pthread mutex_t m =
pthread cond t c =

a condition variable (CV) is:
- queue of waiting threads

a single lock is associated with a CV

PTHREAD MUTEX INITIALIZER;
PTHREAD COND_ INITIALIZER;

(sometimes N CVs per lock)

wait (cond t *cv, mutex t *lock)

- assumes the lock is held when wait() is called)

- puts caller to sleep + releases the lock (atomically)

- when awoken, reacquires lock before returning

signal (cond t *cv)

- wake a single waiting thread (if >= 1 thread is waiting)

- if there is no waiting thread, Jjust return w/o doing anything

A CV is usually PAIRED with some kind
- e.g., integer
int done = 0;

SOLUTION 1: Spin

void *child(void *arg) {

int

printf ("child\n") ;
done = 1;
return NULL;

main (int argc,
pthread t p;
printf ("parent: begin\n");
Pthread create(&p, 0, child,
while (done == 0)

; // spin (inefficient)
printf ("parent: end\n");
return 0;

char *argv[]) {

Q)

SOLUTION 3: No State Variable

void *child(void *arg) {

int

printf ("child\n") ;
Pthread mutex lock (&m);
Pthread cond signal (&c);
Pthread mutex unlock (&m) ;
return NULL;

main (int argc,
pthread t p;
printf ("parent: begin\n");
Pthread create(&p, 0, child,
Pthread mutex lock (&m);
Pthread cond wait (&c, é&m);
Pthread mutex unlock (&m) ;
printf ("parent: end\n");
return 0;

char *argv[]) {

0);

state variable

(which indicates the state of the program)

SOLUTION 2: No Lock

void *child(void *arg) {

int

printf ("child\n");

done = 1;
Pthread cond signal (&c);
return NULL;

main (int argc,
pthread t p;
printf ("parent: begin\n");
Pthread create(&p, 0, child,
while (done == 0) {
Pthread cond wait (&c,

char *argv([]) {

0);

&m) ;
}

printf ("parent:
return 0;

end\n") ;

SOLUTION 4: Actually Works

void *child(void *arg) {

int

printf ("child\n") ;
Pthread mutex lock (&m);
done = 1;
Pthread cond signal (&c);
Pthread mutex unlock (&m);
return NULL;

main (int argc,
pthread t p;
printf ("parent: begin\n");

char *argv[]) {

Pthread create(&p, 0, child, 0);
Mutex lock (&m) ;
while (done == 0)
Cond wait (&c, &m);
Mutex unlock (&m) ;
printf ("parent: end\n");

return 0O;



