2 # loads value at address 'Rl + 1500" into R2
add R2, 5, R2 # add 5 to R2
store 1500(Rl), R2 # store value at address 'Rl + 1500' back into R2

In this part, all you have to do is to make sure that any address generated by the process is correctly relo-
cated to the right physical address. Of course, only loads and stores (in the example) generate addresses,
so they must be rewritten to account for the actual physical placement. In this case, the program was
compiled as if it were to get loaded at address 1000, but instead got loaded at address 2500. That means
that a load destined for 1000 must somehow get redirected to 2500. The way to accomplish that is to add
the difference (2500 minus 1000) to each load and store, which is easily done by using the offset field of
the load/store.

b): Let’s say we want to implement some additional checks in our static relocation scheme. Specifically, we
want to make sure that all addresses generated by the process do not extend beyond its address space. If an
address is outside of the limit, the program should just be forced to exit. What would we have to do before each
| oad and st or e instruction in order to guarantee that they stay within the address space of the process?

We want to make sure that not only do we do the offset (as in part a), but that the offset is legal. Thus, we
need to know how big the process address space is (it’s bound), and then check each address generated
to make sure it is within the bounds of the process (both too high or too low). Thus, before each load or
store, one could imagine inserting a few extra instructions to perform the check, and if the check fails
(i.e., out of bounds), call exit() to end the process. In a complete solution, one would also need to make
sure that control transfers (jumps, branches) were checked.

c): In contrast with static relocation, dynamic relocation is a hardware approach to relocating the address
space of a process in physical memory. What hardware is required to implement dynamic relocation?

Not much. Just a base register and a bounds register. (Just saying MMU wasn’t specific enough)

d): If you contrast software-based static relocation with the extra checks (as described in this question in part
(b)) to traditional hardware-based dynamic relocation, are they equivalent, or does one approach give you more
capabilities than the other? Explain.

Lots of possible answers here. Simple one: hardware is faster, because we don’t need all of the extra
instructions to do the checks. Also, hardware is better because it allows for us to easily relocate the
process when it is getting swapped back into memory. Other answers are possible, i.e., software is better,
because it doesn’t need hardware support!

2. Synchronization: Primitive?

Different hardware architectures provide different low-level instructions to allow one to implement synchroniza-
tion primitives. In this question, we will examine two different sets of synchronization instructions (available
on two different architectures), and will use each of them to implement a critical section.

Load-linked, store-conditional: The first hardware primitive is actually a pair of instructions available on
the MIPS architecture, and they are called the load-linked and store-conditional instructions. They are used in
combination to build mutual exclusion.

|| <address>, RD
sc <address>, RS

In the load-linked instruction (I |), the value at address <addr ess> is placed into the register RD, much like a
normal load. With the store-conditional instruction, the value inside of the register RS is placed into the value
at <addr ess>, if the value at <addr ess> has not been changed by some other thread since the load-linked
instruction (I |) was executed. If the store-conditional succeeds (and stores the value in RS into the address
<addr ess>), the register RS will be set to the value 1; if the store-conditional fails (in other words, someone
else has updated the value at <addr ess> in the meanwhile), the store-conditional does not update the value at
<addr ess>and RS is set to the value 0.

Fetch-and-add: The second synchronization instruction is available on the now defunct Alpha architecture,
and is called atomic fetch-and-add (abbreviated f et chadd). The format of the f et chadd instruction is as
follows:

f et chadd <address>, RS

where <addr ess> holds an address of some variable, and register RS holds an integer value. When f et chadd
executes, it atomically adds the value inside of RS to the variable stored at <addr ess>.

The code that must be implemented in properly synchronized form is our standard synchronization routine:

int balance = 0; // global variable, accessible by all threads.

voi d updat e(i nt anount) {
bal ance = bal ance + amount; // must synchroni ze access to 'bal ance’!
}

Your job: implement the updat e() routine so that it is properly synchronized, using the different synchro-
nization instructions available. In other words, in part a), implement updat e() by using the load-linked and
store-conditional instructions (but not the atomic fetch-and-add or compare-and-swap). In part c), use just the
fetch-and-add. Of course, in both parts, you may use other standard instructions such as loads, adds, stores, and
so forth.

Assumptions: Assume you have 16 registers at your disposal (you won’t need nearly that many), and call them
R1 through R16. Also, assume that when updat e() is called, the value of the amount variable is placed
inside of register R1.

You may need to use some other instructions to implement the correct code. To get you started, this is what the
unsynchronized version of the updat e() routine looks like:

| oad <bal ance>, R2 # | oad account bal ance into R2

add R1l, R2, R3 # add amount (R1l) and bal ance (R2), result in R3
store <bal ance>, R3 # store value of R3 back into bal ance

(continued on next page)

You may also need to use a br anch instruction of some kind. If so, just write some pseudo-C (instead of
assembly) and use got o statements and labels.

top: load <variable> R1
if (RL ==1) goto top

In the code snippet above, the variable var i abl e keeps getting checked to see if its value has become anything
other than 1; as long as it stays at 1, the code keeps branching back to the label t op.

a): Implement the updat e() routine with the Load-linked, store-conditional instructions.
Assume that anount is in R1.

top: Il <bal ance>, R2 # conditional |oad of bal ance
add R1, R2, R3 # do the add
sc <bal ance>, R3 # try to store value into bal ance
if (R3 ==0) # if the store failed, try again!
goto top;

If the store-conditional suceeded, R3 gets the value of 1, and we know that we updated the balance vari-
able atomically. If R3 gets the value of 0, the store-conditional failed, and that means someone else was
updating the value of balance at the same time, and did it before we did. Thus, try again!

b): Are there any limitations or problems with your solution to part (a)? If so, please describe them. If not,
please say why.

Many possible answers. The solution above spin-waits, which is a waste of processor cycles. Also, livelock
is possible (though unlikely), if two threads interleave in such a way as to continually conflict with one
another, thus preventing progress from being made.

c): Implement the updat e() routine with the Atomic fetch-and-add instruction.
Assume that amount is in R1.

f et chadd <bal ance>, R1 # add r1 into balance atonically

d): Which of is more appropriate to use in implementing the updat e() routine, the load-linked/store-conditional,
or the atomic fetch-and-add? Explain.

Fetch-and-add does it all in one instruction, and further, will never fail and require a retry; thus, it avoids
spin-waiting and wasting processor cycles. On the other side of the coin, fetch-and-add may be harder to
implement in hardware.

