CS-537: Final (Spring 2016)
“More” Fun With Operating Systems

Please Read All Questions Carefully!

There are fourteen (14) total numbered pages, with fourteen (9) questions.

Please put your FULL NAME (mandatory) on THIS page only.

SoLuTioN S

Name:




Grading Page

Points

Total Possible




Directions

“Less is more.” —Ludwig Mies van der Rohe

This question deals with the topic of more. You always want more, don’t you? Well, now is your one last chance to
explore the concept of “more” in operating systems, on this very exam! So you're lucky in this way.

Specifically, each question will deal with adding more of something to a system and figuring out the repercussions.
For example, we might need to figure out how to handle really large files, or what happens when you have a lot of
memory, or how fo build really big RAID arrays, or what happens when an operation in a network file system takes a

really long time.
Please read each question carefully.

Exam-taking strategy should be: easiest-problem-first. This scheduling discipline will ensure you finish as much of
the exam as possible, and also builds your confidence. Don’t get stuck working on one hard problem.

Do note that some problems are worth more than others. Specifically, two longer problems about SSDs and RAIDs
are worth 20, while other problems are each worth 10. The easy way to remember this is that each page is worth 10

points (and two questions are two-pages long).

Good luck! And remember, as old Ludwig told us above, more isn’t always better, especially when it comes to
answers. Keep them short and sweet!




. Berkeley Fast File System

The Berkeley Fast File System (FFS) was one of the first file systems that treated the disk like a disk and thus improved performance through
spatial locality. It also has a “large file exception” and thus is a perfect candidate for a question on this exam about “more”.

a) Before delving into this exception, let’s first do some basics. What on-disk structures does FFS use to track allocation of inodes and data
blocks?
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c¢) Draw a picture of the file system layout of FFS. How is it different than other simple file systems we’ve studied, such as the Very Simple

File System (VSFS)? ~
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b) Why was this an improvement over the classic Unix file system?
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d) FFS tries to spread large files out across the disk, by splitting them into chunks and putting each chunk in a different part of the disk.
Why does FFS do this for large files?
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e) Assuming that a disk transfers at a peak rate of 100 MB/s, and that a seek and rotation take, on average, 20 milliseconds. How big should
each chunk of a large file be, so as to achieve 75% of peak transfer rate for large files when they are accessed sequentially?
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2. Files That Are Large
Most file systems support pretty large files. In this question, we’ll see how big of a file various file formats can support.
Assume, for all questions below, that file-system blocks are 4KB.

a) Assume you have a really simple file system, directfs, where each inode only has 10 direct pointers, each of which can point to a single
file block. Direct pointers are 32 bits in size (4 bytes). What is the maximum file size for directfs?
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b) Assume a file system, called extentfs, has a construct called an extent. Extents have a pointer (base address) and a length (in blocks).
Assume the length field is 8 bits (1 byte). Assuming that an inode has exactly one extent. What is the maximum file size for extentfs?
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¢) A new file system uses direct pointers but also adds indirect pointers and double-indirect pointers; we call the indirectfs. Specifically, an
inode within indirectfs has 1 direct pointer, 1 indirect pointer, and 1 double-indirect pointer field. Pointers, as before, are 4 bytes in size.
What is the maximum file size for indirectfs? (it’s OK just to show an equation here instead of the actual numeric result)
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d) A compact file system, called (can you guess it?) compactfs, tries to save as much space as possible within the inode. Thus, to point to
files, it stores only a single pointer to the first block of the file. However, blocks within compactfs store 4KB of user data and a next field
(much like a linked list), and thus can point to a subsequent block (or to NULL, indicating there is no more data). First, draw a picture of
an inode and a file that is 12KB in size.
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e) Now, a final question: what is the maximum file size for compactfs?
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. Gigantic SSDs

Flash-based SSDs are increasingly replacing hard drives, especially when performance is important. In this question, we explore Flash-based
SSDs, including a focus on what happens to them when they become large.

SSDs commonly contain a Flash Translation Layer (FTL), which maps each file system block to an underlying flash page. Assume, for this
question, that file system block size is 4KB, and that flash page size is also 4KB. Assume further that the flash block size is 16 KB.

a) Assuming a basic page-mapped, log-structured FTL, and that the flash is initially in an INVALID state (i.e., each block needs to be erased
before any page is programmed), what sequence of flash operations (e.g., read, erase, program) will take place when the following writes
are performed by a file system above:
write (fsblock=1000, data='a’), write (100, ’b’), write(500,’c’),
write(1, ’d’), write(2, 'e’), write (300, ’'£f’)? ( l )
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b) When this sequence of writes is complete, what will the contents of the FTL be? (what is the map of file-system blocks to flash pages?)
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c) Now assume there are a few more writes: write (500, ’g’), write (1000, ’h’). What will the contents of the FTL be?
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d) What will the contents of the flash pages be when these writes are complete?
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e) Assume a garbage collector runs to clean up any dead blocks and make space available (by reading in entire blocks, determining what is
live, and writing live blocks to the end of the log). What will the final state of the flash pages be when garbage collection is finished?
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f) One problem with larger SSDs is that too much space is taken up by the FTL. Assuming 4 KB flash pages, and a 4 TB SSD (from the
future!), how many entries will the FTL have?
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Let’s assume our FTL can only contaif 16 4-KB pieces,of the FTL at any given time in memory; each mapping entry uses 4 bytes. When
there is memory pressure, assuming LRUTeplaceément is used to evict pieces of the FTL from SSD memory. :

g) One method of dealing with FTLs that are too Iartfe is to swap pieces of the FTL and thus keep only pieces of it in the SSD’s memory.

Assume we have a workload where we read through a large file sequentially; how much worse will performance be because of our
swap-based FTL? (be as quantitative as you can be) 4 ‘(: [
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h) Now assume we have a workload where we write out a large file sequentially. How much worse does our swap-based FTL perform
under this workload?
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i) Now assume we have a workload where we perform a large number of random reads over a very large file. How much worse does our
swap-based FTL perform under this workload?
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j) One other method to reduce FTL size is to try to use a single pointer per flash block instead of per flash page. Unfortunately, this type of
approach is challenging, particularly when a smaller (page-sized) write occurs. What performance problem arises for smaller writes in

a block-based FTL?
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4. Journaling And Large Writes

Journaling, or write-ahead logging, is a technique that can be used to ensure that a file system recovers its metadata to a consistent state after
a crash. In this question, we’ll explore what happens when we use this technique for LARGE writes.

a) One type of journaling is called “data journaling”, because all file system metadata and data is written to the log before being updated in
place. Describe the performance of such a journaling file system, as compared to a file system that only logs metadata, for sequential write

workloads. What throughput can you expect? (roughly)
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b) Usually write operations that occur with data journaling are committed atomically, meaning that they either happen in their entirety, or
don’t get committed at all (due to a crash). How does data journaling guarantee that a set of updates are updated atomically? (describe)
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c) Now let’s think about what happens for large transactions. Let’s say a very large write takes place (e.g., a user calls write() with an
incredibly large 10-GB buffer). Why is this problematic for journaling? How should the file system handle this write? What guarantee can

it make about the atomicity of the write’s completion? .
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d) Because of some of the problems of data journaling, people often use metadata-only journaling. Describe the basic protocol, including
which writes must happen before others. ( Wi
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e) Do writes cause any different problems for metadata-only journaling? For example, even assuming relatively small writes, do they
commit atomically to disk? (hint: think about overwrites)
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5. Networking And File Systems

In this question, we’ll think a little bit about Sun’s Network File System (NFS) protocol, and how it is affected when network delays are
large. Specifically, sometimes messages take a LONG TIME to get from one machine to another, and this can affect how a distributed
system behaves.

a) The basic protocol works by sending a request to the server, and waiting for a reply. What happens, on the client, if the reply takes a

LONG TIME to complete?
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b) What if replies always took a LONG TIME to complete? What might you change about the protocol or implementation?

—

Chdmye +iler o 4/.\,11.1‘(L /0"196’}"
( quoi d q/wqyg 'ﬁ’mz\oic) ou"(‘}

c) The server handles requests and sends replies. What happens, on the server, if the reply it sends to the client takes a LONG TIME to
complete?
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d) The server always forces updates to persistent storage before replying. Why does the server do this, even though it makes each reply take

longer to complete?
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e) The client waits for a long time before sending a file write to the server. Why is it OK for the client to wait before writing to the server?
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6. RAIDS That Are Big

RAID storage systems are commonly used in very large disk arrays (and even, in some modern settings, for large collections of SSDs).
Let’s examine the very basics of RAID before delving into some new techniques needed for especially large arrays.

a) RAID levels 4 and 5, as discussed in class, use “even parity” to store a bit of redundant information for each stripe of data. For each of
the following sets of bits, calculate the parity bit:
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b) RAID level 4 uses a parity disk to protect data. Draw a picture of a RAID-4 array, with a chunk size of 4KB, including 4 data disks and
1 parity disk. ’ -
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c) In RAID 4, a small write problem exists, which occurs when we wish to update a single block of data. When updating a single block in
a 5-disk RAID-4 array (4 data disks, 1 parity disk), what blocks must be read and written, and in what order? (assume you do this in the /O
minimal way, e.g., with the least amount of I/O that is possible) coYVEeS pen ij
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d) RAID-5 is quite similar but rotates the parity across disks. What is the primary reason that RAID-5 does this? Does it solve the
small-write problem above? ’_7
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e) Larger arrays have to tolerate more than a single failure (which is what RAID-4 can tolerate). Assume we wish to build an array to
tolerate 2 failures, using a similar parity-based scheme. We call this scheme RAID-DP, for RAID Double Parity. This approach includes
an additional disk for what is called the diagonal parity. We illustrate the approach in the picture below, with 4 data disks, 1 traditional
RAID-4 parity (which is the computed parity of the data disks, just as in RAID-4), and 1 diagonal parity disk.

Data Data Data Data Row Diag
0 i 2 3 Parity Parity
[0] 1 2 3 4 [0]
1 2 3 4 [01] 1
2 3 4 [0] 1 2
3 4 [0] 1 2 3

In the diagram, each block is labeled to indicate which diagonal parity stripe it is a part of. For example, the first block on data disk 0,
the fourth block on data disk 2, the third block on data disk 3, the second block on the row parity disk, and the first block on the diagonal
parity all form a diagonal stripe (as marked with square brackets); the diagonal parity block is just the computed even parity over all of those
blocks (on disks 0, 2, 3, and row-parity) in the diagonal stripe. Similar diagonal stripes exist for 1, 2, and 3 (note there is no diagonal parity

for diagonal 4; you can ignore this as it is not needed).

To understand RAID-DP better, we’ll have you compute the parity for the diagonal-parity disk assuming the bits below (we use bits instead
of entire blocks for simplicity, naturally). Thus, fill in a bit for each of the diagonal parity spots below, using the figure above as needed.

Hint: the first diagonal parity is just the even parity of the first bit on data disk 0, the fourth bit on data disk 2, the third bit on data disk 3,
and the second bit on the row-parity disk, as the diagram above indicates.

Data Data Data Data Row Diag
0 L 2 3 Parity Parity
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f) The hard part with RAID-DP, naturally, is reconstruction (i.e., figuring out the missing bits when 2 disks have failed. It is possible,
however, by using a step by step method in which you first reconstruct some blocks from the diagonal parity, and then the row parity, and

so forth until the complete reconstruction has taken place.

In this final question, data disks 1 and 3 have failed. Your task is to reconstruct them, using the information on the working data disks, the
row parity (which is computed as the even parity of the data disks), and the diagonal parity, which is computed as described above.

Data Data Data Data Row Diag
1 2 3 Parity Parity
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7. Schedules Anyone
Disk scheduling can become quite interesting, especially as the disk queue gets larger and more options become available. In this question,
we explore disk scheduling for a simplified disk we have created known as a matrix disk.

The matrix disk looks like this, organizing data into rows and columns:

(0] 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23

The columns all move to the left every R time steps, with wrap around. For example, if R = 1, every time unit the columns move left;
after 2 time units, our matrix disk would look like this:

[2] 3 4 5 6 7 0 1
10 11 12 13 14 15 8 9
18 19 20 21 22 23 16 17

The square brackets represent the disk read-write head. It can read or write the block it is positioned over (block=0 in the first diagram
above; block=2 in the second). The disk reads or writes a block in R time steps, matching the column-shifting speed described above.

Thus, in the current configuration, just by waiting, our matrix disk can read blocks 0 ... 7. But what about the other blocks? To read/write
other blocks, the matrix disk must engage in a seek, to move to a different row. Seeking to another row takes S time units.

Assume that S = 1. Assuming that R = 1 (as above), and that we started seeking when block=2 was under the read-write head (as shown
in the second diagram), a short seek down to the next row would end up with:

3 4 5 6 7 0 1 2
[11] 12 13 14 15 8 9 10
19 20 21 22 23 16 17 18

The rest of this question is about the performance of various schedulers on the matrix disk, especially with a LARGE number of requests.
OK, LARGE here may mean “more than one.”

IMPORTANT: Assume the following starting position for each of the following questions.

[0] 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
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c) Assume R = 2 and S = 1. How long will it take to read blocks 6 and 18, if we read 18 before 67 '%WWQWC}
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d) Assuming R = 1, for what values of S should the scheduler read 18 before 6? S < l 5 co ket ‘{ L+2 rea d
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e) Assume a scheduler is being built, called shortest-seek-time-first (SSTF). You are to write a function that determines how long it will
take to seek given the current row position (curr_row) and the target block block, assuming the 8-column matrix disk as above, and that
you know the value of S. We’ve filled in some of the code to help you out:

a) Assume R = 1 and S = 1. What is the minimum time it will take to read block 21? CZ 3

b) Assume R = 2 and S = 1. How long will it take to read blocks 6 and 18, if we read 6 before 18?

int how_long(block, curr_row, S) {
dest_row = ‘316‘( k / 8 - // how to compute destination row?
/

seek_dist = ab ¢ (d€§+—-'7‘cw - Curr—ran )f/ function of dest_row and curr_row and ...

seek_time = See |¢ = 15+ S '/ // easy to compute ... yes?
return seek_time;
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8. Threads Are Part Of This Exam

So, you have threads. LOTS of threads. In this question, you use LOTS of THREADS to solve some problem in parallel on a computer with
LOTS of processors. So that kind of fits the theme, right?

Here is some code:

void xfunc(void =arg) {

int arg_int = (int) arg; // treats argument as integer
int x = ...; // computes something based on ‘arg_int’, puts result in ’x’
return (void *) x; // returns integer x (pretending it is a "void *")

}

a) First, write some code to directly call func (), passing it as an argument the integer value 100, and putting its return value in the integer
named foo. Make sure to cast things properly to enable a warning-free compilation.

b oo = (int) Fomc ((word¥) 100)

Py

Now recall how to use pthread_create. This is what the prototype looks like for that useful thread-creating function:

int pthread_create(pthread_t =*thread, pthread_attr_t =attr,
void x (#start_routine) (void ), void *restrict arg);

You can assume, here, that the at t r (attributes) are set to NULL.

b) Let’s say you wish to call pthread.create () to create exactly one thread, which calls func () above and passes it the argument
mteger value 100. What doas that code look hke" Make sure to declare any thing that you need to for the code to compile, as well as to cast
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c) Now let’s try to wait for this thread to complete, and to get its return value. Use pthread-join to do so; here is its prototype:
int pthread_join(pthread_t thread, void xxvalue_ptr);

For this code snippet, call join to wait for the single thread to complete, and then print out the return valye (which is an integer).
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¢) Finally, let’s create a large number of threads and add up all of the results. Specifically, write code to create 100 threads, pass each of
them a different argument, from 1 (hrough 100 (inclusive), and then sum up all of the results the threads return; finally, print out the sum.
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9. Virtual Memory Gets Big Too

Ah, you thought you could forget about virtual memory. But not yet! Here, we assume your memory has more capacity, and thus can
handle this abuse. Specifically, we examine here what happens when a system uses really large page sizes. However, we first review a few
concepts; hopefully they are familiar!

a) Assume a system has 32-bit virtual addresses and small, 4-KB pages. How many page table entries does this require in a standard linear

(array-based) page table? 1
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20 bits
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b) Now assume that we use a multi-level page table. We use a three-level table, such that a single root page directory points to pieces of
mid-level page directory pieces which in turn point to pieces of the page table itself. Assuming that just two pages in an address space are
valid — the very first page of the address space, and the le very last last — how many pages are used by this specific page table?
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) Assuming the page table and address-space usage descnbed in part{&)]lhat happens when the following code runs? If there is a problem,
indicate at which line the problem occurs.

int main(int argc, char +xargv([]) (
int *p;

p = 0;
printf ("value at p is %d\n", #*p);
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d) Now we get to the large-page part of the question. Assume instead of 4-KB pages, we use large, 4-MB pages. First, list at least two major
benefits of using large pages.
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e) Now, list at least two major disadvantages of large pages.
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