537 Midterm Exam,
0ld School Style

"Drawing Pretty Pictures”

Name:

This exam contains 13 old-school pages.




DRAWING PRETTY PICTURES (page 2)

In Kindergarten, most of you spent a lot of time drawing and coloring.
Those were the days! When school was easy, and your biggest concern was
whether you forgot to bring your lunch, and how to tie your shoes. Hint:
use the Bunny-knot method -- it is easier. How times have changed, with
virtual page tables, context switches, and virtual machines cluttering
your brains. '

In this exam, we'll reconnect to the days of your youth by remembering
that in 0S ciass, you too can draw pictures. In fact, almost all answers

in this exam are pictorial in nature; all you have to do is know what
picture to draw.

Good luck!

Answers are accepted in pencil, pen, and (of course) crayon.




GRADING PAGE

(page 3)




PROBLEM 1: BASICS OF SCHEDULING (page 4)

Scheduling policies can be easily depicted with some graphs. For example,
let's say we run job A for 1@ time units, and then run job B for 10 time
units. Our graph of this policy might look like this:

| .
CPU ;AAAAAAAAAABBBBBBBBBB

0 10 20

In this question, you'll show your understanding of scheduling by drawing
a few of these pictures.

(a) Draw a picture of Shortest Job First (SJF) scheduling with three jobs,
A, B, and C, with run times of 5, 10, and 15 time units, respectively.

Make sure to LABEL the x-axis appropriately.
l

CPU {

(b) What is the average TURNAROUND TIME for jobs A, B, and C?

(c) Draw a picture of ROUND-ROBIN SCHEDULING for jobs A, B, and_C, which
each run for 6 time units, assuming a 2-time-unit time slice; also assume
that the scheduler (S) takes 1 time unit to make a scheduling decision.

Make sure to LABEL the x-axis appropriately.

I
CPU {

(d) What is the average RESPONSE TIME for round robin for jobs A, B, and (C?

(e) What is the average TURNAROUND TIME for round robin for jobs A, B, and C?




PROBLEM 2: MLFQ (page 5)

Assume you have a multi-level feedback queue (MLFQ) scheduler.
In this question, we'll draw a picture of how it behaves over time.

Unlike the drawings in the previous problem (for SJF and RR), the
y-axis will also be imgortant for these pictures, as it will show
the PRIORITY of the jo

(a) Assume a 3-level MLFQ (Chigh priority is 2, low priority is 0).
Assume two jobs (A and B), both BATCH jobs (no I/0), each with a
run-time of 10 time units, and both entering the system at T=0.
Assume the quantum length at the highest priority level is 1,

then 2 at the middle, and 3 for the lowest priority.

s over time.

Draw a picture of how the scheduler behaves for these jobs.
Make sure to LABEL the x-axis.

.
Priority 1
0

(b) Assume the same scheduling parameters as above. Now the jobs
are different; A and B both are BATCH jobs that each run for 10 time
units (no I/0 again), but this time A enters at T=0 whereas B enters
the system at T=6.

Draw a picture of how the scheduler behaves for these jobs.
Make sure to LABEL the x-axis.

2

I

I

Priority 1 }
o |

l

(c) Calculate the RESPONSE TIME and TURNAROUND TIME (in part b) for Job A

(d) Calculate the RESPONSE TIME and TURNAROUND TIME (in part b) for Job B




PROBLEM 3: MALLOC AND FREE (page 6)

Assume you have a chunk of memory that you need to manage. When someone
requests a chunk, you take the first available chunk and return it,
starting at the lowest address in the space you are managing (i.e.,

a LOWEST-ADDRESS-FIRST policy, perhaps). The space is managed with a
simple free list; when someone returns a chunk, you COALESCE the list,
thus merging smaller allocated chunks back into a bigger free space.

Assuming you have 50 bytes of memorg to manage, and that exactly one
allocation has taken place (for 10 bytes), here is what memory would
look like (with spaces in-between every 10 bytes for readability):

HHHHAAAAAA AAAAFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF
(low) Addresses of Managed Space Chigh)

In the picture, A means allocated, F means free, and H is a 4-byte
header that is REQUIRED before every allocated chunk.

(a) Assume a 50-byte free space. Draw what it would look 1like
after these requests: allocate(10), allocate(10), and allocate(1@).

(b) Assume a 50-byte free space. Draw what it would look like
after allocation requests of allocate(1@), allocate(20), and
allocate(20).

(c) Assume a 50-byte free space. Draw what it would look like
after the following requests: x=allocate(10), y=allocate(10),
z=allocate(10), free(y), w=allocate(24).

(d) Assume now that there is NO COALESCING of free space.
Also assume that instead of allocating via the policy of
LOWEST-ADDRESS-FIRST, you instead use a BEST-FIT policy.
Assume a 5®—b{te.Free space. Draw what it would look l1ike
after the following requests: x=allocate(10), y=allocate(10),
z=allocate(10@), free(y), free(z), w=allocate(4g.




PROBLEM 4: SEGMENTATION (page 7)

Assume virtual memory hardware that uses segmentation, and divides
the address space in two by using the top bit of the virtual address.
Each segment is thus relocated independently.

What we'll be drawing in this question is what physical memory looks
given some different parameters. We'll also label where a particular
memory reference ends up.

For all questions, assume_a virtual address space of size 16 bytes
(yes tln{!) and a physical memory of size 64 bytes. Thus, if we had
a virtual address space placed in physical memorg, it might look
like this (with spaces between every 8 physical bytes):

Q0QOFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF1111

In this example, the segment @ base register is @, segment 1 base 1is
64 (it grows backwards), and both length registers are 4. 0's are
used to record where segment @ is in memory; 1's are for segment 1;
F means free.

(a) What would physical memory look like if we had the following
values instead? (draw a picture below)

segd (base) : 12 segd (limit) : ©6
segl gbase% : 10 segl glimit% : 3

(b) In your picture above, CIRCLE which byte of memory is accessed
when the process generates a_byte load of virtual address 4
(or DRAW AN X on the physical-memory address if the access is illegal)

(c) What would physical memory look like if we had the following
values instead? (draw a picture below)

segd gbase% 1 40 segd glimit% 1 4
segl (base) : 50 segl (limit) : 4

(d) In your picture above, CIRCLE which byte of memory is accessed
when the process generates a byte load of virtual address 14
(or DRAW AN X on the physical-memory address if the access is illegal)

(&) In your picture above, CIRCLE which byte of memory is accessed
when the process generates a_byte load of virtual address 4
(or DRAW AN X on the physical-memory address if the access is illegal)




PROBLEM 5: SIMPLE PAGING (page 8)

Which memory is accessed during the execution of an instruction?
For this question, assume a linear page table, with a l-byte
page-table entry. Assume an address space of size 128 bytes

with 32-byte pages. Assume a physical memory of size 128 bytes.
The page-table base register is set to physical address 16.

The contents of the page table are: :

VPN PFN
0 1
1 Not valid
2 3
3 Not valid

Now, finally assume we have the following instruction, which

loads a SINGLE BYTE from virtual address 7@ into register R1:
10: LOAD 70, R1

This instruction resides at virtual address 10 within the

address space of the process.

In the diagram of physical memory below:
(a) Put a BOX around each valid virtual page (Cand label them)
(b) Put a BOX around the page table (and label it)

(c) CIRCLE the memory addresses that get referenced during
the execution of the instruction, including both instruction
fetch and data access (there is no TLB).

(d) LABEL these addresses with a NUMBER that indicates the ORDER
in which various physical addresses get referenced.

Physical Memory

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 - 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 6l 62 63
64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87
88 89 20 91 92 93 94 95
96 97 98 99 100 101 102 103
104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127




PROBLEM 6: THE TLB, PAGE FAULTS, ETC. (page 9)

In this question, you will examine virtual memory reference traces.
An access can be a TLB hit or a TLB miss; if it is a TLB miss, the
reference can be a page hit (present) or a page fault (not present).

Assume a TLB with 4 entries, and a memory that can hold 8 pages.
Assume the TLB and memory both are emptg initially. Finally, assume
LRU replacement is used for both the TLB and memory.

(a) What happens on each access in the_followin% reference trace?
a TLB hit, TLB miss/page hit, or TLB miss/page fault?
(these can be abbreviated H, M, or PF)

S

b) What happens on each access in the following reference trace?
write H, M, or PF)

c) Now assume a memory that can only hold 3 pages.
hat happens on each access in the following reference trace? (H, M, PF)

PNRPWOWRONFO® =M DWNRPORAWNRFRE MY WNFPOWNEF




PROBLEM 7: MULTI-LEVEL PAGE TABLES (page 10)

In this question, we'll examine a multi-level page table, like that
found in the (optional) homework. The parameters are the same:

- The page size is an unrealistically-small 32 bytes.

- The virtual address space for the process in question
(assume there is only one) is 1024 pages, or 32 KB.

- Physical memory consists of 128 pages.

Thus, a virtual address needs 15 bits, 5 of which are the offset.
A physical address requires 12 bits, also with 5 as the offset.

The system assumes a multi-level page table. Thus, the upper five bits of a
virtual address are used to index into a page directory; the page directory entry
(PDE), if valid, €oints to a page of the page table. Each page table page

holds 32 page-table entries (PTEs). Each PTE, if valid, holds the desired
translation (physical frame number, or PFN) of the virtual page in question.

The format of a PTE is thus:
VALID | PFN7 PFN6 ... PFNO

and is thus 8 bits or 1 byte.

The format of a PDE is essentially identical:
VALID | PT7 PT6 ... PTO

For this question, assume the PDBR (page-directory base register) is 73.
On the next page is the physical memory dump, where your answers will geo.

(a) CIRCLE which bytes are daccessed during a load from virtual address 0x3009.

(b) Put SQUARES around bytes accessed during a load from 0x7042.




page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page

W ~1 oYU WO




page
page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page
bage
page
page
page
page
page
page
bage
page
page
page
page
page
page
page
page
page
page
page
page
page
page
rage
bage
page
page
page




PROBLEM 8: VIRTUAL MACHINE MONITORS (page 13)

Ah, virtual machine monitors. You use them, and now Chopefully)
you understand them (a little bit).

éfgume in this question some hardware that has a software-managed

Assume we are runnin% a virtual machine monitor (VMM), an operating
system (0S) on top of the VMM, and a user process running on the 0

Draw a picture of the control flow during a TLB miss generated
bK the user process. The picture should reflect a time-line of
what happens during this miss, including when the user process,
0S, and VMM run, and what they do when they run.




