
Sibling Rivalry
In 1991, Finnish programmer Linus Torvalds announced a new operating system to the world
with this email:

“Hello everybody out there using minix - 
I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for
386(486) AT clones. This has been brewing since april, and is starting to get ready. I'd like any
feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical
layout of the file-system (due to practical reasons) among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that I'll get
something practical within a few months, and I'd like to know what features most people would
want. Any suggestions are welcome, but I won't promise I'll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs. It is NOT protable [portable]
(uses 386 task switching etc), and it probably never will support anything other than AT-
harddisks, as that's all I have :-(.”

This home-brewed effort, originally called “Freax”, soon became “Linux” and swept the world,
and today powers most of the world’s datacenters.

Meanwhile, a little known fact is that Linus had a number of twins (non identical), each of whom
tried to create rival operating systems. Binus created BeOS; Dinus designed and implemented
DOS (not Microsoft DOS, though); Minus invented Minux; and Zinus (the youngest) wrote the
code for ZOS (all in one caffeine-fueled evening).

In this test, you will answer questions about each of these operating systems. Strangely,
instead of focusing on all aspects of each OS, we will instead concentrate our evaluation upon
CPU and memory virtualization. Hmm… I wonder why? In any case, good luck!

Facts: 
- This exam contains 9 pages and just 32 questions. 
- Each question has only one answer. ANSWER ALL OF THEM!  
- Guessing is OK; thinking and picking the right answer is preferred.

Page of 1 9

PART I: We begin with BeOS (“Be OS”), a minimal operating system. Each design decision in
BeOS is meant to simplify. Why? Binus, well, she liked keeping things simple and to the point.
Very direct, that Binus!

1. BeOS keeps track of a small amount of information about each running process in a data structure
called the “process list”. However, to keep the amount of information in the process list small, Binus
reduced the number of states a process could be in. Specifically, in BeOS, there are only two states a
process can be in: RUNNING and BLOCKED. What process state found in most OSes was removed
from BeOS? 
- a STOPPED 
- b READY 
- c ACTIVE 
- d WAITING 
- e LOCKED

2. To keep scheduling simple in BeOS, Binus chose the FIFO policy (first in, first out) to decide which
process to run. Which one of the following statements about FIFO scheduling is true? 
- a It reduces average turnaround time 
- b It reduces average response time 
- c It suffers from the “convoy” problem 
- d It is a preemptive scheduling policy 
- e It is different from the FCFS policy 
 
3. Assuming the BeOS FIFO scheduling approach, calculate the turnaround time for job B, assuming
the following: job A arrives at time T=0, and needs to perform 10 seconds of compute; job B arrives at
time T=5, and needs to perform 20 seconds of compute; job C arrives at time T=10, and needs to
perform 5 seconds of compute. The jobs perform no I/O. 
- a 10 
- b 20 
- c 30 
- d 25 
- e None of the above 
 
4. For simplicity, BeOS originally used a “base and bounds” approach to virtual memory. Which one of
the following is true about this approach? 
- a It translates addresses more slowly than most other approaches 
- b It prevents internal fragmentation 
- c It enables sharing of code between processes 
- d It provides protection between processes 
- e None of the above (all are false) 

Page of 2 9

5. Assume the following for the original version of BeOS: a 64-byte virtual address space, a system with
512 bytes of physical memory, a base register set to 10, and a bounds register set to 20. A process in
BeOS wishes to access the following virtual memory addresses: 15, 6, 30, 21, 50. How many of these
accesses are valid (legal) and thus will not trigger a fault? 
- a 1 
- b 2 
- c 3 
- d 4 
- e 5 
 
6. A later version of BeOS was developed for a newer machine and had a much larger virtual address
space: 1 KB. Assuming it is running on a system with 16 KB of physical memory, what is the largest
virtual address a BeOS process can generate? 
- a 1000 
- b 1023 
- c 1024 
- d It depends on the base register 
- e It depends on the bounds register 
 
7. With a base and bounds registers in the MMU, BeOS must take care during process switching. In an
early version of BeOS, it was so simple that the bounds register was never updated upon a process
switch, instead using the first value — essentially, a random value — that was placed there. What could
happen as a result? (choose one answer) 
- a A process could access another process’s memory 
- b A process could fault even though it is accessing what should be valid memory 
- c A process could access physical memory that isn’t assigned to any process 
- d A process could be prevented from accessing valid code 
- e All of the above  
 
8. An earlier version of BeOS was so simple that it didn’t use the base and bounds registers provided in
hardware. Instead, when a process was loaded into memory, each of its address references was
statically rewritten to match its location in physical memory. For example, if the program contained the
instruction “load 10 into register R1”, and the address space was loaded at physical address 100, the
instruction would be rewritten to “load 110 into register R1”. This approach (choose one answer): 
- a Provides strong process isolation 
- b Makes programs run slowly 
- c Allows multiple processes to be active in the system 
- d Affects the type of CPU scheduling policy you can implement 
- e Helps realize a sparse virtual address space

Page of 3 9

PART II: We now move on to DOS, designed by Dinus. DOS is based around the concept of
randomness, because to be honest, Dinus was a pretty random kind of dude. You never knew
what Dinus was up to!

9. The DOS scheduler is based on a random policy. Specifically, every 10 milliseconds (ms), a timer
interrupt goes off, and DOS picks a random process to run. This approach is most similar to which
following policy? 
- a First-in, First-out 
- b Shortest Job First 
- c Round Robin 
- d Shortest Time To Completion First 
- e Rank-order Scheduling

10. With the DOS random scheduling policy, assume you have two jobs enter the system at the same
time, each of which needs to run for 30 milliseconds. Assume again a 10 ms timer interrupt. What is the
best case average response time for these two jobs? 
- a 0 ms 
- b 5 ms 
- c 10 ms 
- d 15 ms 
- e None of the above

11. With the DOS random scheduling policy, assume you have two jobs enter the system at the same
time, each of which needs to run for 30 milliseconds. Assume again a 10 ms timer interrupt. What is the
worst case average turnaround time for these two jobs? 
- a 45 ms 
- b 50 ms 
- c 60 ms 
- d 120 ms 
- e None of the above

12. DOS uses the MLFQ (multi-level feedback queue) scheduler. However, it changes some rules. The
biggest change: new processes are added to a random queue (not the topmost one). What is the
biggest effect this will have? (choose one) 
- a Sometimes, short-running jobs won’t get serviced quickly, thus decreasing interactivity 
- b Over a long period of time, it will be unfair to long-running jobs 
- c Jobs will generally finish more quickly 
- d Jobs will be able to game the scheduler 
- e None of the above

 
 

Page of 4 9

13. DOS uses paging. Before talking about how randomness was used, let’s do a simple questions to
make sure we understand it. In this system, the virtual address space size was 128 bytes (tiny!), and the
page size was just 2 bytes. How many entries were in each page table? (assume a linear array) 
- a 128 
- b 64 
- c 32 
- d 16 
- e None of the above

14. Now assume the address space size is still 128 bytes, but the page size is 32 bytes. Here is the page
table for a process, where the leftmost bit is the valid bit, and the rightmost 4 bits are the PFN.  
 0x8000000c 
 0x00000000 
 0x00000000 
 0x80000006 
If 4 bits are needed for the PFN, how big is physical memory? 
- a 128 bytes 
- b 256 bytes 
- c 512 bytes 
- d 1024 bytes 
- e None of the above

15. Assume again that the address space size is 128 bytes, and the page size is 32 bytes. Using the
page table above (Question 14), translate the virtual address 0x64. 
- a 0x46 
- b 0x04 
- c 0xc4 
- d 0x64 
- e None of the above

16. When allocating a physical page to a process, DOS selects a random free physical page (instead of,
for example, the first free one on a free list). This approach will: 
- a Make the page table larger 
- b Make physical memory more fragmented (externally) 
- c Slow down address translation 
- d Make heap allocation fail more often 
- e None of the above

 

Page of 5 9

PART III: Next up is Minus, who created Minux. Minus, well, they really love system complexity,
so Minux may indeed be the most complicated of the OSes. Let’s analyze what Minus has
created!

17. Minux uses kernel mode, user mode, and a new mode called “supervisor” mode. When a user
program runs in “supervisor” mode, it is still restricted (like user mode), but can do the following: change
the length of the timer interrupt interval, including turning it off. Overall, would you say that supervisor
mode (choose one): 
- a Helps ensure streamlined round-robin scheduling 
- b Ensures more efficient, application-aware timing interrupts 
- c Better integrates scheduling and virtual memory mechanisms 
- d Limits the OS’s ability to retain control of the machine if user code runs in supervisor mode 
- e None of the above

18. Minux employs a (two-level) multi-level page table. Assume a 32-bit virtual address space, and 4 KB
pages. Also assume each page table entry (PTE) is 4 bytes in size. How many PTEs fit onto one page? 
- a 1  
- b 32 
- c 1024 
- d 4096 
- e None of the above

19. Assuming a two-level multi-level page table (32-bit virtual addresses, 4KB pages, 4-byte PTE size),
what is the minimum number of valid virtual pages in an address space such that the multi-level page
table becomes its maximum size? 
- a 512  
- b 1024 
- c 2048 
- d 4096 
- e None of the above

20. Assuming a two-level multi-level page table (32-bit virtual addresses, 4KB pages, 4-byte PTE size),
what is the minimum number of pages needed for the multi-level page table (including the page
directory) when there are 1025 contiguous valid pages somewhere in the virtual address space? 
- a 3 
- b 4 
- c 5 
- d 1025 
- e None of the above

 
 

Page of 6 9

21. TLBs make hardware more complex, so Minux definitely uses one. The best description of what a
TLB is as follows (choose one): 
- a A memory to store page table entries 
- b A collection of base/bounds pairs to help segmentation work quickly 
- c An OS component to speed up translation 
- d A hardware feature that ensures fair use of memory 
- e An address-translation cache

22. Assume the TLB, which has just four entries, has the following contents (numbers in the TLB are all
decimal, and entries are all valid): 
 VPN 0 -> PFN 1 
 VPN 1 -> PFN 100 
 VPN 2 -> PFN 101 
 VPN 3 -> PFN 102 
Assume this system has a 14-bit virtual address, and 4-KB pages. What virtual address will access the
physical address 50 (decimal)? 
- a 0x0032 
- b 0x1023 
- c 0x3012 
- d 0x3132 
- e None of the above

23. When running on Minux, calculate the hit rate of the TLB assuming a process has 4-KB pages, and
accesses every 128th byte on a series of pages. Assume the TLB begins empty, and ignore code
accesses and just focus on this “strided” data access pattern. 
- a Just about 99% 
- b Just about 88% 
- c Just about 50% 
- d Just about 17% 
- e None of the above

24. The Minux scheduler uses a new scheduler called “highest process ID (PID) first” (i.e., the job with
the highest PID always runs, and to completion). Assume job PID=1 arrives at time T=0, with length 10;
PID=2 arrives at T=2, length=6; PID=3 arrives at T=4, with length 4. What is the average response time
of this approach in this example? 
- a 1 
- b 2 
- c 3 
- d 4 
- e None of the above

Page of 7 9

PART IV: Finally, ZOS, created by Zinus, is the most novel of the OSes. Zinus is quite creative!
Each part of ZOS has some new ideas; are they good ideas? We’ll see!

25. To reduce the size of page tables, ZOS combines the idea of base/bounds and paging. A virtual
address space is still chopped into pages. The page table is pointed to by the base register, and the
bounds register holds the “size” of the page table (really, the max VPN that is valid, plus one). This
approach (choose one): 
- a Enables fast translation with only two extra memory references to fetch a PTE 
- b Enables a compact page table, if you use the virtual address space carefully 
- c Is always smaller than a linear page table 
- d Supports a sparse address space while still also minimizing page table memory usage 
- e None of the above

26. ZOS, as mentioned above (Question 25), combines base/bounds and paging. Assume the following:
a 32-bit address space with 1-KB pages. Assume each page table entry (PTE) is 4 bytes. Assume there
are 100 processes in the system. If each process uses only one virtual page, what is the worst-case
total size of all of these page tables? 
- a 16 MB 
- b 160 MB 
- c 1600 MB 
- d 16 GB 
- e None of the above

27. ZOS uses a new type of scheduler called a proportional-share scheduler. This scheduler makes sure
each process gets a certain amount of CPU time, based on how many “tickets” it has. For example, if
process A has 2 tickets, and process B has 1, A should get twice as much CPU time as B. Note that a
process cannot change how many tickets it has, and all jobs only use the CPU (there is no I/O in this
example). Which of the following traces (which each show which job was scheduled at each quantum
over time) does not show the behavior of a proportional-share scheduler?  
- a AABAABAABAABAA 
- b ABABABABABAB 
- c AAAAAAAAAABBBBB 
- d ABBBABBBABBBABBB 
- e None of the above (they all could be traces from a proportional share scheduler) 
 
28. ZOS uses a new mechanism instead of timer interrupts. Instead of interrupting the CPU every so
many milliseconds, the ZOS hardware is programmed to interrupt the CPU after every N TLB misses.
How creative! As compared to the timer, this approach (choose one):  
- a Is equally effective 
- b Is faster to program 
- c Is risky 

Page of 8 9

- d Requires less memory 
- e Requires virtual memory support

29. A later version of ZOS uses a different, clever approach to sharing the TLB among active processes.
Assume the hardware does not have an address space identifier (or process identifier) field in the TLB.
Instead of flushing the TLB when switching between processes, ZOS ensures that each process in the
system uses different (unique) VPNs as compare to any other process. Which of the following is not true
about this approach: 
- a Allows for fully flexible use of the virtual address space by each process 
- b Allows for faster context switching (as compared to the TLB flushing approach) 
- c Allows for fully flexible use of physical memory 
- d Allows sharing of code pages between processes 
- e None of the above (all are true)

30. ZOS also later added support for “large” pages, a new and clever idea. Assume that in a given
system, regular page size is usually 1 KB, and large pages are 1 MB. When possible, the OS uses large
pages instead of a bunch of smaller ones (e.g., when there is a contiguous, aligned portion of the virtual
address space in use). Why is using large pages a good idea? 
- a They reduce system complexity 
- b They speed up trap handling 
- c They can increase TLB hit rates 
- d They make physical memory allocation easier 
- e None of the above

31. ZOS also added special hardware, in the form of general-purpose registers that only the kernel can
use. Indeed, all kernel code has been written to only use these registers, not the regular (user-level)
general purpose ones. Why might these registers for the kernel be a good idea? 
- a Faster trapping into and returning from the kernel 
- b Kernel code now easier to compile 
- c Reduces need for context switching between processes 
- d Now, no way to harm user-level register contents while in kernel code 
- e None of the above

32. Zinus also had this last question for you: which is true about operating systems? 
- a They always make systems run faster 
- b They always make systems use less memory and CPU 
- c They generally make systems easier to use 
- d They never crash 
- e None of the above (these are all false)

Page of 9 9

