PROBLEM 1: BASICS OF SCHEDULING ‘ (page 4)

Scheduling policies can be easily depicted with some graphs. For example,
let's say we run job A for 10 time units, and then run job B for 10 time
units. Our graph of this policy might look like this:

|
CPU |AAAAAAAAAABBBBBBBBBB
|

% 10 20

In this question, you'll show your understanding of scheduling by drawing
a few of these pictures.

(a) Draw a picture of Shortest Job First (SJF) scheduling with three jobs,
A, B, and C, with run times of 5, 10, and 15 time units, respectively.

Make sure to LABEL the x-axis appropriately. m((
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(b) What is the average TURNAROUND TIME for jobs A, B, and C?
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(c) Draw a picture of ROUND-ROBIN SCHEDULING for jobs A, B, and C, which
each run for 6 time units, assuming a 2-time-unit time sllce also assume
that the schedu[er ) takes 1 time unit to make a schedullng decision.

Make sure to LABEL the x-axis appropriately.
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(d) What is the average RESPONSE TIME for round robin for jobs A, B, and C?
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(e) What is the average TURNAROUND TIME for round robin for jobs A, B and C?
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PROBLEM 2: MLFQ (page 5)

Assume you have a multi-level feedback queue (MLFQ) scheduler.
In this question, we'll draw a picture of how it behaves over time.

Unlike the drawings in the previous problem (for SJF and RR), the
y-axis will also be important for these pictures, as it will show
the PRIORITY of the jobs over time.

(a) Assume a 3-level MLFQ (high priority is 2, low priority is 0).
Assume two jobs (A and B), both BATCH jobs (no I/0), each with a
run-time of 1@ time units, and both entering the system at T=0.
Assume the quantum length at the highest priority level is 1,

then 2 at the middle, and 3 for the lowest priority.

Draw a picture of how the scheduler behaves for these jobs.
Make sure to LABEL the x-axis.
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(b) Assume the same scheduling parameters as above. Now the jobs

are different; A and B both are BATCH jobs that each run for 10 time
units (no I/0 again), but this time A enters at T=0 whereas B enters
the system at T=6.

Draw a picture of how the scheduler behaves for these jobs.
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(c) Calculate the RESPONSE TIME and TQBNAROUND TIME (in part b) for Job A
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(d) Calculate the RE§P6NSE TIME and TURNAROUND TIME (in part b) for Job B
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PROBLEM 3: MALLOC AND FREE (page 6)

Assume you have a chunk of memory that you need to manage. When someone
requests a chunk, you take the first available chunk and return it,
starting at the lowest address in the space you are managing (i.e.
a(LOWEST -ADDRESS-FIRST policy, perhaps) The space is managed w1th a
simple free 11 115t when someone returns a chunk, you COALESCE the list,
thus merging smaller allocated chunks back into a bigger free space.

Assuming you have 50 bytes of memory to manage, and that exactly one
allocation has taken place (for 10 bytes), here is what memory would
look like (with spaces in-between every 10 bytes for readability):

HHHHAAAAAA AAAAFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF
(Llow) Addresses of Managed Space Chigh)

In the picture, A means allocated, F means free, and H is a 4-byte
header that is REQUIRED before every allocated chunk.

(a) Assume a;5¢?byte free spaEeE'Draw what it would look like ‘
after these requests: allocate(10), allocate(10), and allocate(10).

/:;/)) MY ABA RAA | ARAAL lt[HA/*(A*HAARH£VIHF(iiHA%ﬂdM\HiM\%\ R THEFFFREE

(b) Assume a'S@ byte free space. Draw what it would look like
after allocatlon requests of allocate(10), allocate(20), and
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(c) Assume a 50-byte free space. Draw what it would look like
after the following requests: x=allocate(1@0), y=allocate(10),
z=dllocate(10), free(y), w=allgga;e(24).
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~(d) Assume now that there is NO COALESCING of free space.

Also assume that instead of allocating via the policy of
LOWEST-ADDRESS-FIRST, you instead use aLQEST FIT pollcy~
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after the f0110w1ng requests. x=allocate(10), y=allocate(10),
z=allocate(10), free(y), free(z), w=allocate(4).
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PROBLEM 4: SEGMENTATION (page 7)

Assume virtual memory hardware that uses segmentation, and divides
the address space in two by using the top bit of the virtual address.
Each segment is thus relocated independently.

What we'll be drawing in this question is what physical memory looks
given some different parameters. We'll also label where a particular
memory reference ends up.

For all questions, assume a virtual address space of size 16 bytes
(yes tiny!) and a physical memory of size 64 bytes. Thus, if we had
a virtual address space placed in physical memory, it might look
like this (with spaces between every 8 physical bytes):

000QFFFF FFFFFFFF FFFFFFFF FFFFFFFF. FFFFFFFF FFFFFFFF FFFFFFFF FFFF1111

In this example, the segment @ base register is @, segment 1 base is
64 (it grows backwards), and both length registers are 4. @'s are
used to record where segment @ is in memory; 1's are for segment 1;
F means free.

(a) What would physical memory look like if we had the following
values instead? (draw a picture below)
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(b) In your picture above \SEECE? which byte of memory is accessed
when the process generates a byte load of v1rtual address 4

(c) What would physical memory look like if we had the following
values instead? (draw a picture below)
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(d) In your picture above, CIRCLE which byte of memory is accessed
when the process generates a byte load of virtual address 14
(or DRAW AN X on the physical-memory address if the access is illegal)

(e) In your picture above, CIRCLE which byte of mémory 1s accessed
when the process generates a byte load of virtual address 4
(or DRAW AN X on the physical-memory address if the access is illegal)
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PROBLEM 5: SIMPLE PAGING (page 8)

Which memory is accessed during the execution of an instruction?
For this question, assume a linear page table, with a 1-byte
page-table entry. Assume an address space of size 128 bytes

with 32-byte pages. Assume a physical memory of size 128 bytes.
The page-table base register is set to physical address 16.

The contents of the page table are:

VPN PFN
0 1
1 Not valid
2 3
3 Not valid

Now, finally assume we have the following instruction, which
loads a SINGLE BYTE from virtual address 70 into register R1:
10: LOAD 70, R1

This instruction resides at virtual address 10 within the ’ ,;fltx'¥1"5’ fetch
address space of the process. e B ,
vh 1077
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(a) Put a BOX around each valid virtual page (and label them) 1% “h/ <: (/ )()’

(b) Put a BOX around the page table (and label it)

Jotfa Fetch
(c) CIRCLE the memory addresses that get referenced during kJ” #Y ‘r. . .
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(d) LABEL these addresses with a NUMBER that indicates the ORDER 7° * ' —
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PROBLEM 6: THE TLB, PAGE FAULTS, ETC. (page 9)

In this question, you will examine virtual memory reference traces.
An dccess can be a TLB hit or a TLB miss; if it is a TLB miss, the
reference can be a page hit (present) or a page fault (not present).

Assume a TLB with 4 entries, and a memory that can hold 8 pages.
Assume the TLB and memory both are empty initially. Finally, assume
LRU replacement is used for both the TLB and memory.

(a) What happens on each access in the following reference trace?
a TLB hit, TLB miss/page hit, or TLB miss/page fault?
(these can be abbreviated H, M, or PF)
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3 PF e
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(b) What happens on each access in the following reference trace?
(write H, M, or PF)
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(c) Now assume a memory that can only hold 3 pages.
What happens on each access in the following reference trace? (H, M, PF)
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PROBLEM 7: MULTI-LEVEL PAGE TABLES (page 10)

In this question, we'll examine a multi-level page table, like that
found in the (optional) homework. The parameters are the same:

- The page size is an unrealistically-small 32 bytes.

- The virtual address space for the process in question
(assume there is only one) is 1024 pages, or 32 KB.

- Physical memory consists of 128 pages.

Thus, a virtual address needs 15 bits, 5 of which are the offset.
A physical address requires 12 bits, also with 5 as the offset.

The system assumes a multi-level page table. Thus, the upper five bits of a

virtual address are used to index into a page directory; the page directory entry

(PDE), if valid, points to a page of the page table. Each page table page
holds 32 page-table entries (PTEs). Each PTE, if valid, holds the desired
translation (physical frame number, or PFN) of the virtual page in question.

The format of a PTE 1is thus:
VALID | W®HWZ PFN6 ... PFNO

and is thus 8 bits or 1 byte.

The format of a PDE is essentially identical:
VALID | Pii7 PT6 ... PTO

For this question, assume the PDBR (page-directory base register) is 73.
On the next page is the physical memory dump, where your answers will go.

(a) CIRCLE which bytes are accessed during a load from virtual address ©x3009.
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(b) Put SQUARES around bytes accessed during a load from @x7042.
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PROBLEM 8: VIRTUAL MACHINE MONITORS (page 13)

Ah, virtual machine monitors. You use them, and now Chopefully)
you understand them (a little bit).

Assume in this question some hardware that has a software-managed
TLB.

Assume we are running a virtual machine monitor (VMM), an operating
system (0S) on top of the VMM, and a user process running on the 0S.

Draw a picture of the control flow during a(TLB miss generated
by the user process. The picture should reflect a time-line of
what happens during this miss, including when the user process,
0S, and VMM run, and what they do when they run.
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