Student ID:

CS-537: Midterm Exam (Spring 2009)
I’min Seattle; You're Taking an Exam

Please Read All Questions Carefully!

There are seven (7) total numbered pages.

Please put your NAME and student ID on THIS page, and JUST YOURstudent ID (but NOT YOUR NAME)
on every other page Why are you doing this? So | can grade the exam anonymouslyp&aticularly important if
you think | have something against you! But of course, | daRfbbably.

Name and Student ID:

Grading Page

Points| Total Possible
Q1 25
Q2 25
Q3 25
Q4 25
Total 100

Student ID:

Student ID:

1. Simple Scheduling, with Overheads.

Assume that jobs are submitted to a system in batches. Asfumher thatsorting on this machine is an
expensive computation, and requires some amount of timelperent sorted; you can estimate the time to sort
NumJobs elements with a functioort(Num.Jobs). Further assume that switching between jobs takes a
fixed amount of time (say, on a context switch, or when one jatsend another begins); we will call this value
Switch. In this question, you will answer some questions aboutdwlieg algorithms given these overheads.

First, assume three jobs arrive, of lengths 30, 20, and 18uwe thatSort(NumJobs) = Num.Jobs x 10,
and thatSwitch = 0.

(a) How long will the system take to compute the schedulerfids3F (Shortest Job First) Policy?
Three jobs means3 x 10 or 30
(b) How long will it take to run the jobs once the schedule hesrbcomputed?
Total run time: 10 + 20 + 30 or 60
(c) Including scheduling and switching overhead, what ésatverage response timéor each job?
First job starts at 30 (end at 40); second starts at 40 (ends &0); third starts at 60 (ends at 90). Thus,
30490460 or 43.33....
(d) Including scheduling and switching overhead, what é&saberage turnaround time for each job?
From above, jobs end at 40, 60, 90; henc%—0 or 63.33....

Now assume that switching is expensive, too; in f&atitch = 10.

(e) Including scheduling and switching overhead, whatésatherage response timéor each job?
Some people assumed the first switch to the job (from the OS) sbyou, others didn't; both were OK
by me. This answer assumes it does cost you. Job 1 starts at 4h@ at 50); Job 2 starts at 60 (ends
at 80); Job 3 starts at 90 (ends at 120). Henc&++% or 63.33....

() Including scheduling and switching overhead, what saterage turnaround time for each job?
As above: 20834120 or 83 33 ...

Now assume that these jobs are complete, and a differenf ggiarrive, of lengths 10, 10, 10, 10, and 10
(five jobs each of length 10). Again assume tRatt(NumJobs) = NumdJobs x 10, and thatSwitch = 0
again.

(g) Assuming SJF and including all overheads, what isstherage response timéor each job?
Sorting time: 50. Thus, response times aré&0, 60, 70, 80, 90. Average is thus70.

(h) Assuming SJF and including all overheads, what isstherage turnaround time for each job?
Completion times: 60, 70, 80, 90, 100. Average is thus:80.

(i) What would a smarter policy be for this system? (How woitifgerform?)

Depends on the metric (for sure), but the key realization heg is any policy that avoids the (useless)
sort is going to make things much faster. So, | was happy with FO, RR, etc.

Student ID:

2. Code, Segments. Code Segments?

This simple question is about segmentation. Segmentatian approach that uses some number of base and
bounds registers to help virtualize memory.

(a) What is a base register for?
It personally hurt my feelings when people would write “the base register is for the base address.”
You can't define a term with the exact same term! The base regisr holds the physical adddress of
the location where a segment was placed in memory and thus al for relocation of the segment in
physical memory.

(b) What type of address is in the base register: physicalirtural?
As above: physical.

(c) What is a bounds register for?

The bounds tells the system the size of the segment (or endiagdress). It is used for protection, to
prevent accesses from escaping the segment and going intcofimer’s address space.

(d) Why do we need more than one base/bounds register pair?
One pair only allows you to relocate the entire address spagevhich uses a great deal of physical
memory (in particular for large and sparse address spaces)More than one pair allows for much
better support of sparse address spaces.

(e) How many segments should the hardware support? (Why?)
At least two (say one for code+heap, the other for the stack)iges the system the ability to support
sparse address spaces. Three could also be useful, as addingeparate one for code allows code to
be shared. More than that could be useful but perhaps beyondie scope of the exam.

Now, assume we have a system with the following setup. Therén® segments supported by the hardware.
Address spaces are small (1KB), and the amount of physicalaneon the system is 16KB. Assume that the
segment-0 base register has the value 1KB, and its bouzé$ (sset to 300 bytes; this segment grows upward.
Assume the segment 1-base register has the value 5KB indtjtautbound is also 300; this segment grows
downward (the negative direction).

Assume we have the following program:

void *ptr = 20;

while (ptr <= 1024) {
int x = (int *) *ptr; // LINE 1. read what is at address 'ptr’
ptr = ptr + 20; /1 LINE 2: increnent 'ptr’ to a new address

() What virtual addresses are generated by this prograbl &E 1 by dereferencingt r ? (assume the
program runs to completion; please just list the addressge@erated by the loads from memory via the
dereferencing opt r ; don’t worry about instruction fetches or the store intdor example)

Starts at virtual address 20; increments by 20 until 1020 (asuming no crash, etc.)

(g) How long will this program run before crashing (due to greentation violation)?
Access to virtual addresses 20, 40, 60, 80, 100, 120, 140,, 18D, 200, 220, 240, 260, 280 all are fine
(14 iterations). Access to 300 exceeds the bounds of segm@mind thus will cause an exception (we
know that the virtual addresses are in the Oth segment becaaghe top bit of these addresses are 0;
virtual addresses between 512-1023 have the top bit set to hichthus are in the 1st segment).

(h) What physical addresses will be generated by derefergpt r before the program crashes?
The above virtual addresses must be added to the seg 0 base istgr (value 1024) to get physical
addresses. Thus, 1044, ..., 1324 will be generated beforashing.

(i) What legal physical addresses could have been gendbgtddreferencingt r , if the programmer had
been more careful to avoid crashing?

If the program skipped the loop iterations that would cause acrash, it would skip the middle part
of the address space which is not mapped and has no legal addees. The last 300 bytes of the AS

Student ID:

are also legal (below 1024 starting at 724), and hence thoseutd have been accessed legally. For
example, if 1020 was accessed, it would be legal and transtaib 5KB minus 4 or 5116 (remember
the stack grows the other way). The first legal address in thisange would be 740 which translates
to 4836. Thus, every virtual address between 4836 and 511@¢lusive) could have been legally
accessed, if the loop skipped over 300 to 720 (which would dlult).

Student ID:

3. Paging and Page Tables.
Assume the following: a 32-bit virtual address space, willk8 page size.

(a) How many bits are in theffset portion of the virtual address?
10 bits (for a 1KB page, you need 10 bits to address each byte).

(b) How many bits are in th&PN portion of the virtual address?
That leaves 22 bits for the VPN (32 bits total - 10 bits of offsg.

Now, let's focus on the page table. Assume epate table entry is 4 bytes in size. Assuminglenear page
table:

(c) How many entries are in the table?
222 entries (one for each virtual page).

(d) What is the total size of the table?
222 x 4 because each entry is 4 bytes in size (as stated in the quenlio2?® is 1MB; hence2?? is 4MB;
hence the total answer is 16MB for the entire page table.

(e) In alive system, how much memory would be occupied by palgles? (what factors affect this?)
16MB times the number of processes. If there are 100 processdor example, this implies 1600MB
of page table space is needed!

Linear page tables are too big. Hence, people came upondgbeifdamulti-level page table, which uses page
directory to point to page-sized chunks of the page table. Assume wetwisuild such a table, with two levels
(as discussed in class). To access such a table, the VPNtiggptwo components: the VPM,4.pi» Which
indexes into the page directory, and the ViBN,.x 4. Which indexes into the page of the page table where
the PTEs are located.

() How many PTEs fit onto a single page in this system?
We know a PTE is 4 bytes in size. Hence, 256 entries fit into on&B page.

(g) How many bits are thus needed in the VIBNk1ndex?
We need 8 bits to tell us which entry we are referring to 28 = 256).

(h) How many bits are needed in the VBN pi,?
Given that the VPN is 22 bits, and subtracting 8 for the Chunkindex, that leaves us 14 bits for the
PageDir.

(i) How much memory is needed for the page directory?
Depends on how big each page directory entry (PDE) is. Assum 4 bytes, we geR'* entries times
4 bytes/entry or 64KB.

Finally, given the following memory allocations, write dovoth (a) how much memory our multi-level page
table consumes and (b) how much memory a linear page tabseiooes:

() Code is located at address 0 and there are 100 4-byteigtisins. The heap starts at page 1 and uses 3
total pages. The stack starts at the other end of the addqrasse,ggrows backward, and uses 3 total pages.

e Multi-level page table size?
Each chunk of the page table covers 256 consecutive pagesnbe the code pages and heap in
this example fit onto the same chunk of the page table. The stlcat the other end of the address
space, needs one too. Hence 2 pages (1KB each) plus the pagectibry (64KB), or 66KB.

e Linear page table size?
The linear page table is always the same regardless of the ugaof pages in the address space.
Hence, 16 MB.

(k) Code is located at address 0 and there are 100 4-byteatisins. The heap starts at page 1 and uses 1000
total pages. The stack starts at the other end, grows badkwamnd uses 1000 total pages.

Student ID:

o Multi-level page table size?
Here we need four pages of the page table to translate the firdt0001 pages of the address space
(four pages of the page table covers 1024 pages) and anotheuf pages to translate the last 1000
pages of the stack. Hence, 8 pages (1KB each) plus the pageedtiory (64KB) gets us to 72KB.

e Linear page table size?
16 MB.

(I) The entire address space (every page) is used by thegzoce

e Multi-level page table size?

If all pages are used, you get the full linear page table (16 MBplus the page directory (64KB).
e Linear page table size?

16 MB.

Student ID:

4. Tracing Virtual Memory.

This question asks you to consider everything that happeassystem on a memory reference. Assume the
following: 32-bit virtual addresses, 4KB page size, a 3eMLB, linear page tables (if it matters), and LRU
replacement policies whenever such a policy might be nebyegither hardware or software. Assume further
that there are only 1024 pages of physical memory availdbl¢his question, you will be running sonest
code and saying what happens when that code is run.

Before the test code is run, though, the following initiatinn code is run once (before testing begins). This
code simply allocateNUM PAGES* PAGE_SI ZE) number of bytes and then sets the first integer on each page
to 0, wherePAGE_S| ZE is 4KB (as above) andUMPAGES is a constant (defined below). Assuma | oc()
returns page-aligned data in this example.

void *orig = nmal |l oc(NUM_PAGES * PACE_SIZE); // allocate NUM PAGES* PAGE_SI ZE byt es
void *ptr = orig;
for (i = 0; i < NUMPACES; i++) {
(int) =ptr = 0; // init first value on each page
ptr += PAGE_SI ZE;
}

The code we are now interested in running, which we will dadltest code, is the following:

ptr = orig;

for (i = 0; i < NUMPACES; i++) {
int x = (int *) *=ptr; // load value pointed to by ptr
ptr += PAGE_SI ZE;

}

For these questions, assume we are only interested in mawfengnces to the malloc'd region throughr
(that is, ignore stores t® and instruction fetches)How many TLB hits, TLB misses, and page faults occur
during the test code when ...

TLB hits TLB misses Page Faults
() NUMPAGES is 167 16 0 0
(b) NUMPAGES is 32? 32 0 0
(C) NUMLPAGES is 20487 0 2048 2048

The workload just loops over some pages accessing each one®en Thus, the second time through the
loop with a small number of pages (less than the TLB size, for>ample) just yields TLB hits. With a
large number of pages, and LRU replacement, nothing we wantiever in the cache or TLB, hence all
misses/page faults.

Assume a memory reference takes roughly tiieand that a disk access takes tifle How long does the test
code take to run (approximately), in terms of M and D, when...

TLB hits TLB misses Page Faults
(d) NUMPAGES is 16? 16M
(e)NUMPAGES is 327 32M
(f) NUMLPAGES is 20487 2048 2M 2048D

A hit means a load to memory which we assume costs M and hencegfTLB hits just cost M. On TLB
misses we need to consult memory twice, once for the page tablminimally) and once for the actual
memory load, hence 2M per TLB miss. Finally, each page faulta@sts us a disk access.

Now assume we change the various replacement policies isytem taVIRU. Given this change;low long
does the test code take to run (approximately), in terms of M and D, when...

TLB hits TLB misses Page Faults
() NUMPAGES is 16? 16M
(h) NUMPAGES is 32? 32M
(i) NUMLPAGES is 20487 32M 2016 2M 1024D

Student ID:

With MRU, the first 31 accesses get lodged in the TLB, and the fat 1023 pages get lodged in memory;
subsequent accesses simply push the most-recently used TeBtry/page out. The next time through the
loop, the first 31 accesses are thus hits, and the first 1023 pagccesses are in memory; everything else are
misses until the last page, which also is a hit (do a small MRUxample if this doesn’t make sense). Thus,
32 TLB hits (the rest misses); 1024 page faults (the rest in maory).

Finally, assume you are to run this code on a new machine thakgow very little about. In fact, you wish to
use the test code tearn how big the TLB is and how much memory is on the given system.

(i) How could you use the test code above to learn these factstahe physical hardware?

Just looking for something simple here. You could basicallyime how long an iteration of the loop lasts. If
it lasts something like NUM_PAGES times memory access time, those are TLB hits; if it lasttwice that,
TLB misses, and thus you can know how big the TLB is. One more lgijump occurs when NUM PAGES
is finally bigger than memory and causes lots of (very slow) gk accesses.

Student ID:

5. Virtual Machine Monitors.

This question is about virtual machine monitors.

@)

(b)

(©)

(d)

(e)

Why do we need virtual machine monitors? (Doesn't the [D&hdy virtualize the hardware?)

Lots of reasons here. Consolidation, need to run different Ses, security, etc.

How do the abstractions presented by a virtual machirlee® Sdiffer from the abstraction presented by
the OS to an application?

The VMM must present a hardware interface to the OS (to trick it into thinking it actually is running
on the hardware. The OS, on the other hand, presents nicer absctions of the machine (like files
and directories instead of a raw disk, for example).

How are the abstractions similar?

They are both virtualizations of the hardware; they both allow sharing while providing some isola-
tion. Other answers are possible.

Why are TLB misses so slow when the OS is running on a VMM ¢dbe)

On a software-managed TLB, the TLB miss traps to the VMM which must then jump to the OS
code to handle the fault; when that code runs and tries to instll a new entry into the TLB, another
trap to the VMM, finally, when the OS tries to return to the user, another trap to the VMM, which

finally returns to user mode and continues the process. A lotfeextra work!

The OS has page table to track virtual-to-physical translations. Does the VMMedea similar structure
per operating system? (if so, why? if not, why not?)

Sure. It needs to track, per OS, where its “physical’ page mago (to which machine pages they
map).

() The OS performs aontext switch to switch between processes. Does the VMM perform a simpera-

(@)

tion? (if so, why? if not, why not?)
Sure, it does. It has more work to do, though, as it has to sauwe/store any privileged registers too.
VMMs sometimes have a hard time managing resources becthey have so little information about what

the OS is doing. Give an example where the decision makinigeo¥tMM is made more difficult because
of its lack of insight into what the OS is doing.

Lots of possible answers here. One good example: OS in theédloop looks no different than an OS
running some useful code, and thus might be fairly scheduletly the VMM, wasting precious CPU
cycles.

10

