
CS-537: Midterm (Spring 2018)

Mission Impossible

Please Read All Questions Carefully!

There are 16 numbered pages, 30 Problems, and 150 answers to fill in.
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Directions

With the operating system, all is possible, or is it?

In this exam, we’ll explore what is possible and what isn’t, in touching on topics as heady

as concurrency and as detailed as page-based memory virtualization.

Most of the questions ask simply: is this outcome possible, or not? A few veer from this

basic structure, because nothing is perfect in life, even 537 exams.

Your mission, should you choose to accept it: Answer all of the questions below cor-

rectly and without fear. Fill in only A or B for each question (not both!). And, most

importantly, do so in pencil.

(and the famous Mission Impossible theme song starts .... now!)

Important stuff:

• Fill in your name and student ID carefully on the answer sheet.

• Fill in 0 for Special Code A if you are a graduate student, 1 for Special Code A if

you are an undergraduate (this is just for data analysis, it doesn’t affect your grade).

• Fill out A or B (but not both!) for each of 150 questions.

• Color each oval for A or B completely; don’t use a checkmark, box around the oval,

or other weird things that only a desperate student can think of.

• Fill in the oval with pencil, not pen.

• If you skip a question, be careful and make sure to fill in the correct bubbles! Pay

careful attention to numbering.
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Problem I: A program’s main function is as follows:

int main(int argc, char *argv[]) {

char *str = argv[1];

while (1)

printf("%s", str);

return 0;

}

Two processes, both running instances of this program, are currently running (you can assume nothing

else of relevance is, except perhaps the shell itself). The programs were invoked as follows, assuming a

“parallel command” as per project 2a (the wish shell):

wish> main a && main b

Below are possible (or impossible?) screen captures of some of the output from the beginning of the run

of the programs. Which of the following are possible? To answer: Fill in A for possible, B for not possible.

Problem I:

1. abababab ...

2. aaaaaaaa ...

3. bbbbbbbb ...

4. aaaabbbb ...

5. bbbbaaaa ...

Problem II: Here is source code for another program, called increment.c:

int value = 0;

int main(int argc, char *argv[]) {

while (1) {

printf("%d", value);

value++;

}

return 0;

}

While increment.c is running, another program, reset.c, is run once as a separate process. Here is the

source code of reset.c:

int value;

int main(int argc, char *argv[]) {

value = 0;

return 0;

}

Which of the following are possible outputs of the increment process?

To answer: Fill in A for possible, B for not possible.

Problem II:

6. 012345678 ...

7. 012301234 ...

8. 012345670123 ...

9. 01234567891011 ...

10. 123456789 ...
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Problem III: A concurrent program (with multiple threads) looks like this:

volatile int counter = 1000;

void *worker(void *arg) {

counter--;

return NULL;

}

int main(int argc, char *argv[]) {

pthread_t p1, p2;

pthread_create(&p1, NULL, worker, NULL);

pthread_create(&p2, NULL, worker, NULL);

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("%d\n", counter);

return 0;

}

Assuming pthread create() and pthread join() all work as expected (i.e., they don’t return

an error), which outputs are possible?

To answer: Fill in A for possible, B for not possible.

Problem III:

11. 0

12. 1000

13. 999

14. 998

15. 1002

Problem IV: Processes exist in a number of different states. We’ve focused upon a few (Running, Ready,

and Blocked) but real systems have slightly more. For example, xv6 also has an Embryo state (used when

the process is being created), and a Zombie state (used when the process has exited but its parent hasn’t yet

called wait() on it).

Assuming you start observing the states of a given process at some point in time (not necessarily from

its creation, but perhaps including that), which process states could you possibly observe?

Note: once you start observing the process, you will see ALL states it is in, until you stop sampling.

To answer: Fill in A for possible, B for not possible.

Problem IV:

16. Running, Running, Running, Ready, Running, Running, Running, Ready

17. Embryo, Ready, Ready, Ready, Ready, Ready

18. Running, Running, Blocked, Blocked, Blocked, Running

19. Running, Running, Blocked, Blocked, Blocked, Ready, Running

20. Embryo, Running, Blocked, Running, Zombie, Running
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Problem V: The following code is shown to you:

int main(int argc, char *argv[]) {

printf("a");

fork();

printf("b");

return 0;

}

Assuming fork() succeeds and printf() prints its outputs immediately (no buffering occurs), what are

possible outputs of this program?

To answer: Fill in A for possible, B for not possible.

Problem V:

21. ab

22. abb

23. bab

24. bba

25. a

Problem VI: Assuming fork() might fail (by returning an error code and not creating a new process)

and printf() prints its outputs immediately (no buffering occurs), what are possible outputs of the same

program as above?

To answer: Fill in A for possible, B for not possible.

Problem VI:

26. ab

27. abb

28. bab

29. bba

30. a
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Problem VII: Here is even more code to look at. Assume the program /bin/true, when it runs, never

prints anything and just returns 0 in all cases.

int main(int argc, char *argv[]) {

int rc = fork();

if (rc == 0) {

char *my_argv[] = { "/bin/true", NULL };

execv(my_argv[0], my_argv);

printf("1");

} else if (rc > 0) {

wait(NULL);

printf("2");

} else {

printf("3");

}

return 0;

}

Assuming all system calls succeed and printf() prints its outputs immediately (no buffering occurs),

what outputs are possible?

To answer: Fill in A for possible, B for not possible.

Problem VII:

31. 123

32. 12

33. 2

34. 23

35. 3

Problem VIII: Same code snippet as in the last problem, but new question: assuming any of the system calls

above might fail (by not doing what is expected, and returning an error code), what outputs are possible?

Again assume that printf() prints its outputs immediately (no buffering occurs).

To answer: Fill in A for possible, B for not possible.

Problem VIII:

36. 123

37. 12

38. 2

39. 23

40. 3
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Problem IX: Assume, for the following jobs, a FIFO scheduler and only one CPU. Each job has a “required”

runtime, which means the job needs that many time units on the CPU to complete.

Job A arrives at time=0, required runtime=X time units

Job B arrives at time=5, required runtime=Y time units

Job C arrives at time=10, required runtime=Z time units

Assuming an average turnaround time between 10 and 20 time units (inclusive), which of the following

run times for A, B, and C are possible?

To answer: Fill in A for possible, B for not possible.

Problem IX:

41. A=10, B=10, C=10

42. A=20, B=20, C=20

43. A=5, B=10, C=15

44. A=20, B=30, C=40

45. A=30, B=1, C=1

Problem X: Assume the following schedule for a set of three jobs, A, B, and C:

A runs first (for 10 time units) but is not yet done

B runs next (for 10 time units) but is not yet done

C runs next (for 10 time units) and runs to completion

A runs to completion (for 10 time units)

B runs to completion (for 5 time units)

Which scheduling disciplines could allow this schedule to occur?

To answer: Fill in A for possible, B for not possible.

Problem X:

46. FIFO

47. Round Robin

48. STCF (Shortest Time to Completion First)

49. Multi-level Feedback Queue

50. Lottery Scheduling

Problem XI: The Multi-level Feedback Queue (MLFQ) is a fancy scheduler that does lots of things. Which

of the following things could you possibly say (correctly!) about the MLFQ approach?

To answer: Fill in A for things that are true about MLFQ, B for things that are not true about MLFQ.

Problem XI:

51. MLFQ learns things about running jobs

52. MLFQ starves long running jobs

53. MLFQ uses different length time slices for jobs

54. MLFQ uses round robin

55. MLFQ forgets what it has learned about running jobs sometimes
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Problem XII: The simplest technique for virtualizing memory is known as dynamic relocation, or “base-

and-bounds”. Assuming the following system characteristics:

- a 1KB virtual address space

- a base register set to 10000

- a bounds register set to 100

Which of the following physical memory locations can be legally accessed by the running program?

To answer: Fill in A for legally accessible locations, B for locations not legally accessible by this program.

Problem XII:

56. 0

57. 1000

58. 10000

59. 10050

60. 10100

Problem XIII: Assuming the same set-up as above (1 KB virtual address space, base=10000, bounds=100),

which of the following virtual addresses can be legally accessed by the running program? (i.e., which are

valid?)

To answer: Fill in A for valid virtual addresses, B for not valid ones.

Problem XIII:

61. 0

62. 1000

63. 10000

64. 10050

65. 10100

Problem XIV: Segmentation is a generalization of base-and-bounds. Which possible advantages does seg-

mentation have as compared to base-and-bounds?

To answer: Fill in A for cases where the statement is true about segmentation and (as a result) segmentation

has a clear advantage over base-and-bounds, B otherwise.

Problem XIV:

66. Faster translation

67. Less physical memory waste

68. Better sharing of code in memory

69. More hardware support needed to implement it

70. More OS issues to handle, such as compaction
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Problem XV: Assume the following in a simple segmentation system that supports two segments: one

(positive growing) for code and a heap, and one (negative growing) for a stack:

- Virtual address space size 128 bytes (small!)

- Physical memory size 512 (small!)

Segment register information:

Segment 0 base (grows positive) : 0

Segment 0 limit : 20 (decimal)

Segment 1 base (grows negative) : 0x200 (decimal 512)

Segment 1 limit : 20 (decimal)

Which of the following are valid virtual memory accesses?

To answer: Fill in A for valid virtual accesses, B for non-valid accesses.

Problem XV:

71. 0x1d (decimal: 29)

72. 0x7b (decimal: 123)

73. 0x10 (decimal: 16)

74. 0x5a (decimal: 90)

75. 0x0a (decimal: 10)

Problem XVI: In a simple page-based virtual memory, with a linear page table, assume the following:

- virtual address space size is 128 bytes (small!)

- physical memory size of 1024 bytes (small!)

- page size of 16 bytes

The format of the page table: The high-order (leftmost) bit is the VALID bit.

If the bit is 1, the rest of the entry is the PFN.

If the bit is 0, the page is not valid.

Here are the contents of the page table (from entry 0 down to the max size)

[0] 0x80000034

[1] 0x00000000

[2] 0x00000000

[3] 0x00000000

[4] 0x8000001e

[5] 0x80000017

[6] 0x80000011

[7] 0x8000002e

Which of the following virtual addresses are valid?

To answer: Fill in A for valid virtual accesses, B for non-valid accesses.

Problem XVI:

76. 0x34 (decimal: 52)

77. 0x44 (decimal: 68)

78. 0x57 (decimal: 87)

79. 0x18 (decimal: 24)

80. 0x46 (decimal: 70)
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Problem XVII: TLBs are a critical part of modern paging systems. Assume the following system:

- page size is 64 bytes

- TLB contains 4 entries

- TLB replacement policy is LRU (least recently used)

Each of the following represents a virtual memory address trace, i.e., a set of virtual memory addresses

referenced by a program. In which of the following traces will the TLB possibly help speed up execution?

To answer: Fill in A for cases where the TLB will speed up the program, B for the cases where it won’t.

Problem XVII:

81. 0, 100, 200, 1, 101, 201, ... (repeats in this pattern)

82. 0, 100, 200, 300, 0, 100, 200, 300, ... (repeats)

83. 0, 1000, 2000, 3000, 4000, 0, 1000, 2000, 3000, 4000, ... (repeats)

84. 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, ... (repeats)

85. 300, 200, 100, 0, 300, 200, 100, 0, ... (repeats)

Problem XVIII: Which of the following statements are true statements about various page-replacement

policies?

To answer: Fill in A for true statements, B for false ones.

Problem XVIII:

86. The LRU policy always outperforms the FIFO policy.

87. The OPT (optimal) policy always performs at least as well as LRU.

88. A bigger cache’s hit percentage is always greater than or equal to a smaller cache’s hit percentage, if

they are using the same replacement policy.

89. A bigger cache’s hit percentage is always greater than or equal to a smaller cache’s hit percentage, if

they are using the LRU replacement policy.

90. Random replacement is always worse than LRU replacement.

Problem XIX: Assume a memory that can hold 4 pages, and an LRU replacement policy. The first four

references to memory are to pages 6, 7, 7, 9.

Assuming the next five accesses are to pages 7, 9, 0, 4, 9, which of those will hit in memory? (and which

will miss?)

To answer: Fill in A for cache hits, B for misses.

Problem XIX:

91. 7

92. 9

93. 0

94. 4

95. 9
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Problem XX: Assume this attempted implementation of a lock:

void init(lock_t *mutex) {

mutex->flag = 0; // 0 -> lock is available, 1 -> held

}

void lock(lock_t *mutex) {

while (mutex->flag == 1) // L1

; // L2

mutex->flag = 1; // L3

}

void unlock(lock_t *mutex) {

mutex->flag = 0; // L4

}

Assume 5 threads are competing for this lock. How many threads can possibly acquire the lock?

To answer: Fill in A for possible, B for not possible.

Problem XX:

96. 1

97. 2

98. 3

99. 4

100. 5

Problem XXI: Here is a ticket lock:

typedef struct __lock_t {

int ticket, turn;

} lock_t;

void lock_init(lock_t *lock) {

lock->ticket = 0;

lock->turn = 0;

}

void lock(lock_t *lock) {

int myturn = FetchAndAdd(&lock->ticket);

while (lock->turn != myturn)

; // spin

}

void unlock(lock_t *lock) {

lock->turn = lock->turn + 1;

}

Assuming a maximum of 5 threads in the system, and further assuming the ticket lock is used “properly”

(i.e., threads acquire and release it as expected), what values of lock->ticket and lock->turn are

possible? (at the same time) To answer: Fill in A for possible, B for not possible.

Problem XXI:

101. ticket=0 and turn=0

102. ticket=0 and turn=1

103. ticket=1 and turn=0

104. ticket=16 and turn=5

105. ticket=1000 and turn=999

11



Problem XXII: Assume the following list insertion code, which inserts into a list pointed to by shared global

variable head:

int List_Insert(int key) {

node_t *n = malloc(sizeof(node_t));

if (n == NULL) { return -1; }

n->key = key;

n->next = head;

head = n;

return 0;

}

This code is executed by each of three threads exactly once, without adding any synchronization primi-

tives (such as locks). Assuming malloc() is thread-safe (i.e., can be called without worries of data races)

and that malloc() returns successfully, how long might the list be when these three threads are finished

executing? (assume the list was empty to begin)

To answer: Fill in A for possible, B for not possible.

Problem XXII:

106. 0

107. 1

108. 2

109. 3

110. 4

Problem XXIII: Assume the following code, in which a “background malloc” allocates memory in a thread

and initializes it:

void *background_malloc(void *arg) {

int **int_ptr = (int *) arg;

*int_ptr = calloc(1, sizeof(int)); // allocates space for 1 int

**int_ptr = 10; // calloc: also zeroes memory

return NULL;

}

int main(int argc, char *argv[]) {

pthread_t p1;

int *result = NULL;

pthread_create(&p1, NULL, background_malloc, &result);

printf("%d\n", *result);

return 0;

}

The code unfortunately is buggy. What are the possible outcomes of this code? Assume the calls to

pthread create() and calloc() succeed, and that a NULL pointer dereference crashes reliably.

To answer: Fill in A if possible, B for not possible.

Problem XXIII:

111. The code prints out 0

112. The code prints out 10

113. The code prints out 100

114. The code crashes

115. The code hangs forever
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Problem XXIV: Here is some more multi-threaded code:

void *printer(void *arg) {

char *p = (char *) arg;

printf("%c", *p);

return NULL;

}

int main(int argc, char *argv[]) {

pthread_t p[5];

for (int i = 0; i < 5; i++) {

char *c = malloc(sizeof(char));

*c = ’a’ + i; // hint: ’a’ + 1 = ’b’, etc.

pthread_create(&p[i], NULL, printer, (void *) c);

}

for (int i = 0; i < 5; i++)

pthread_join(p[i], NULL);

return 0;

}

Assuming calls to all library routines succeed, which of the following outputs are possible?

To answer: Fill in A if possible, B for not possible.

Problem XXIV:

116. abcde

117. edcba

118. cccde

119. eeeee

120. aaaaa

Problem XXV: Assume the same printer() function (from above), but this slightly changed main():

int main(int argc, char *argv[]) {

pthread_t p[5];

for (int i = 0; i < 5; i++) {

char c = ’a’ + i;

pthread_create(&p[i], NULL, printer, (void *) &c);

}

for (int i = 0; i < 5; i++)

pthread_join(p[i], NULL);

return 0;

}

Assuming calls to all library routines succeed, which of the following outputs are possible?

To answer: Fill in A if possible, B for not possible.

Problem XXV:

121. abcde

122. edcba

123. cccde

124. eeeee

125. aaaaa
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Problem XXVI: Assume the following multi-threaded memory allocator, roughly sketched out as follows:

int bytes_left = MAX_HEAP_SIZE;

pthread_cond_t c;

pthread_mutex_t m;

void *allocate(int size) {

pthread_mutex_lock(&m);

while (bytes_left < size)

pthread_cond_wait(&c, &m);

void *ptr = ...; // get mem from internal data structs

bytes_left -= size;

pthread_mutex_unlock(&m);

return ptr;

}

void free(void *ptr, int size) {

pthread_mutex_lock(&m);

bytes_left += size;

pthread_cond_signal(&c);

pthread_mutex_unlock(&m);

}

Assume all of memory is used up (i.e., bytes left is 0). Then:

• One thread (T1) calls allocate(100)

• Some time later, a second thread (T2) calls allocate(1000)

• Finally, some time later, a third thread (T3) calls free(200)

Assuming all calls to thread library functions work as expected, which of the following are possible just

after this sequence of events has taken place?

To answer: Fill in A if possible, B for not possible.

Problem XXVI:

126. T1 and T2 remain blocked inside allocate()

127. T1 becomes unblocked, gets 100 bytes allocated, and returns from allocate()

128. T2 becomes unblocked, gets 1000 bytes allocated, and returns from allocate()

129. T3 becomes blocked inside free()

130. T1, T2, and T3 become deadlocked
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Problem XXVII: A Semaphore is a useful synchronization primitive. Which of the following statements

are true of semaphores?

To answer: Fill in A if true, B for not true.

Problem

XXVII:

131. Each semaphore has an integer value

132. If a semaphore is initialized to 1, it can be used as a lock

133. Semaphores can be initialized to values higher than 1

134. A single lock and condition variable can be used in tandem to implement a semaphore

135. Calling sem post() may block, depending on the current value of the semaphore

Problem XXVIII: Here is the classic semaphore version of the producer/consumer problem:

void *producer(void *arg) { // core of producer

for (i = 0; i < num; i++) {

sem_wait(&empty);

sem_wait(&mutex);

put(i);

sem_post(&mutex);

sem_post(&full);

}

}

void *consumer(void *arg) { // core of consumer

while (!done) {

sem_wait(&full);

sem_wait(&mutex);

int tmp = get(i);

sem_post(&mutex);

sem_post(&empty);

// do something with tmp ...

}

}

For the following statements about this working solution, which statements are true, and which are not?

To answer: Fill in A if true, B for not true.

Problem

XXVIII:

136. The semaphore full must be initialized to 0

137. The semaphore full must be initialized to 1

138. The semaphore empty must be initialized to 1

139. The semaphore empty can be initialized to 1

140. The semaphore mutex must be initialized to 1
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Problem XXIX: One way to avoid deadlock is to schedule threads carefully. Assume the following charac-

teristics of threads T1, T2, and T3:

• T1 (at some point) acquires and releases locks L1, L2

• T2 (at some point) acquires and releases locks L1, L3

• T3 (at some point) acquires and releases locks L3, L1, and L4

For which schedules below is deadlock possible?

To answer: Fill in A if deadlock is possible, B for not possible.

Problem XXIX:

141. T1 runs to completion, then T2 to completion, then T3 runs

142. T1 and T2 run concurrently to completion, then T3 runs

143. T1, T2, and T3 run concurrently

144. T3 runs to completion, then T1 and T2 run concurrently

145. T1 and T3 run concurrently to completion, then T2 runs

Problem XXX: The multi-level page table is something that cannot be avoided. No matter what you do,

there it is, bringing joy and horror to us all. In this last question, you’ll get your chance at a question about

this foreboding structure. Fortunately, you don’t have to perform a translation. Instead, just answer these

true/false questions about the multi-level page table.

To answer: Fill in A if true, B for not true.

Problem XXX:

146. A multi-level page table may use more pages than a linear page table

147. It’s easier to allocate pages of the page table in a multi-level table (as compared to a linear page table)

148. Multi-level page table lookups take longer than linear page table lookups

149. With larger virtual address spaces, usually more levels are used

150. TLBs are useful in making multi-level page tables even smaller
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