
Student ID: _____________

CS-537: Midterm Exam (Fall 2010)
Memory Gone Bad

Please Read All Questions Carefully!

There are 13 total numbered pages.

Please put your NAME and student ID on THIS page, and JUST YOURstudent ID (but NOT YOUR NAME)
on every other page.Why are you doing this? So I can grade the exam without knowingwho you are, of course.

Name and Student ID:

1

Student ID: _____________

Grading Page

Points Total Possible

Q1 20

Q2 20

Q3 20

Q4 20

Q5 20

Q6 20

Total 120

2

Student ID: _____________

You are about to take an exam in which some memory has gone bad.Don’t worry, it’s not your memory I am
talking about (well, at least, I hope not!). Rather, it’s thecomputer’s memory, in a new PC fromIron Systems.

As it turns out, the Iron Systems PC has cheap, unreliable memory, in which a bit occasionally gets flipped. Abit
flip takes one single bit in the system memory and changes it to theopposite of its current value, thus turning a 0 into
a 1, or a 1 into a 0. As you can imagine, this makes the OS of the system, which stores a lot of its important data in
memory, not behave correctly (sometimes).

Bit flips are challenging to handle because they can change the value of a variable that the OS (or a user program)
is using. For example, imagine a simple integer, set to the value1. In memory, this integer might look like this:

31 30 29 28 27 26 04 03 02 01 00
0 0 0 0 0 0 0 0 0 0 1

In the diagram, the integer is laid out in memory with the high-order (31st) bit on the left and the low-order (0th)
bit on the right. A single bit flip, of say the 30th bit, can dramatically change the value of the integer:

31 30 29 28 27 26 04 03 02 01 00
0 1 0 0 0 0 0 0 0 0 1

Now the integer is set to230 + 1, instead of plain old1! Quite a change in value, from just one bit getting flipped.
All questions will center aroundIron OS, a new operating system that I just made up for the purposes ofthis exam.

Most questions will describe how Iron OS works, and then ask you to determine what happens when memory goes
bad, or something like that.

Good luck! Trust in your memory; it will serve you well, or at least better than the Iron PC’s memory is serving
poor old Iron OS.

3

Student ID: _____________

1. Iron Scheduling.

The Iron OS has a scheduler that tries to emulate a multi-level feedback queue (MLFQ) as we saw in class. Iron
OS keeps track of important MLFQ information in a simply array of structures in memory (allpri):

struct priority {
unsigned int priority; // current priority of job
unsigned int timeLeft; // time left at this priority (in clock ticks)

};

// all priorities stored in this array
struct priority allpri[MAX_PROCS];

Thepriority variable tracks the current priority level of each job; in the Iron MLFQ scheduler, there are five
levels, and thus priority can be set to 4 (highest priority) through 0 (lowest).

ThetimeLeft variable tracks how much time (in clock ticks) a process has at a given priority. That is, each
time the timer interrupt goes off, timeLeft (for the currently running job) is decremented by 1; when it reaches
0, the job’s priority level is decreased (as per MLFQ rules).

(a) Before getting into the corruption scenario, describe how MLFQ works. What are its major goals as a
scheduling policy?

Now let’s consider corruption. It turns out that corruptioncan affect both thepriority field as well the
timeLeft field.

(b) What do you think will happen if a bit gets flipped and sets the priority too high (i.e., higher than it is
supposed to be)?

4

Student ID: _____________

(c) What do you think will happen if a bit gets flipped and sets the prioritytoo low?

Here is the code that deals with the priority. In fact, all this code does is get the priority for the process ID (pid)
of interest; later (not shown), the priority is put it into a list of all priorities, which is then sorted, in order to
determine which process runs next.

int getPriority(int pid) {
return allpri[pid].priority;

}

(d) Assuming the priority value was changed in memory, how could you rewritegetPriority() so that it
returns a valid priority? (if not the correct one)

(e) Discuss the limits of such an approach. Does your new routine solve the memory corruption problem?

Finally, let’s think about what happens if a bit in thetimeLeft field gets flipped.

(f) What if the timeLeft field gets flipped to amuch higher number?

(g) What if the timeLeft field gets flipped to alower number?

(h) Which is worse for the system? Why?

5

Student ID: _____________

2. Iron Segmentation.

An early version of the Iron PC usessegmentationin order to place segments of a virtual address space in
memory. Unfortunately, a single bit in one of the base or limit registers has been flipped! Your job is to figure
out which one, in each of the following examples.

Assume the following about the segmentation system. The address space is a tiny 1 KB in size; physical memory
is 16 KB. The top bit of a virtual address determines which of two segments a reference is in; segment 0 grows
in the positive direction, whereas segment 1 grows in the negative direction. Hmm, does this seem familiar?

In this first bit flip scenario, we see the following:

Segment 0 base (grows positive) : 0x8400
Segment 0 limit : 0x100 (note: this is in hex)
Segment 1 base (grows negative) : 0x0c00
Segment 1 limit : 0x000

We also know thatvirtual address 0x095should translate tophysical address 0x0495.

(a) Given that we know how VA 0x095 should be translated, which segment base register has the wrong value?
(describe why you think so)

(b) What should the correct value be?

We also find out that thevirtual address 767 (decimal) should cause a segmentation violation, but 768
(decimal) should not(i.e., 768 is a valid virtual address).

(c) Which segmentation register (seg 0 base, seg 0 limit, seg1 base, seg 1 limit) determines whether these two
virtual addresses (767, 768) are valid? (describe your reasoning)

(d) What should the correct value of that register be?

(e) Given the correct value, what physical address should 768 translate to?

6

Student ID: _____________

3. Iron Multi-level Paging.

At some point, some Iron OS mastermind decided to change the Iron VM system to usemulti-level paging
instead of that simple segmentation system. Assume a15-bit virtual address (i.e., a 32 KB AS), apage size of
32 bytes, and4KB of physical memory (i.e., there are 12 bits in the physical address). Assume further that we
are using a simpletwo-level page table. A page-directory base registerpoints to the physical frame where
the page directory resides. The format of each page directory entry (PDE) or page-table entry is pretty similar:
a single valid bit followed by 7 bits of a page frame number. Hmm, where have you seen these assumptions
before? Assuming this setup, you are given access to the following memory dump. The dump shows the contents
of each physical page, from byte 0 of the page on the left to byte 31 on the right.

page 0: 1a 16 1a 10 17 09 06 11 16 1e 12 0c 07 10 1a 0c 15 06 1d 17 10 00 12 16 18 1c 00 17 0d 08 1e 02
page 1: 0c 08 14 15 18 1c 14 1b 01 16 00 10 08 04 1e 1d 09 03 1a 1d 0c 17 1d 08 0a 0b 05 0d 17 1d 03 13
page 2: 00
page 3: 00
page 4: 00
page 5: 7f b1 7f 7f 7f 7f 7f 7f
page 6: 7f 7f 7f bb 7f 7f 7f e1 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f fa 7f 7f 7f 7f 7f 7f 7f 7f 7f da ea 7f
page 7: 17 00 17 07 1e 0f 1e 09 1d 09 02 0f 0d 0b 03 1b 06 0d 0c 01 14 06 0a 10 0d 0f 1e 0f 1d 1a 13 03
page 8: 00
page 9: 00
page 10: 15 02 0b 1d 13 00 08 15 0a 0f 18 11 18 12 18 08 15 12 0e 17 0f 0f 1b 19 17 11 05 04 09 11 1a 11
page 11: 0f 05 15 0d 05 1b 0c 08 16 1c 11 16 02 04 0f 15 09 07 08 02 0e 14 13 0a 0d 04 09 0e 17 16 1c 01
page 12: 0e 10 1e 04 14 0b 0f 06 14 07 0e 01 1e 0f 0e 16 0c 1b 00 19 0e 19 1d 1e 05 15 03 04 02 09 00 1a
page 13: 0c 1b 16 0f 14 11 17 1a 0f 1b 06 01 18 0a 0d 02 0d 02 03 0b 12 07 0c 07 07 07 0b 10 0c 19 11 14
page 14: 19 05 15 03 0c 09 1e 01 1b 10 02 1e 01 0d 02 16 03 06 16 0a 1c 0a 16 01 0e 00 0a 09 16 0d 15 01
page 15: 7f 7f 7f 7f 7f 7f 7f 7f 7f ff 7f 7f e4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f d9 7f 7f
page 16: 7f 7f 7f 7f aa 7f 7f 96 7f
page 17: 16 18 0d 0a 0c 00 15 0a 1a 0c 17 14 03 17 05 00 14 09 1e 00 09 04 15 12 1e 1a 00 1b 19 1b 0c 16
page 18: 16 12 08 1a 01 13 0f 19 03 1a 0a 0f 06 02 0d 05 0d 05 02 0c 0c 0a 03 15 19 18 0c 05 02 07 0f 0a
page 19: 11 01 15 11 13 03 09 05 1e 18 01 12 19 16 05 1a 18 17 08 11 11 15 17 0f 0f 1e 14 04 01 0c 07 16
page 20: 00
page 21: 00
page 22: 0c 0c 1c 14 15 02 1c 15 08 1a 14 11 15 1c 12 09 1a 06 09 16 0b 12 06 0a 1b 06 0a 1a 18 13 10 05
page 23: 7f b7 7f
page 24: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f c6 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f a4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 25: 00
page 26: 17 15 02 09 0c 0f 0f 0e 08 17 01 11 1c 06 0e 1d 0c 15 15 0a 12 10 0c 1a 0c 1a 12 0a 1a 0b 1e 03
page 27: 7f db 7f 7f 7f 7f 7f 7f ee 7f 7f 7f 7f
page 28: 18 12 00 00 07 1b 19 1b 00 1d 04 0c 17 06 02 06 06 0b 1c 15 02 01 08 08 06 0f 18 17 01 1d 19 0b
page 29: 1b 1c 07 02 0a 13 0a 18 1b 12 00 04 03 1d 01 0d 02 1b 13 0b 17 08 0f 15 14 1e 1a 1a 17 01 02 06
page 30: 1e 1e 09 19 00 04 05 05 0e 07 1e 16 0c 17 03 14 01 1a 06 1a 18 18 05 09 19 06 0e 05 17 08 0e 00
page 31: 00
page 32: 00
page 33: 7f 7f 7f 7f 87 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f c8 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 34: 7f 7f 7f 7f 7f 7f 7f f8 7f 7f eb 7f
page 35: 08 07 1e 06 10 0f 16 01 1e 0d 1a 05 09 19 1d 10 05 18 10 06 07 01 05 0b 15 0f 10 1c 0c 18 0c 1e
page 36: 05 11 0c 0d 06 14 0e 1e 14 12 0c 0f 14 0e 1d 11 07 14 1a 1d 01 18 00 1b 15 0b 0a 01 06 1a 00 0d
page 37: 1d 1a 03 0e 0c 1b 1a 00 1e 1c 18 15 0e 0b 09 18 03 00 0f 04 0e 0f 1b 1a 0d 18 00 0a 07 0f 1b 1e
page 38: 7f 7f 7f bf 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f fb 7f 7f 7f 7f 7f b3 7f 7f 7f 7f fd 7f 7f 7f
page 39: 7f 7f 9e 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 8a 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f cc 7f f4 7f
page 40: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f a5 7f 7f 7f 7f 7f 7f 7f 7f 7f 91 7f 7f 7f 7f 7f 7f 7f 7f 7f cf
page 41: 14 07 1d 07 0e 02 05 11 01 0e 01 1e 0e 0c 02 14 1b 02 1d 08 11 0d 11 17 1e 13 14 03 00 09 18 0b
page 42: 0e 03 09 09 17 1c 05 1c 0f 0d 01 16 17 14 19 17 0f 06 15 18 17 04 02 1d 14 08 01 1a 04 1c 15 03
page 43: 00
page 44: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 9a 7f 7f 7f 7f 7f 7f 7f 7f 7f e6 7f 7f 7f 7f 7f 7f 7f 7f
page 45: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 8c 7f b9 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 46: 00
page 47: 1d 17 10 19 09 05 1b 1b 1a 0c 1a 0f 1e 1b 18 03 0a 06 0a 07 0f 0f 11 05 1e 11 0f 05 06 1a 17 19
page 48: 00
page 49: 02 19 1e 1a 19 05 0f 11 08 0c 04 0a 19 1d 1e 0b 12 04 18 06 01 13 07 1b 03 08 11 09 1a 13 04 12
page 50: 00
page 51: 04 0d 16 02 0e 0c 1c 04 1a 11 0f 1b 0e 18 00 16 1b 07 11 02 12 0a 08 1d 09 03 0c 0e 03 0c 08 16
page 52: 00
page 53: 0a 0e 19 15 05 1c 11 18 02 07 1a 12 16 1c 0a 14 12 12 0b 11 19 11 16 07 0b 01 04 11 1c 07 0e 1e
page 54: 00
page 55: 19 0d 07 02 04 06 1d 16 0d 1d 02 1e 0d 0c 1b 0a 0f 06 17 11 0c 1c 08 18 12 13 11 0c 00 07 0f 09
page 56: 00

7

Student ID: _____________

page 57: 0a 0e 18 1d 1e 13 0f 0a 00 02 00 1b 07 0e 17 02 13 06 1c 1a 0c 11 1e 05 03 1c 0a 17 1c 0e 14 1e
page 58: 00
page 59: 19 00 14 08 1b 07 1d 06 1b 13 13 00 12 04 0e 04 12 1c 15 19 04 1b 1e 1b 14 19 18 00 0e 06 1c 0a
page 60: 7f 9c 7f 7f 7f 7f 7f 7f 7f 7f
page 61: 00
page 62: 00 15 0d 0e 0d 13 11 05 09 16 15 18 1c 08 10 0b 0f 06 03 03 1e 05 11 17 1e 16 1a 08 0d 11 00 10
page 63: 0b 02 0e 1e 18 1a 1a 13 0d 0f 10 04 03 08 11 03 18 0e 0f 0c 02 19 11 0e 01 0d 0d 11 12 1b 07 07
page 64: 00
page 65: 19 06 10 06 01 05 0e 16 0b 0a 1c 02 18 01 1e 0d 02 09 00 08 06 1b 16 07 0a 13 18 14 18 04 0e 18
page 66: 7f 7f 7f 7f 7f 7f 7f 7f 7f 92 7f 7f 7f 7f 7f af 7f 7f 7f 7f 7f 7f 7f ec 7f 7f 7f a9 7f 7f 7f 7f
page 67: 00
page 68: 00
page 69: 0c 0e 11 17 04 01 1e 17 12 01 03 14 0d 09 1c 04 0b 05 14 1c 13 0e 0f 0c 07 18 1a 17 18 1e 0a 0c
page 70: 09 09 14 07 13 1b 1a 09 0e 0f 08 0a 1e 00 04 14 02 09 18 1c 0b 06 1b 13 0f 0a 0a 09 17 0e 06 1b
page 71: 00
page 72: 01 10 16 10 11 18 11 07 0d 0e 00 0f 0e 19 03 13 1b 05 02 0e 0a 08 11 19 18 17 13 1a 1a 16 0a 0a
page 73: 00
page 74: 04 10 1c 04 1e 13 16 15 17 06 12 07 03 09 1c 1d 0f 13 05 08 14 08 17 19 0d 0c 05 07 19 08 02 16
page 75: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 80 7f 7f 7f df 7f c5 7f 7f 7f 7f 7f f9 7f 7f 93 7f 7f 7f 7f 7f 8d
page 76: 04 06 0e 06 1a 16 15 15 0e 17 03 1b 1a 10 1e 06 05 10 1c 19 1d 18 02 02 19 01 0a 17 00 11 13 18
page 77: 00
page 78: 00
page 79: 04 01 0a 0b 14 11 13 13 13 1e 0e 01 05 06 16 08 1e 17 19 0d 11 12 1a 08 12 13 1e 15 19 18 0b 16
page 80: 0b 16 11 00 14 0c 12 1d 08 01 1c 11 0b 17 02 06 01 02 0c 19 14 1e 04 17 03 14 0e 03 07 14 07 0b
page 81: 00
page 82: 00
page 83: 7f 7f 7f 7f f0 7f
page 84: 02 0d 0f 00 0f 1c 04 0b 06 10 16 14 04 16 13 1d 13 02 15 0a 01 18 11 0d 11 0e 18 1e 0a 16 1c 0b
page 85: 7f be 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 86: 1d 14 0f 0a 16 00 1e 04 0d 00 0e 09 03 15 1b 00 06 0d 05 1b 11 0e 18 0a 16 0a 0b 0c 10 07 08 00
page 87: 7f d4 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 88: 00
page 89: 0e 08 06 07 1b 10 07 19 12 1b 0e 0f 1d 0d 00 02 05 1d 0b 12 17 13 18 02 00 0b 02 07 17 0b 17 03
page 90: 15 04 0a 11 19 1c 10 1e 09 02 16 02 1b 10 0d 14 01 0e 1b 04 0e 16 07 02 04 08 0f 1c 0b 10 18 12
page 91: 12 13 07 04 17 10 0d 0e 18 19 0c 17 00 1b 00 1e 1e 12 1b 14 02 15 1e 16 06 0d 1a 18 06 19 0a 00
page 92: 7f 7f 7f 7f 8b 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f d0 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 93: 12 04 12 0f 1c 00 00 1c 17 1a 0a 09 00 12 1d 1a 12 0e 07 06 04 1c 1b 1c 1b 02 14 11 1a 12 0d 08
page 94: 7f ca 7f 7f 7f
page 95: 18 1d 1b 14 10 02 1b 16 0b 07 0b 0f 19 0b 04 10 0a 17 1c 09 09 01 06 1d 02 1c 08 1e 0d 15 1e 11
page 96: 7f 7f 7f 7f 7f 7f 7f 7f 7f c1 7f 7f 7f 7f 7f 7f 7f 81 7f 7f 7f 7f 7f 7f ed 7f 7f 7f 7f 7f 7f 7f
page 97: 1e 02 09 06 0e 03 00 0a 06 1a 0d 17 11 1a 02 00 15 1c 0a 0a 11 0f 17 01 04 08 07 0c 10 18 07 1d
page 98: 7f 9d 7f 7f 7f
page 99: 90 86 f3 e5 a6 d5 a7 85 cb 98 97 7f e2 d3 d7 9b 7f dc c2 bc a2 ad e8 f1 f7 e0 a1 ac a8 de 8f f5
page 100: 0f 19 02 10 02 0f 1d 02 14 0e 18 10 14 16 09 06 12 11 1e 13 0c 00 18 13 11 1a 00 06 13 0b 1c 1b
page 101: 7f 8e 7f
page 102: 11 0c 0b 08 0f 04 05 04 00 14 07 00 01 07 15 06 13 0b 0e 1b 07 09 11 1c 10 07 15 17 03 16 0d 01
page 103: 00
page 104: 7f fe 7f 7f 7f 7f 7f
page 105: 00
page 106: 09 0d 0a 02 08 11 03 03 03 07 1c 17 1d 13 1e 1c 1a 1a 0c 09 0d 04 03 06 1b 05 14 10 1c 0d 0a 10
page 107: 16 0f 10 1a 0d 14 05 14 02 1d 15 13 17 0c 0e 09 15 19 1e 15 0e 05 0e 13 19 13 12 19 1e 06 1d 0d
page 108: 0a 15 0d 0f 15 0d 09 04 0b 08 17 16 12 0b 14 08 16 13 01 1e 1b 1c 0b 07 19 11 1a 0f 14 10 06 19
page 109: 04 0e 0d 0f 15 15 15 1d 18 17 0d 19 1d 15 02 14 0f 06 0b 18 14 0c 15 16 0d 1b 0d 05 1a 17 16 18
page 110: 17 04 0e 0b 1b 12 12 1d 0d 06 17 1e 03 11 17 13 0f 15 1d 18 1c 1d 02 1a 1e 18 06 05 13 14 12 13
page 111: 07 1b 17 0c 0a 11 12 05 0f 1d 0e 0c 1c 1e 1d 01 1a 06 0a 1b 03 04 08 06 0a 16 13 04 17 1c 12 05
page 112: 00 1b 08 0f 05 00 19 00 10 14 0c 08 1e 05 01 1c 00 1b 10 1d 00 08 1b 17 0d 01 1e 15 00 12 05 05
page 113: 7f 7f 7f 7f 7f 7f 7f 7f 7f fc dd 7f
page 114: 00
page 115: 7f 7f 7f 7f 7f d6 7f
page 116: 0c 0a 15 1d 1a 0f 0c 14 06 1e 08 06 10 11 03 06 04 03 0b 04 0f 1c 14 0c 04 07 09 0c 02 11 1d 0a
page 117: 7f b5 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 118: 00
page 119: 7f 7f 7f 7f 7f ef 7f 7f 7f 7f 7f 7f 7f a3 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 120: 18 17 0a 0a 1c 09 0f 17 04 0f 07 1b 1b 06 01 11 14 13 0b 02 16 05 03 07 1a 13 0e 02 1b 0c 03 05
page 121: 17 02 11 0f 1c 10 1b 00 0f 18 00 17 14 18 0e 04 01 0f 19 0c 01 17 19 00 0f 1a 03 0a 1b 03 0b 0c
page 122: 16 08 0e 0e 13 08 1e 0e 01 05 0a 19 0e 04 17 1b 14 04 15 0b 04 17 18 0a 1b 1d 1a 0e 10 17 17 07
page 123: 08 08 08 01 0e 1b 08 16 04 1d 0d 05 0f 1d 1a 08 11 1b 01 01 0a 00 0e 10 11 09 05 1e 1c 0c 05 0c
page 124: 07 06 02 15 17 1a 15 1d 08 15 02 04 01 10 0d 0c 1b 0a 13 17 1c 16 1c 1d 18 0c 1d 1a 16 00 08 12
page 125: 1c 07 07 17 02 0a 02 02 07 09 1e 1a 10 02 1b 0b 18 0a 1e 0e 06 1c 18 05 08 0a 08 1c 09 13 09 09
page 126: 02 06 07 00 19 0f 1b 05 14 1d 0c 0d 0e 17 03 0c 1e 18 1a 0d 01 1e 09 17 0f 12 06 1e 18 03 19 16
page 127: 15 0f 19 0c 06 01 0f 16 0d 09 1b 04 13 1b 15 09 1e 19 10 18 17 00 0b 0e 09 04 0c 0f 05 09 01 17

8

Student ID: _____________

You are told that thepage directory is located withinpage 99(decimal).

Assume we are translating the virtual address 0x778e, whichis a valid virtual address for the process in question.
The memory dump above has no bits flipped to some incorrect value; rather, we will consider cases where things
go wrong and discuss exactly which bit in memory must be flipped to cause the “wrong” thing to occur.

(a) Before flipping any bits, please translate the virtual address 0x778e; show both the resulting physical
address and value that is read from memory if accessing said address. Be detailed and show your work!

Now we’re going to talk about what would happen if some bits get flipped in memory. In this case, you are an
analyst, and are trying to separate rumor from truth.

(b) You hear about about a case where bits in thepage directory get flipped and cause all translations to be
invalid. Is this possible? If so, what bits need to be flipped?If not, why not?

(c) You also hear about a case where bits are flipped inpage table entriessuch that a load toany virtual
address always returns the value 0x00. Is this possible? If so, how could it happen? If not, why not?

(d) Finally, you hear about a problem where a bit flip leads to aphysical address that is greater than 12 bits
long. Is this possible? If so, how could it happen? If not, whynot?

9

Student ID: _____________

4. Iron TLB.

One version of the Iron system has a TLB. In this case, the TLB structure looks like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VPN G ASID

PFN C D V

Figure 1: AMIPS Iron TLB Entry.

The VPN and PFN fields should be self-explanatory, as should the V field (valid); the ASID field (an address-
space identifier field); and the D field (dirty); ignore any other fields.

On this system, Iron OS has a software-managed TLB. Thus, theOS is responsible for installing the correct
translation when a TLB miss occurs. When finished with the update to the TLB, the OS returns from a trap, and
the hardware retries the instruction.

Unfortunately, just before Iron OS updates the TLB, sometimes a bit gets flipped and thus the wrong translation
ends up in the TLB! For each of the following fields, both (1)describe what the field is usedfor and (2)explain
what you think would happen if a bit gets flipped in said field just before the OS installs the entry in the TLB:

(a) VPN:

i. What is the VPN field for?

ii. What would happen if a bit in the VPN got flipped?

(b) PFN: (same questions)

i. What is the PFN field for?

ii. What would happen if a bit in the PFN got flipped?

10

Student ID: _____________

(c) ASID: (same questions)

i. What is the ASID field for?

ii. What would happen if a bit in the ASID got flipped?

(d) Valid: (same questions)

i. What is the Valid bit for?

ii. What would happen if the valid bit got flipped?

(e) Dirty: (same questions)

i. What is the Dirty bit for?

ii. What would happen if the dirty bit got flipped?

11

Student ID: _____________

5. Iron Page Replacement.

The Iron OS page replacement algorithm usesreferencebits to approximate LRU.

(a) Why does Iron OS need to approximate LRU? Why not just implement LRU directly?

(b) How does a scheme with reference bits work? Describe.

(c) Assume some reference bits get flipped by accident. What problem(s) would arise? Would the system
work correctly despite these bit flips?

(d) The page table also haspresencebits. Describe how presence bits work, and why they are needed.

(e) Assume some presence bits get flipped by accident. What problem(s) would arise? Would the system work
correctly despite these bit flips?

12

Student ID: _____________

6. Towards a Real Iron OS.

In this last question, we discuss how we might actually deal with memory corruption, in specific with the page
tables of the system.

To make the problem more tractable, assume the following:

• A bit flip only occurs once per day, to some random bit in one of your page tables (thus, the bit flip never
happens to code, which is put in higher quality memory that has extra protection against such flips).

• This version of Iron OS (without any special protection) uses a simplelinear page table(per process) and
a software-managed TLB.

How would you change your page table structure so that you canboth detect and recover from a bit flip in
memory? How would your TLB handler access this data structure to work correctly despite bit flips? (the more
details here, the better)

13

