PROBLEM 1: BASICS OF SCHEDULING ‘ (page 4)

Scheduling policies can be easily depicted with some graphs. For example,
let's say we run job A for 10 time units, and then run job B for 10 time
units. Our graph of this policy might look like this:

|
CPU |AAAAAAAAAABBBBBBBBBB
|

% 10 20

In this question, you'll show your understanding of scheduling by drawing
a few of these pictures.

(a) Draw a picture of Shortest Job First (SJF) scheduling with three jobs,
A, B, and C, with run times of 5, 10, and 15 time units, respectively.

Make sure to LABEL the x-axis appropriately. m((
“~ " \ \ '.-/
¢ b

l v o o - o A P -~ “~ ~
cru 14 AAAR | BB BBRB[BRBRB | CCccec ClCoe | COrCe
|

S i 15 20 2¢ 2o
(b) What is the average TURNAROUND TIME for jobs A, B, and C?
tarnarond 7§ (Timéend = Time submit) 5 +16+30 /50
.Z;) = (‘ (*) 'E‘% - o= (’ S’ = L:’:) Z&., = ("Z o (—ﬂ/ [Q(.j’, = —‘ﬁf'_?;;%% ” | :z

(c) Draw a picture of ROUND-ROBIN SCHEDULING for jobs A, B, and C, which
each run for 6 time units, assuming a 2-time-unit time sllce also assume
that the schedu[er) takes 1 time unit to make a schedullng decision.

Make sure to LABEL the x-axis appropriately.

Ker Qﬁg Re 1 J
I \,L 3 j | { V, | \‘!"
CPU I‘S‘Z!\-A(Q_}RH lsw [SAR s‘m)/ ScC| S AA /\:m/ S(_'Cv/
I__ ; S t .

: | .
3 ¢ 9 1z IS s 2 2 27

(d) What is the average RESPONSE TIME for round robin for jobs A, B, and C?

; &\’)Q“!\(‘ (“}!({\F‘ (/(“(“ m‘f:”!""j\/h ul;)

l!/lc,w

Ri=l Kg®Y K> ¢ Rave = — — ? //

(e) What is the average TURNAROUND TIME for round robin for jobs A, B and C?

21 Tp= 24 T, =2%

PROBLEM 2: MLFQ (page 5)

Assume you have a multi-level feedback queue (MLFQ) scheduler.
In this question, we'll draw a picture of how it behaves over time.

Unlike the drawings in the previous problem (for SJF and RR), the
y-axis will also be important for these pictures, as it will show
the PRIORITY of the jobs over time.

(a) Assume a 3-level MLFQ (high priority is 2, low priority is 0).
Assume two jobs (A and B), both BATCH jobs (no I/0), each with a
run-time of 1@ time units, and both entering the system at T=0.
Assume the quantum length at the highest priority level is 1,

then 2 at the middle, and 3 for the lowest priority.

Draw a picture of how the scheduler behaves for these jobs.
Make sure to LABEL the x-axis.

2 1pR] |
Priority 1 : AP (BB
7] E N AR R ' AiA (P88 | AR
2 1. € 1 a5 (& 20

(b) Assume the same scheduling parameters as above. Now the jobs

are different; A and B both are BATCH jobs that each run for 10 time
units (no I/0 again), but this time A enters at T=0 whereas B enters
the system at T=6.

Draw a picture of how the scheduler behaves for these jobs.

Make sure to LABEL the x-axis. . : » W\g
N .'l'» > A t
2 :."\ A ~ B
Priority 14 AA .&;' B8
I
0 | AAA BBB | WAL EBR [AB
I =
l ‘ 12 o IA

(c) Calculate the RESPONSE TIME and TQBNAROUND TIME (in part b) for Job A

Ra=(0) T, ()

(d) Calculate the RE§P6NSE TIME and TURNAROUND TIME (in part b) for Job B

2N\ ™
P"i.?, - Q / (1% » 4 (

/
4/'

PROBLEM 3: MALLOC AND FREE (page 6)

Assume you have a chunk of memory that you need to manage. When someone
requests a chunk, you take the first available chunk and return it,
starting at the lowest address in the space you are managing (i.e.
a(LOWEST -ADDRESS-FIRST policy, perhaps) The space is managed w1th a
simple free 11 115t when someone returns a chunk, you COALESCE the list,
thus merging smaller allocated chunks back into a bigger free space.

Assuming you have 50 bytes of memory to manage, and that exactly one
allocation has taken place (for 10 bytes), here is what memory would
look like (with spaces in-between every 10 bytes for readability):

HHHHAAAAAA AAAAFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF
(Llow) Addresses of Managed Space Chigh)

In the picture, A means allocated, F means free, and H is a 4-byte
header that is REQUIRED before every allocated chunk.

(a) Assume a;5¢?byte free spaEeE'Draw what it would look like ‘
after these requests: allocate(10), allocate(10), and allocate(10).

/:;/)) MY ABA RAA | ARAAL lt[HA/*(A*HAARH£VIHF(iiHA%ﬂdM\HiM\%\ R THEFFFREE

(b) Assume a'S@ byte free space. Draw what it would look like
after allocatlon requests of allocate(10), allocate(20), and

allocate(Z@) == I L1 -
e | | aeadd ARA TR T
7N ~$xk Hit HFAAA A é&{ fﬁfkf\ HHHH AR/ A - - A (ArerA A AR (

K L
* a] * . e . i o

1o 2
(c) Assume a 50-byte free space. Draw what it would look like
after the following requests: x=allocate(1@0), y=allocate(10),
z=dllocate(10), free(y), w=allgga;e(24).

/./**x‘ ' T e L

Y) HusH AARAAA {hdﬁﬂ\\ \"’

\7/,/ | I ,; = L Sl b ! vea g "('_/”:
~(d) Assume now that there is NO COALESCING of free space.

Also assume that instead of allocating via the policy of
LOWEST-ADDRESS-FIRST, you instead use aLQEST FIT pollcy~

L

fﬁ>HH/ HH ¢ mHﬁAAA\\H(-~ IF

N S E—

after the f0110w1ng requests. x=allocate(10), y=allocate(10),
z=allocate(10), free(y), free(z), w=allocate(4).

...... nmren lreeee PE EEE FE HEHHAAAA
FEEFRFEFF (((F PFFPFEFR [r L 7

(3) puuananta | marEeeere |FrRPRREEPR (PRREPPEPRAFETTT
/ P — “‘“‘“;;:i:;i;;;;} s e T eens
A

PROBLEM 4: SEGMENTATION (page 7)

Assume virtual memory hardware that uses segmentation, and divides
the address space in two by using the top bit of the virtual address.
Each segment is thus relocated independently.

What we'll be drawing in this question is what physical memory looks
given some different parameters. We'll also label where a particular
memory reference ends up.

For all questions, assume a virtual address space of size 16 bytes
(yes tiny!) and a physical memory of size 64 bytes. Thus, if we had
a virtual address space placed in physical memory, it might look
like this (with spaces between every 8 physical bytes):

000QFFFF FFFFFFFF FFFFFFFF FFFFFFFF. FFFFFFFF FFFFFFFF FFFFFFFF FFFF1111

In this example, the segment @ base register is @, segment 1 base is
64 (it grows backwards), and both length registers are 4. @'s are
used to record where segment @ is in memory; 1's are for segment 1;
F means free.

(a) What would physical memory look like if we had the following
values instead? (draw a picture below)

seg® (base) : 12 segd (limit) : 6

segl (base) : 10 segl ggimit) : 3 _)‘/»\"‘L‘L(l s hert
= A,_\ 8¢ = (L s
FEFFFFP I |4 BF 0000 rf’C SRR 1 R
I seq, i sl
0 7 & 12- s le (T Z5 < e rest

(b) In your picture above \SEECE? which byte of memory is accessed
when the process generates a byte load of v1rtual address 4

(c) What would physical memory look like if we had the following
values instead? (draw a picture below)

segd (base) : 40 segd (limit) : 4 Lk §€9¢,.I
segl (base) : 50 segl (limit) : 4 J6 - 1 . ¥
F. F|F..F | +. -¥‘} ?Mv..\i) =... /(ﬁt((¢&

o = '8 15 i 22 2\ 3) %2 39 Yo

(d) In your picture above, CIRCLE which byte of memory is accessed
when the process generates a byte load of virtual address 14
(or DRAW AN X on the physical-memory address if the access is illegal)

(e) In your picture above, CIRCLE which byte of mémory 1s accessed
when the process generates a byte load of virtual address 4
(or DRAW AN X on the physical-memory address if the access is illegal)

, .:
Shys gage 4+

AT
D <
N .)

LA At
| 1'% %)

PROBLEM 5: SIMPLE PAGING (page 8)

Which memory is accessed during the execution of an instruction?
For this question, assume a linear page table, with a 1-byte
page-table entry. Assume an address space of size 128 bytes

with 32-byte pages. Assume a physical memory of size 128 bytes.
The page-table base register is set to physical address 16.

The contents of the page table are:

VPN PFN
0 1
1 Not valid
2 3
3 Not valid

Now, finally assume we have the following instruction, which
loads a SINGLE BYTE from virtual address 70 into register R1:
10: LOAD 70, R1

This instruction resides at virtual address 10 within the ’ ,;fltx'¥1"5’ fetch
address space of the process. e B ,
vh 1077
In the diagram of physical memory below: Hravslate {k
W\r adihg
(a) Put a BOX around each valid virtual page (and label them) 1% “h/ <: (/)()’

(b) Put a BOX around the page table (and label it)

Jotfa Fetch
(c) CIRCLE the memory addresses that get referenced during kJ” #Y ‘r. . .
the execution of the instruction, including both instruction od Vi '{wﬁwi ‘

'€

fetch and data access (there is no TLB). /lnlkc*y Ph: 102
o1 I ;

' e N~
(d) LABEL these addresses with a NUMBER that indicates the ORDER 7° * ' —

in which various physical addresses geﬁ”referenced, § entres edcl 1 L)y]f
page table * bage s |6, 1 entri€l ¢ 1 s
Physical Memory /)
1 o~ 3/ 4 5 6 7

&L 1) 9 1@(\ 1Y 12 13 14 15
(16~ 17 (18~ 19} 20 21 22 23
g"‘zr‘*’ 25 26 - 27,_ 28 29 30 31

732, 33, 34*qr . 36y 37 38:. 39 VPN = PEN

40, 4Ly (42 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87
88 89 % 91 92 93 94(y) 95
%, 97%s 98, 99y 100, 101, (102, 103 | e
104 105 106 107 108 109 Ilo 111 [. oy =) [TV
112 113 114 115 116 117 118 119 # &

120 121 122 123 124 125 126 127

PROBLEM 6: THE TLB, PAGE FAULTS, ETC. (page 9)

In this question, you will examine virtual memory reference traces.
An dccess can be a TLB hit or a TLB miss; if it is a TLB miss, the
reference can be a page hit (present) or a page fault (not present).

Assume a TLB with 4 entries, and a memory that can hold 8 pages.
Assume the TLB and memory both are empty initially. Finally, assume
LRU replacement is used for both the TLB and memory.

(a) What happens on each access in the following reference trace?
a TLB hit, TLB miss/page hit, or TLB miss/page fault?
(these can be abbreviated H, M, or PF)

0 PF
1 vF
2 ‘P i,?
3 PF e
—QA@ {‘ q-(:‘\{; ’\"Ci v l\"f)ﬁ) \')\/
; ;; all are W e
3 H y And W 9 ")‘t'fc] ‘\r»\ "TLAS

(b) What happens on each access in the following reference trace?
(write H, M, or PF)

‘ U sk asae 9 08 g 1V
L M Ars e, PGS
2 M X VYNE ¥ OY \/ P bt TLB

et b '9 C"’@“’@z; =) TR wste

(c) Now assume a memory that can only hold 3 pages.
What happens on each access in the following reference trace? (H, M, PF)

0 "_)\"fi‘,
1 PF

LR —= 0O | 2

TLR 49 ewouy) T hold

S gnappings => e T 3 i 84€S

PROBLEM 7: MULTI-LEVEL PAGE TABLES (page 10)

In this question, we'll examine a multi-level page table, like that
found in the (optional) homework. The parameters are the same:

- The page size is an unrealistically-small 32 bytes.

- The virtual address space for the process in question
(assume there is only one) is 1024 pages, or 32 KB.

- Physical memory consists of 128 pages.

Thus, a virtual address needs 15 bits, 5 of which are the offset.
A physical address requires 12 bits, also with 5 as the offset.

The system assumes a multi-level page table. Thus, the upper five bits of a

virtual address are used to index into a page directory; the page directory entry

(PDE), if valid, points to a page of the page table. Each page table page
holds 32 page-table entries (PTEs). Each PTE, if valid, holds the desired
translation (physical frame number, or PFN) of the virtual page in question.

The format of a PTE 1is thus:
VALID | W®HWZ PFN6 ... PFNO

and is thus 8 bits or 1 byte.

The format of a PDE is essentially identical:
VALID | Pii7 PT6 ... PTO

For this question, assume the PDBR (page-directory base register) is 73.
On the next page is the physical memory dump, where your answers will go.

(a) CIRCLE which bytes are accessed during a load from virtual address ©x3009.

uA ﬁ"““}‘vijovom(”ﬁgilfwwamﬁﬂ»uwp g\\thlmd(y 0
. o
-) Pag€ .
Page Dirindex = 12 > Ox b3 g,;, gt -% % €3 5 page 103
void A%O”‘LU/ Ry ’[d'PPIH) ’MA f(ﬂuD])‘

(b) Put SQUARES around bytes accessed during a load from @x7042.

(ilﬁf/ﬁ(?C((/CODIC
ot se F

cin P a ﬂ)C'

I’r\
6 1.

i)

\ .\)u]:\"v.’v." ‘PM\\. /\L'\G)If

b = t(\ l

page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
bage

]

\)yiﬁ)ﬂ: ©

Lo

00 00 00 00

le 02
00
00 00

CoOoOdaUd WNEFEO
~ o
Hh @
~
Hh

le
i (o
00
01
7f
1lc
18
00

1L \ IS (')k

(«)

7f 7€ aO_[_7f
1E TEYTE

£
10
0f
00
14
£
Oe
17
00
11
lc
00
00
00
10
le
00
7f
07
Oa
£
1f
00
1f
00
00
09
£
TE
Oe
of

0 00

7£

P qk*)(‘

A

’3\2”

(,

Y,

, 2
'S

(ﬂ))

page
page
page
page
page
page
page
page

page

((page
“page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
pag‘e

' page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

1
14

15

r 1
0Ob 15
0d 14
TE 1€
7€ 7
00 00
lc 00
07 08
00 00
Oe 1la

2 d2 97

05 04 1e
17 Oa
00 00
00 00
12 08
08 16
1b 04
1d 17
7f 7f£
00 00
13 01
00 00
00 00
0f 13
7f 7
7f fe
7f 7
Oe Oe
00 00
00 00
10 13
14 19
02 1d
10 1b
00 00
le 16
00 00
02 13
04 08
17 09
7f 7
09 04
le 03
7f 7f
02 05
1d 1d
18 1la
00 17
00 00
7f 7f
7f £
00 00
1f 7f
la Ob
7f £
17 05
1d 0f
00 00
O0a 06
14 13
02 1c
00 00
0d 00
Oe Oa

? i &

> ?
14 01 18
12 19 15
1f 7f 7€
1£ el 7f£
00 00 00
07 00 15
07 0b 01
00 00 00
lc 16 16
96 d9 7f

le 03 0b 08

15 19 od
00 00 00
00 00 00
la 07 06
13 0c 15
13 1d 09
02 16 1la
Tf 7f 7£
00 00 00
Oc 19 1le
00 00 00
00 00 00
le 1c 10
£ 7f £
7f 7f 7f
7f 7f £
0f 02 19
00 00 00
00 00 00
10 16 10
11 08 06
09 le 1la
02 16 12
00 00 00
02 00 15
00 00 00
0f 07 12
la 04 07
16 05 09
£ 7f 7£
04 Ob 07
1b 13 07
& TE IE
13 10 12
17 13 18
18 16 12
11 13 1b
00 00 00
7f 1f £
7 7f£ £
00 00 00
7f 7f£ £
le 1d 0Oa
95 7f 7f
Oe 16 17
11 09 14
00 00 00
14 14 03
00 19 Of
05 19 16
00 00 00
16 06 08
la 03 14

17 Oa
14 08
91 df

00 00
07 02
14 17
00 00
12 07

04 00

04 18

10,

il

0
\ f\\\\ﬂ

i>

Latet ‘\

o 11
1d 02
14 17
7f 7f£
90 7f
00 00
00 15
04 05
00 00
0f 00
e8 9d

b 13 13

Oc Qe
00 00
00 00
01 Qe
08 03
16 17
09 18
7f bd
00 00
05 01
00 00
00 00
16 09
7f £
7f 7f
7f 1%
04 1la
00 00
00 00
09 13
lc 1d
13 02
le le
00 00
17 07
00 00
12 12
11 Oc
1b 1c
7f 7€
04 18
03 le
7f 7f
06 17
1b 06
07 19
03 00
00 00
£ £
7f 7f
00 00
7€ 1£
02 05
7€ 7f£
06 11
00 1b
00 00
07 10
lc Oa
03 08
00 00
10 09
08 13

]

(4

{

L0
13

(&)

01 12
7f 7f
03 1le
0b 17
£ 7f
17 16
14 12
11 07
19 10
00 00
f 7€
£ "IE
00 00
7f 7f£
12 02
7€ 1£
15 04
00 09
00 00
Ob 05
15 09
03 09
00 00
11 19
15 02

7£

7f

25 20 1 2% %
11 le Oc 02 02
lc 1c 05 10 00
7f 7f 1f 7f Tf
7f 7f cl1 Tf Tf
00 00 00 00 00
16 11 17 02 Of
08 07 16 Oe 0d
00 00 00 00 oo

> 10 1c 17 -
da eb bll?{ c3
0506 19 Oa-

11 O0e 06 10 15
00 00 00 00 00
00 00 00 00 00
00 1c 09 05 Qe
02 09 03 1c 1lc
17 1b 10 12 1le
09 05 10 04 02
7f 7f£ 7£ 7f £
00 00 00 00 00
16 le 03 0d 03
00 00 00 00 00
00 00 00 00 OO
03 18 01 04 1d
7f 7f 7£ 7f 7f
7€ £ 7£ 7£ 1£
7f ea 7f 7f 7f
Ob 1d 16 16 10
00 00 00 00 00
00 00 00 00 00
14 00 15 1c Oc
14 18 0d 02 1le
13 18 08 0f 16
13 09 16 04 18
00 00 00 00 00
14 1d 1b 04 03
00 00 00 00 00
11 11 15 01 0Ob
15 13 10 18 Oe
19 Oc Oe 19 0Oa
7f 7f£ 7f£ 7f £
02 Oc 04 15 19
Oc 04 06 08 12
7€ 7f 7f£ 7f If
11 02 04 10 10
12 02 11 1d 03
Oa 1b 14 02 13
05 16 09 0f 1a
00 00 00 00 00
e6 7f 7f 1f £
7€ 7f 7€ 1£ 7f
00 00 00 00 00
db 7f 7f 7f 7f
08 07 0f 01 1d
7f 7£ £ 7£ £
lc 1le 02 05 1d
0f Ob 09 18 15
00 00 00 00 00
12 05 1le 11 10
18 04 1c 1d 1le
0d 1b 11 00 1le
00 00 00 00 00
02 Oe 18 1c 06
17 1b 03 Oc 18

PROBLEM 8: VIRTUAL MACHINE MONITORS (page 13)

Ah, virtual machine monitors. You use them, and now Chopefully)
you understand them (a little bit).

Assume in this question some hardware that has a software-managed
TLB.

Assume we are running a virtual machine monitor (VMM), an operating
system (0S) on top of the VMM, and a user process running on the 0S.

Draw a picture of the control flow during a(TLB miss generated
by the user process. The picture should reflect a time-line of
what happens during this miss, including when the user process,
0S, and VMM run, and what they do when they run.

;\\ &‘s(4 Qp" :[;ttll’j\

&< ' , - T B

Wteoal sl
4

v M\

T™wY

mi $3

lravd(e

Jer—o
{ (‘\,)

! ac hally

g,%"“" "'\'
g

