
CS-537: Midterm Exam (Fall 2004)
Exam III: Revenge of the Sith

Please Read All Questions Carefully!

There are eight (7) total numbered pages.

Please put your Name and student ID on this page and your student ID (but NOT YOUR NAME) on every
other page.

Name and Student ID:

1



Grading Page

Points Total Possible

Part II: Long Answers (2 × 20) → 100

Total 100

2



Part I: Long Questions

This exam consists solely of five long questions,each worth 20 points (total 100).

1. Right on schedule.

We now explore disk scheduling.

(a) A common disk scheduling algorithm is called “shortest seek time first” (SSTF). Describe SSTF, and what
its primary problem is.

(b) You develop a new algorithm, calledtwo-queue SSTF. The idea is simple: you put the firstN requests
into the first of two disk scheduling queues, and start by servicing those requests in SSTF-based order.
However, as the next so many requests arrive into the system,they are put into a different “second” queue.
No request in this other queue is serviced until all of the requests in the first queue have been. At this
point, the second queue starts getting serviced (again in SSTF order), and requests that arrive during this
phase are put into the first queue (and not serviced until all requests in the second queue have been). And
so forth. How does this two-queue policy compare to SSTF?

(c) Most disks have a small cache called a “track” buffer inside of them. Assume you know the contents of
the cache, e.g., which blocks when you request them will be serviced from the cache, versus which really
have to go to disk. How would you modify SSTF in order to take into account this knowledge so as to
deliver the best possible performance?

(d) In a mirrored RAID disk system, when reading data, you have the choice of which of two disks to read
the data from. How would you incorporate this decision into your SSTF-based disk scheduler? (i.e., how
would you change SSTF if it was running on top of two disks withidentical contents, particularly when
considering reads from disk?)

3



2. DegRAIDing your disk system.

RAID systems typically have ahot spare. When a disk in the RAID fails, the hot spare (which was previously
unused) is activated, and takes the place of the broken disk.In this question, you will answer some questions
about this process, known asreconstruction.

For all parts of this question, assumeeach disk has D blocks, and that thetime to read each block is T
milliseconds. Also assume that the only thing that really takes any substantial time is disk I/O – all other costs
are irrelevant.

(a) Assume we have a mirrored (RAID-1) disk system. One disk fails. How many blocks must be read and
written in order to fully reconstruct the RAID?

(b) How long does the RAID-1 reconstruction take? (assume the best possible implementation you can think
of)

(c) Now assume we have a parity-based RAID-4 system. One diskfails (assume it is not the parity disk). How
many blocks must be read and how many written to fully reconstruct the RAID?

(d) How long does the RAID-4 reconstruction take? (again, assume the best possible implementation you can
think of)

4



3. Do I-no-de answer?

In this question, we consider a non-standard Unix file system, which instead of using inodes, instead stores most
information about a file in the directory entry for that file. We call our new system theInode-Free File System,
or IFFS.

(a) Of the following, which are usually found in a standard Unix inode?Circle all that apply:

i. Direct pointers to data blocks

ii. The name of the file

iii. Some statistics about when the file has been accessed, updated, etc.

iv. The inode number of the file’s parent directory

v. The current position of the file pointer

(b) In a standard Unix file system, how manydisk reads would it take to read a single block from the file
/this/path/is/toolong from disk? (you should assume nothing is cached, i.e., everything starts on disk)

(c) Now compare this to the number of reads it would take to read a single block from the same file/this/path/is/toolong
in IFFS. (again assume nothing is cached, i.e., everything starts on disk)

(d) IFFS doesn’t supporthard links. Why do you think so? (explain)

5



4. A Faster File System.

The Berkeley Fast File System was pioneering in its understanding that a file system must be tuned to the
storage system underneath of it. However, it does make some assumptions about how files are accessed in order
to improve performance. In this question, we explore the limits of some of those assumptions.

(a) FFS usescylinder groups in order to group “related” items on disk. What related data items does FFS try
to place in a cylinder group?

(b) Assume we have a workload that accesses files across two different directories repeatedly, e.g., the work-
load reads /dir1/foo1, then /dir2/foo1, then /dir1/foo6, then /dir2/foo15, etc. Why does FFS not perform
particularly well for this workload?

(c) Assume that those two directories in the previous example, /dir1 and /dir2, were created at the nearly the
same time. Design a modified FFS allocation policy that woulddo better than the FFS standard policy.

(d) Now describe a workload that does better under standard FFS than it does with your new file allocation
policy (or demonstrate that your approach is strictly better).

6



5. Consistency: The Hobgoblin of Small Minds.

In this question, we explore issues of on-disk consistency.

(a) You create a new file calledfoo that has a single data block in a directorydir. Assuming an FFS-based file
system, describe all the changes to the on-disk structures of the file system, i.e., which blocks get written
to disk because of this new file creation?

(b) The on-disk state of a file system can be corrupted with an untimely crash. Showone example write
ordering, with a crash labeled at an untimely point, that leads to aninconsistent on-disk state for the
meta-data of the file system. For example, if you are writing blocks A, B, and C to disk (in that order), you
might write down A, crash, B, C to indicate that a crash after Awas written leads to an inconsistency.

(c) Now, showone example write ordering where the file system meta-data is perfectly consistent, butwhere
a crash leads the file to have the wrong contents.

(d) Finally, journaling can be used to solve some of these problems. Describe how dataand meta-data must
be written to the journal and then to their final on-disk locations in order to avoid the two problems you
demonstrated above.

7


