CS-537: Midterm Exam (Spring 2002)
The Mid-Semester Blues

Please Read All Questions Carefully!

Therearenine (9) total numbered pages

Please put your name on every page.

Name:

Grading Page

Points| Total Possible

Part I: Short Answers (12 x 5) — 60
Part Il: Long Answers (2 x 20) — 40
Total 100

Name:

Part |: Short Questions

The following questions require short answeEsch of 12 isworth 5 points (60 total).

1. Processes (or threads) can be in one of three stBi@ming, Ready, or Blocked. For each of the following
four examples, write down which state the process (or thrisad:

(a) Waiting inDomai n_Read() for a message from some other process to arrive.
(b) Spin-waiting for a variable to become non-zero.

(c) Having just completed an 1/O, waiting to get schedulegimgn the CPU.

(d) Waiting inside ofpt hr ead_cond_wai t () for some other thread to signal it.

2. An operating system runs privilegedmode, a hardware state where it has full access to machinareEs.
Why is such a mode needed, and why can’t normal user procesddblreads enter privileged mode?

3. In a system with pure paging, assume we have a 32-bit slspase, and a 4 KB page size.

a) How many bits of an address specify tbgical page numbefa.k.a.the virtual page numbégrand how many
bits specify theoffse?

b) Let's say we are translating the logical address 0x00010d2#&ch logical page is mapped to a physical
page that is a single page number higher (i.e., logical p@gs thapped to physical page 11, logical page 11 is
mapped to physical page 12), what is the final translatedipdilyesddress?

4. Threejobs (A, B, and C) arrive to the job scheduler at tim&db A needs 10 seconds of CPU time, Job B needs
20 seconds, and Job C needs 30 seconds.

a) What is theaverage turnaround timtor the jobs, assuming ghortest-job-firs{SJF) scheduling policy?

b) What is theaverage turnaround timassuming dongest-job-firs{LJF) policy?

¢) Which finishes first, Job C in SJF or Job A in LIF?

5. In class, we gave the following code as an implementationuiual exclusion:

bool ean | ock[0] = lock[1] = false;
int turn = 0;
void deposit (int amount) {
| ock[pid] = true;
turn =1 - pid;
while (lock[1l-pid] & (turn == (1 - pid)))
; /1 spin
bal ance = bal ance + anount;
| ock[pid] = false;
}

Let's say we replace the statemdnirn = 1 - pi d with the statementurn = Bi nar yRandon{(),
where the function Bi naryRandon{) returns a 1 or 0 at random to whomever calls it.
Will the code still function properly? If so, why, and if not, what problem could occur?

6. A number of threads periodically call into the followingutine, to make sure that a pipe that is shared between
them has already been opened (after calling this routineresatl might go ahead and call write() on that pipe,
for example). Assume there is a global integéeipe, which is set to -1 when the pipe is closed, and a global
lock| ock, which is used for synchronization. Here is the code:

voi d MakeSur ePi pel sOpen() {
mut ex_| ock(& ock);

if (pipe == -1)
pipe = open(‘‘/tnp/fifo’’, O VRONLY);
mut ex_unl ock(& ock) ;

}

However, you get clever, and decide to re-write the code lémAfe:

voi d MakeSur ePi pel sOpen() {

if (pipe == -1) {
mut ex_| ock(& ock) ;
if (pipe == -1)

pipe = open(‘‘/tnmp/fifo’’, O VWRONLY);
nmut ex_unl ock(& ock) ;

}

Doesthis code still work correctly? If so, what advantage do we gain by using thisimplementation?
If not, why doesn’t it work?

7. Assume you are implementing a producer-consumer sharféek ljwhich can be used by producer threads to
pass data to consumer threads), but that the buffenlmundedin other words, it does not have a limit as to
how big it can get.

a) How many condition variables will you need in order to impksmhthis buffer properly, and why?

b) How is this different than a standard bounded buffer impletagon?

8. For deadlock to occur, four conditions must hataatual exclusiophold and wait no preemptionandcircular
wait. If any one condition does not hold, no deadlock can occusuA® we want to allow “preemption”, and
thus get out of deadlocks; in other words, if a deadlock iected, we will forcibly take a lock away from a
thread; by repeatedly doing this, we will eventually unde ¢ieadlock. What new problems are introduced by
this preemptive approach?

9. Someone has written new memory allocator to replace #relard malloc()/free() implementation. It works as
follows: one half of available memory is divided into fixeided units of 4KB, and the other half is managed by
a best-fit free list. If an allocation request is less thanquad to 4KB and there is space in the fixed-sized half,
a 4KB unit is allocated from the fixed-sized half; otherwithes best-fit algorithm is used over the other half of
memory, and the requested size is returned (if space isaéa)l

a) Assuming 32KB of total memory is available, what series tdadtion requests will most quickly lead to all
of memory getting allocated, all while requesting the leattl amount of memory?

b) What type(s) of fragmentation occurs with this new allocato

10. A mechanism that can be used for synchronization is thigyab turn on and off interrupts.

a) How can you use this to implement a critical section?

b) Why does does it work?

¢) Why is this generally a bad idea?

11. In class, we talked about two kinds of message sdnldskingandnon-blocking In communicating through
a Unix pipe, consider the sender side (i.e., the side doieguth t e() call to the pipe). Istherite() toa
pipe blocking, non-blocking, or botHzxplain.

12. For the following question, pleasircle all answers that apply. A translation lookaside buffer (TLB) is
generally used to:
(a) translate virtual page numbers into physical page nusnbe
(b) translate physical page numbers into virtual page nusibe
(c) make segmentation have the benefits of a pure paging agpro
(d) translate the addresses generated by loads
(e) translate the addresses generated by stores
(f) translate the addresses generated by instructiondstch
(g) remove the need for a full-sized page table
(h) make translations happen quickly

Part I1: Longer Questions
The second half of the exam consists of two longer questaaah, wor th 20 points (total 40).

1. Staying In-Bounds.

You are dealing with a system that perforgtatic relocation In static relocation, bbaderrewrites the addresses
of a process as it is getting loaded into the system so as locate” the address space of that process to an
arbitrary address in physical memory. In this systathprograms are compiled asif they will get loaded at
address 1000. Then, when the loader is “loading a process”, it must reenainy addresses within the program
in order to generate addresses at the correct offset in gdiysiemory.

load O(Rl), R2 # loads value at address '"R1L + 0’ into R2
add R2, 5, R2 # add 5 to R2
store O(Rl), R2 # store value at address 'Rl + 0’ back into R2

a): Assuming that the process gets loadeghysical address 2500, how would the loader re-write the
statements above so as to provide proper static relocation?

b): Let's say we want to implement some additional checks in taticsrelocation scheme. Specifically, we
want to make sure that all addresses generated by the prdoesst extend beyond its address space. If an
address is outside of the limit, the program should just bedfd to exit. What would we have to do before each
| oad andst or e instruction in order to guarantee that they stay within tdrass space of the process?

c): In contrast with static relocatiorlynamic relocation is a hardware approach to relocating the address
space of a process in physical memory. Wiiatdwar e is required to implement dynamic relocation?

d): If you contrast software-based static relocation with tkigsechecks (as described in this question in part
(b)) to traditional hardware-based dynamic relocatior,tAey equivalent, or does one approach give you more
capabilities than the otheEXxplain.

2. Synchronization: Primitive?

Different hardware architectures provide different losw¢l instructions to allow one to implement synchroniza-
tion primitives. In this question, we will examine two difémt sets of synchronization instructions (available
on two different architectures), and will use each of therimtplement a critical section.

Load-linked, store-conditional: The first hardware primitive is actually a pair of instruct®available on
the MIPS architecture, and they are called lieed-linkedandstore-conditionainstructions. They are used in
combination to build mutual exclusion.

|| <address>, RD
sc <address>, RS

In the load-linked instructior (), the value at addressaddr ess> is placed into the regist&®D, much like a
normal load. With the store-conditional instruction, thedue inside of the registd®S is placed into the value
at<addr ess>, if the value atkaddr ess> has not been changed by some other thread since the loagdlink
instruction (|) was executedIf the store-conditional succeeds (and stores the valuRSimto the address
<addr ess>), the registeRS will be set to the value 1; if the store-conditional fails (ither words, someone
else has updated the value<atddr ess> in the meanwhile), the store-conditional does not updae/éthue at
<addr ess>and RS is set to the value 0.

Fetch-and-add: The second synchronization instruction is available onntwe defunct Alpha architecture,
and is callecatomic fetch-and-ad¢abbreviated et chadd). The format of the et chadd instruction is as
follows:

f et chadd <address>, RS

where<addr ess> holds an address of some variable, and regREdrolds an integer value. Whéret chadd
executes, it atomically adds the value insiddR8fto the variable stored ataddr ess>.

The code that must be implemented in properly synchroniasad fs our standard synchronization routine:

int balance = 0; // global variable, accessible by all threads.

voi d updat e(i nt anount) {
bal ance = bal ance + anount; // nust synchroni ze access to 'bal ance’!
}

Your job: implement thaupdat e() routine so that it is properly synchronized, using the défe synchro-
nization instructions available. In other words, in pattia)plementupdat e() by using the load-linked and
store-conditional instructions (but not the atomic fetrid-add or compare-and-swap). In part c), use just the
fetch-and-add. Of course, in both parts, you may use othedsird instructions such as loads, adds, stores, and
so forth.

Assumptions. Assume you have 16 registers at your disposal (you won't neady that many), and call them
R1 throughR16. Also, assume that whampdat e() is called, the value of thanpunt variable is placed
inside of registeR1.

You may need to use some other instructions to implementdirect code. To get you started, this is what the
unsynchronized version of thepdat e() routine looks like:

| oad <bal ance>, R2 # | oad account bal ance into R2

add R1, R2, R3 # add amount (R1l) and bal ance (R2), result in R3
store <bal ance>, R3 # store value of R3 back into bal ance

(continued on next page)

You may also need to useka anch instruction of some kind. If so, just write some pseudo-Gtg@gad of
assembly) and uggot o statements and labels.

top: |load <variable> Rl
if (RL ==1) goto top

In the code snippet above, the variabber i abl e keeps getting checked to see if its value has become anything
other than 1; as long as it stays at 1, the code keeps branishakgto the labet op.

a): Implement thaupdat e() routine with thel. oad-linked, store-conditional instructions.

b): Are there any limitations or problems with your solution tarp(a)? If so, please describe them. If not,
please say why.

¢): Implementthaupdat e() routine with theAtomic fetch-and-add instruction.

d): Which of is more appropriate to use inimplementingdipelat e() routine, the load-linked/store-conditional,
or the atomic fetch-and-addxplain.

