Using Threads in Interactive Systems: A Case Study

Carl Hauser, Christian Jacobi, Marvin Theimer, Brent Welch and Mark Weiser

Computer Science Laboratory
Xerox PARC
3333 Coyote Hill Road
Palo Alto, California 94304

Abstract. We describe the results of examining two
large research and commercial systems for the ways
that they use threads. We used three methods:
analysis of macroscopic thread statistics, analysis of
the microsecond spacing between thread events, and
reading the implementation code. We identify ten
different paradigms of thread usage: defer work,
general pumps, slack processes, sleepers, one-shots,
deadlock avoidance, rejuvenation, serializers,
encapsulated fork and exploiting parallelism. While
some, like defer work, are well known, others have
not been previously described. Most of the
paradigms cause few problems for programmers and
help keep the resulting system implementation
understandable. The slack process paradigm is both
particularly effective in improving system
performance and particularly difficult to make work
well. We observe that thread priorities are difficult
to use and may interfere in unanticipated ways with
other thread primitives and paradigms. Finally, we
glean from the practices in this code several possible
future research topics in the area of thread
abstractions.

1. Introduction

Threads sharing an address space are becoming
more widely available in popular operating systems
such as Solaris 2.x, 0S2/2.x, Windows NT and
SysVR4 [Powell91][Custer93]. Xerox PARC's Cedar

We thank all the hundreds of Cedar and GVX programmers who
made this work possible. Alan Demers created the PCR thread
package and participated 1n many discussions regarding thread
primitives and scheduling. John Corwin and Chris Uhler
assisted us in building and using instrumented versions of GVX
Portions of this work were supported by Xerox, and by ARPA
under contract DABT63-91-C-0027.

Permission to copy without fee all or part of this matenal I1s
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

SIGOPS ‘93/12/93/N.C., USA

© 1993 ACM 0-89791-632-8/93/0012...$1.50

94

programming environment and Xerox's STAR,
ViewPoint, GlobalView for X Windows and
DocuPrint products have used lightweight threads
for over 10 years [Smith82}[Swinehart86]. This
paper reports on an inspection and analysis of the
code developed at Xerox in an attempt to detect
common paradigms and common mistakes of
programming with threads. Our analysis is both
static, from reading many lines of ancient and
modern modules, and dynamic, using a number of
tools we built for detailed thread inspection. We
distinguish two systems that developed
independently although most of our remarks apply
to both. One, originally a research system but now
underlying a number of products as well, we call
Cedar. The other, a product system originally
derived from the same base as Cedar but relatively
unconnected to it for over ten years, we call GVX.

We believe that the systems we examined are the
largest and longest-used thread-based interactive
systems in everyday use in the world. They are both
in use and under continual development. They
contain approximately 2.5 million lines of code, in
10,000 modules written by hundreds of people,
declaring more than 1000 monitors and monitored
record types and over 300 condition variables. They
mostly run as very large (working sets of 10's of
megabytes) shared-memory, multi-application
systems. They have been ported to a variety of
processors and multiprocessors, including the .25 to
5 MIPS Xerox D-machines in the 1980's and 5 to 100
MIPS processors of the early 1990's. Our
examination of them reveals the kinds of thread
facilities and practices that the programmers of
these systems found useful and also the kinds of
thread programming mistakes that even this
experienced community still makes.

Our analysis is subject to two unavoidable biases.
First, the programmers of these systems may not be
representative—for instance, one community
consisted primarily of PhD researchers. Second, any
group of people develop habits of work—idioms—
that may be unrelated to best practice, but are
simply "how we do it here". Although our report
draws on code written by two relatively independent
communities, comparing and contrasting the two is
beyond the scope of this paper.

We examined the systems running on the Portable
Common Runtime on top of Unix [Weiser89]. PCR
provides the usual primitives: threads sharing a
single address space, monitor locks, condition
variables, fork and join. Section 2 describes the
primitives in more detail.

Although these systems do run on multiprocessors,
this paper emphasizes the role of threads in program
structuring rather than how they are used to exploit
multiprocessors [Owicki89).

This paper is not, for the most part, a statistical
analysis of thread behavior. We focus mostly on the
microscopic view of individual paradigms and
critical path performance. For example, the time
between when a key 1is pressed and the
corresponding glyph is echoed to a window is very
important to the usability of these systems.
Developing an understanding of how individual
threads are interacting in accomplishing this task
helps to understand the observed performance.

Information for this paper came from three sources.
An initial analysis of the dynamic behavior of our
systems in terms of macroscopic thread statistics is
presented in Section 3. A more detailed analysis of
dynamic behavior was obtained from microsecond-
resolution information gathered about thread
events and scheduling events in the Unix kernel.
The kinds of thread events we examined included
forks, yields, (thread) scheduler switches, monitor
lock entries, and condition variable waits. Finally,
to develop a database of static uses of threads we
used grep to locate all uses of thread primitives and
then read the surrounding code. This reading led us
to further searching for uses of modules that provide
specialized access to threads (for example, the Cedar
package PeriodicalFork). The understanding
gained from these three information sources
eventually led to the classifications of thread
paradigms described in Section 4.

Sections 5 and 6 present some engineering lessons—
both for implementors using threads and for
implementors of thread systems-—from this study.
Our conclusions and some suggestions for future
work are given in Section 7.

2. Thread model

Lampson and Redell describe the Mesa language's
thread model and provide rationale for many of the
design choices [Lampson80]. Here, we summarize
the salient features as used in our systems.

The Mesa thread model supports multiple, light-
weight, pre-emptively scheduled threads that share
an address space. The FORK operation creates a new
thread to carry out the FORK's procedure-invocation
argument. FORK returns a thread value. The JOIN
operation on a thread value returns the value
returned by the corresponding FORK's procedure

95

invocation. A thread may be JOINed at most once. If
a thread will not be JOINed it should be DETACHed,
which tells the thread implementation that it can
recover the resources of the thread when it
terminates.

The language provides monitors and condition
variables for synchronizing thread activities. A
monitor is a set of procedures, or module, that share
a mutual exclusion lock, or mutex. The mutex
protects any data managed by the module by
ensuring that only a single thread is executing
within the medule at any instant. Other threads
wanting to enter the monitor are enqueued on the
mutex. The Mesa compiler automatically inserts
locking code into monitored procedures. A variant
on this scheme, associating locks with data
structures instead of with modules, is occasionally
used in order to obtain finer grain locking.

Condition variables (CVs) give more explicit control
of thread scheduling. Each CV represents a state of
the module's data structures (a condition) and a
queue of threads waiting for that condition to
become true. A thread uses the WAIT operation on a
CV if it has to wait until the condition holds. WAIT
operations may time out depending on the timeout
interval associated with the CV. A thread uses
NOTIFY or BROADCAST to signal waiting threads that
the condition has been achieved. The compiler
enforces the rule that CV operations are only
invoked with the monitor lock held. The WAIT
operation atomically releases the monitor lock and
adds its calling thread to the CV's wait queue.
NOTIFY causes a single thread that is waiting on the
CV's wait queue to become runnable—exactly one
waiter wakens behavior. (Note that some thread
packages define their analog of NOTIFY to have at
least one waiter wakens behavior [Birrell91])
BROADCAST causes all threads that are waiting on
the CV to become runnable. In either case, threads
must compete for the monitor's mutex before
reentering the monitor.

Unlike the monitors originally described by Hoare
[Hoare74], the Mesa thread model does not
guarantee that the condition associated with a CV is
satisfied when a WAIT completes. If BROADCAST is
used, for example, a different thread might acquire
the monitor lock first and change the state of the
program. Therefore a thread is responsible for
rechecking the condition after each WAIT. Thus, the
prototypical use of WAIT is inside a WHILE loop that
checks the condition, not inside an IF statement that
would only check the condition once. Programs that
obey the "WAIT only in a loop" convention are
insensitve to whether NOTIFY has at least one waiter
wakens behavior or exactly one waiter wakens
behavior as described above. Indeed, under this
convention BROADCAST can be substituted for
NOTIFY without affecting program correctness, so

NOTIFY is just a performance hint.

Threads have priorities that affect the scheduler.
The scheduler runs the highest priority runnable
thread and if there are several runnable threads at
the highest priority then round-robin is used among
them. If a system event causes a higher priority
thread to become runnable, the scheduler will
preempt the currently running thread, even if it
holds monitor locks. There are 7 priorities in all,
with the default being the middle priority (4).
Typically, lower priority is used for long running,
background work, while higher priority is used for
threads associated with devices or aspects of the
user interface, keeping the system responsive for
interactive work. A thread's initial priority is set
when it is created. It can change its own priority.

The timeslice interval and the CV timeout
granularity in the current implementation are each
50 milliseconds. The scheduler runs at least that
often, but also runs each time a thread blocks on a
mutex, waits on a CV, or calls the YIELD primitive.
The only purpose of the YIELD primitive is to cause
the scheduler to run (but see discussion later of
YieldButNotToMe). The scheduler takes less than
50 microseconds to switch between threads on a
Sparestation-2.

3. Dynamic thread behavior

One of the original motivations for our work was a
desire to understand the dynamic behavior of user-
level threads. Tor this purpose, we constructed an
instrumented version of PCR that measured the
number of threads in the system, thread lifetimes,
the run length distribution of threads and the rate
at which monitor locks and condition variables are
used. Analysis of the data obtained from this
instrumented system led to the realization that
there were a number of consistent patterns of thread
usage, which led to the static analysis on which this
paper is focused. To give the reader some
background and context for this static analysis, we
present a summary of our dynamic data below. This
data is based on a set of benchmarks intended to be
typical of user activity, including compilation,
formatting a document into a page description
language (like Postscript), previewing pages
described by a page description language and user
interface tasks (keyboarding, mousing and serolling

windows). All data was taken on a Sparcstation-2
running Sun05-4.1.3.

Looking at the dynamic thread behavior, we
observed several different classes of threads. There
were eternal threads that repeatedly waited on a
condition variable and then ran briefly before
waiting again. There were worker threads that
were forked to perform some activity, such as
formatting a document. Finally, there were short-
lived transient threads that were forked by some

96

long-lived thread, would run for a relatively short
while and then exit.

A Cedar or GVX world uses a moderate number of
threads. Consider Cedar first: an idle Cedar system
has about 35 eternal threads running in it and forks
a transient thread once a second on average.
Keyboard activity can cause up to 5 thread forks per
second, although most other user-interface activity
causes much smaller increases in thread forking
rates. While one of our benchmark applications
(document formatting) employed large numbers of
transient threads (forking 3.6 threads/sec.), the
other two compute-intensive applications we
examined caused thread-forking activity to decrease
by more than a factor of 3. In all our benchmarks,
the maximum number of threads concurrently
existing in the system never exceeded 41, although
users employ two to three times this many in
everyday work. Transient threads are by far the
most numerous resulting in an average lifetime for
non-eternal threads that is well under 1 second.

An idle GVX world exhibits noticeably different
behavior than just described. An idle system
contains 22 eternal threads and forks no additional
threads. In fact, no additional threads are forked for
any user interface activity, be it keyboard, mouse, or
windowing activity.

Table 1: Forking and thread-switching rates

Cedar Forks/sec Thread

Switches/sec

1dle Cedar 0.9 132
Keyboard input 5.0 269
Mouse movement 1.0 191
Window scrolling 0.7 172
Document formatting 3.6 171
Document previewing 1.6 222
Make program 0.3 170
Compile 0.3 135
GVX

Idle GVX 0 33

Keyboard input 0 60

Mouse movement 0 34

Window scrolling 0 43

The rate at which a Cedar system switches among
running threads varies from 130/sec. for an idle
system to around 270/sec for a system experiencing
heavy keyboard/mouse input activity. Thread
execution intervals (the lengths of time between
thread switches) exhibit a peak at about 3
milliseconds, with about 75% of all execution
intervals being between 0 and 5 milliseconds in
length. This is due to the very short execution
intervals of most eternal and transient threads. A
second peak is around 45 milliseconds, which is
related to the PCR time-slice period, which is 50
milliseconds. Transient and eternal thread activity

steals the first part of a timeslice with the
remainder going to worker threads.

While most execution intervals are short, longer
execution intervals account for most of the total
execution time in our systems. Between 20% and
50% of the total execution time during any period is
accumulated by threads running for periods of 45 to
50 milliseconds. We also examined the total
execution time contribution as a function of thread
priority. Only two patterns were evident: of the 7
available priority levels one wasn't used at all, and
user interface activity tended to wuse higher
priorities for its threads than did user-initiated
tasks such as compiling.

GVX switches among threads at a decidely lower
rate: an idle system switches only 33 times per
second, while heavy keyboard activity will drive the
rate up to 60/sec. The same bi-modal distribution of
execution intervals is exhibited as in Cedar:
between 50% and 70% of all execution intervals are
between 0 and 5 milliseconds in length with a
second peak around 45 milliseconds. Between 30%
and 80% of the total execution time during any
period is accumulated by threads running for
periods of 45 to 50 milliseconds.

GVX's use of thread priorities was noticeably
different than Cedar's. While Cedar’s core of long-
lived threads are relatively evenly distributed over
the four "standard" priority values of 1 to 4, GVX
sets almost all of its threads to priority level 3, using
the lower two priority levels only for a few
background helper tasks. Two of the five low-
priority threads in fact never ran during our
experiments. As with Cedar, one of the 7 priority
levels is never used. However, while Cedar uses
level 7 for interrupt handling and doesn't use level
5, GVX does the opposite. In both systems, priority
level 6 gets used by the system daemon that does
proportional scheduling. Cedar also uses level 6 for
its garbage collection daemon.

One interesting behavior that our Cedar thread
data exhibited was a variety of different forking
patterns. An idle Cedar system forks a transient
thread about once every 2 seconds. Each forked
thread, in turn, forks another transient thread.
Keyboard activity causes a transient thread to be
forked by the command-shell thread for every
keystroke. On the other hand, simply moving the
mouse around causes no threads to be forked. Even
clicking a mouse button (e.g. to scroll a window)
causes no additional forking activity. (However,
both keyboard activity and mouse motion cause
significant increases in activity by eternal threads.)
Scrolling a text window 10 times causes 3 transient
threads to be forked, one of which is the child of one
of the other transients.

Document formatting causes a great number of

97

transient threads to be forked by the main
formatting worker thread, whereas compilation and
document previewing cause a moderate number of

transient forks. While the compiler's and
previewer's transient threads simply run to
completion, each of the document formatter's

transient threads fork one or more additional
transient threads themselves. However, third
generation forked threads do not occur. In fact, none
of our benchmarks exhibited forking generations
greater than 2. That is, every transient thread was
either the child or grandchild of some worker or
long-lived thread.

Checking whether a program needs recompiling
(the Make program) does not cause any threads to be
forked (the command-shell thread gets used as the
main worker thread), except for garbage collection
and finalization of collected data objects. Each of
these activities causes a moderate number of first-
generation transient threads to be forked.

Table 2: Wait-CV and monitor entry rates

Cedar Waits/sec 9% timeouts ML-enters
per sec

Idle Cedar 121 82% 414
Keyboard input 185 48% 2557
Mouse movement 163 58% 1025
Window scrolling 115 69% 2032
Doc formatting 130 72% 2739
Doc previewing 157 56% 1335
Make program 158 61% 2218
Compile 119 82% 1365
GVX

Idle GVX 32 99% 366
Keyboard input 38 42% 1436
Mouse movement 33 96% 410
Window scrolling 25 61% 691

The rate at which locking and condition variable
primitives are used is another measure of thread
activity. Table 2 shows the rates for each
benchmark. The rate of waiting on CVs in Cedar
ranged from 115/second to 185/second, with 50% to
80% of these waits timing out rather than receiving
a wakeup notification. Monitors are entered much
more frequently, reflecting their use to protect data
structures (especially in reusable library packages).
Entry rates varied from 400/second for an idle
system to 2500/sec for a system experiencing heavy
keyboard activity to 2700/second for document
formatting. Contention was low, however, occuring
on 0.01% to 0.1% of all entries to monitors.

For GVX, the rate of waiting on CVs ranged from
32/second to 38/second, with 42% to 99% of these
waits timing out rather than receiving a wakeup
notification. Monitors are entered at rates between
366/sec and 1436/sec. Interestingly, contention for
monitor locks was sometimes significantly higher in

GVX than in Cedar, occuring 0.4% of the time when
scrolling a window and 0.2% of the time when heavy
keyboard traffic was present.

Table 3: Number of different CVs and monitor

locks used

Cedar #CVs # MLs
Idle Cedar 22 554
Keyboard input 32 918
Mouse movement 26 734
Window scrolling 30 797
Document formatting 46 1060
Document previewing 32 938
Make program 24 1296
Compile 36 2900
GVX

Idle GVX 5 48
Keyboard input 7 204
Mouse movement 5 52
Window scrolling 6 209

Typically, most of the monitor/condition variable
traffic is observed in about 10 to 15 different
threads, with the worker thread of a benchmark
activity dominating the numbers. The other active
threads exhibit approximately equal traffic. The
number of different monitors entered during the
benchmarks varies from 500 to 3000 as shown in
Table 3. In contrast, only about 20 to 50 different
condition variables are waited for in the course of
the benchmarks.

4. Thread paradigms

Birrell provides a good introduction to some of the
basic paradigms for thread use [Birrell91]. Here we
go further into more advanced paradigms, their
necessity and frequency in practice and the
problems of performance and correctness entailed by
these advanced usages.

Birrell suggests that forking a new thread is useful
in several situations: to exploit concurrency on a
multiprocessor (including waiting for I/O, where one
processor is the I/O device); to satisfy a human user
by making progress on several tasks at once; to
provide network service to multiple clients
simultaneously; and to defer work to a less busy
time [Birrell91, p. 109].

We examined about 650 different code fragments
that create threads. We gradually developed a
collection of categories that we could use to explain
how thread uses were similar to one another and
how they differed. Our final list of categories is:

—defer work (same as Birrell's)

— pumps (components of Birrell's pipelines. He
describes them for exploiting
multiprocessing, but we saw them mostly
used for structuring.)

—slack processes, a kind of specialized pump (new)

98

— sleepers and one-shots (common uses probably
omitted by Birrell because synchronization
problems in them are rare)

—deadlock avoiders (new)

—task rejuvenation (new)

— serializers, another kind of specialized pump (new)
— concurrency exploiters (same as Birrell's)

— encapsulated forks, which are forks in packages
that capture certain paradigms and whose
uses are themselves counted in the other
categories.

These static categories complement the thread
lifetime characterization in Section 3. The eternal
threads tend to be sleepers, pumps and serializers
with nothing to do. Worker threads are often work
deferrers and transient threads are often deadlock
avoiders. But the reader is cautioned that the static
paradigm can't be predicted from the dynamic
lifetime.

4.1 Defer work

Deferring work is the single most common use of
forking in these systems. A procedure can often
reduce the latency seen by its clients by forking a
thread to do work not required for the procedure's
return value. Sometimes work can be deferred to
times when the system is under less load [Birrell91].
Cedar practice has been to introduce work deferrers
freely as the opportunity to use them is noticed.
Many commands fork an activity whose results will
be reported in a separate window: control in the
originating thread returns immediately to the user,
an example of latency reduction for the human
client. Some examples of work deferrers are:

— forking to print a document

— forking to send a mail message

—forking to create a new window

- forking to update the contents of a window

Some threads are themselves so critical to system
responsiveness that they fork to defer almost any
work at all beyond noticing what work needs to be
done. These critical threads play the role of
interrupt handlers. Forking the real work allows it
to be done in a lower priority thread and frees the
critical thread to respond to the next event. The
keyboard-and-mouse watching process, called the
Notifier, is such a critical, high priority thread in
both Cedar and GVX.

4.2 Pumps

Pumps are components of pipelines. They pick up
input from one place, possibly transform it in some
way and produce it as output someplace else.!
Bounded buffers and external devices are two
common sources and sinks. The former occur in

several implementations in our systems for
connecting threads together, while the latter are
accessed with system calls (read, write) and shared
memory (raw screen 10 and memory shared with an
external X server).

Though Birrell suggests creating pipelines to
exploit parallelism on a multiprocessor, we find
them most commonly used in our systems as a
programming convenience, another reflection of the
uniprocessor heritage of the systems. This is also
their primary use in the well-known Unix shell
pipelines. For example, in our systems all user
input is filtered through a pipeline thread that
preprocesses events and puts them into another
queue, rather than have each reader thread
preprocess on demand. Neither approach
necessarily provides a more efficient system, but the
pipeline is conceptually simpler: tokens just appear
in a queue. The programmer needs to understand
less about the pieces being connected.

One interesting kind of pump is the slack process. A
slack process explicitly adds latency to a pipeline in
the hope of reducing the total amount of work done,
either by merging input or replacing earlier data
with later data before placing it on its output. Slack
processes are useful when the downstream
consumer of the data incurs high per-transaction
costs. The buffer thread discussed in Section 5.2 is
an example of a slack process.

4.3 Sleepers and oneshots

Sleepers are processes that repeatedly wait for a
triggering event and then execute. Often the
triggering event is a timeout. Examples include:
call this procedure in K seconds; blink the cursor in
M milliseconds; check for network connection
timeout every T seconds. Other common events are
external input and service callbacks from other
activities. For instance, our systems use callbacks
from the garbage collector to finalize objects and
callbacks from the filesystem when files change
state. These callbacks are removed from time-
critical paths in the garbage collector and filesystem
by putting an event in a work queue serviced by a
sleeper thread. The client's code is then called from
the sleeper.

Sleepers frequently do very little work before
sleeping again. For instance, various cache
managers in our systems simply throw away aged
valuesin a cache then go back to sleep.

Another kind of sleeper is the garbage collector's

'We use the term pump, rather than the more common filter
because data transformation, ala filters, 1s just one of the things
that pumps can do. In general, pumps control both the data
transformation and the timing of the transfer. We also like the
connotation of an active entity conveyed by pump as opposed to
the passivity of filter

99

background thread which cleans pages dirtied by
other threads. If it gets too far behind in its work it
could cause virtual memory thrashing by cleaning
pages no longer resident in physical memory. Its
rate of awakening must depend on the amount of
page dirtying which depends on the workload of all
the other threads in the system.

OneShots are sleeper processes that sleep for a
while, run and then go away. This paradigm is used
repeatedly in Cedar, for example, to implement
guarded buttons of several kinds. (A guarded button
must be pressed twice, in close, but not too close
succession. They usually look like "Butten'" on the
screen.) After a one-shot is forked it sleeps for an
arming period that must pass before a second click is
acceptable. Then it changes the button appearance
from "Button” to "Button" and sleeps a second time.
During this period a second click invokes a
procedure associated with the button, but if the
timeout expires without a second click, the one-shot
just repaints the guarded button.

4.4 Deadlock avoiders

Cedar often uses FORK to avoid violating lock order
constraints. The window manager makes heavy use
of this paradigm. For example, after adjusting the
boundary between two windows the contents of the
windows must be repainted. The boundary-moving
thread forks new threads to do the repainting
because it already holds some, but not all of the
locks needed for the repainting. Acquiring these
locks would require unwinding the adjusting
process far enough to release locks that would
violate locking order, then reacquiring all the
necessary locks in the right order. It is far simpler to
fork the painting threads, unwind the adjuster
completely and let the painters acquire the locks
that they need in separate threads.

Another case of deadlock avoidance is forking the
callbacks from a service module to a client module.
Forking permits the service thread to proceed,
eventually releasing locks it holds that will be
needed by the client. The fork also insulates the
service from things that may go wrong in the client
callback. For instance, Cedar permits clients to
register callback procedures with the garbage
collector that are called to finalize (clean up) data
structures. The finalization service thread forks
each callback.

4.5 Task rejuvenation

Sometimes threads get into bad states, such as arise
from uncaught exceptions or stack overflow, from
which recovery is impossible within the thread
itself. In many cases, however, cleanup and recovery
is possible if a new "task rejuvenation" thread is
forked. For uncaught errors, an exception handler
may simply fork a new copy of the service. For stack
overflow, a new thread is forked to report the stack

overflow. Using threads for task rejuvenation can be
tricky and is a bit counter-intuitive. (This thread is
in trouble. Ok let's make fwo of them!) However, it is
a paradigm that adds significantly to the robustness
of our systems and its use is growing. A recent
addition is a task-rejuvenating FORK that was added
to the input event dispatcher in Cedar. The
dispatcher makes unforked callbacks to client
procedures because (a) this code is on the critical
path for user-visible performance and (b) most
callbacks are very short (e.g. enqueue an event) and
so a fork overhead would be significant. But not
forking makes the dispatcher vulnerable to
uncaught runtime errors that occur in the callbacks.
Using task rejuvenation, the new copy of the
dispatcher keeps running.

Task rejuvenation is a controversial paradigm. It's
ability to mask wunderlying design problems
suggests that it be used with caution.

4.6 Serializers

A serializer is a queue and a thread that processes
the work on the queue. The queue acts as a point of
serialization in the system. The primary example is
in the window system where input events can arrive
from a number of different sources. They are
handled by a single thread in order to preserve their
ordering. This same paradigm is present in most
other window systems and in many cases it is the
only paradigm. In the Macintosh, Microsoft
Windows, and X programming models, for example,
each application runs in a serializer thread that
pulls events from a queue associated with the
application's window.

4.7 Concurrency exploiters

Concurrency exploiters are threads created
specifically to make use of multiple processors.
They tend to be very problem-specific in their
details. Since our systems have only relatively
recently begun to run on multiprocessors we were
not surprised to find very few concurrency exploiters
in them.

4.8 Encapsulated forks

One way that our systems promote use of common
thread paradigms is by providing modules that
encapsulate the paradigms. This section describes
three such packages used frequently in our systems.

DelayedFork and PertodicalFork

DelayedFork expresses the paradigm of a one-shot.
It calls a procedure at some time in the future.
Although one-shots are common in our system,
DelayedFork is only used in our window systems.
(Its limited use might be because it appeared only
recently.)

PeriodicalFork is simply a DelayedFork that
repeats over and over again at fixed intervals. It
encapsulates the sleeper paradigm where the

100

wakeups are prompted solely by the passage of time.
MBQueue

The module MBQueue (the name means
Menu/Button Queue) encapsulates the serializer
paradigm in our systems. MBQueue creates a queue
as a serialization context and a thread to process it.
Mouse clicks and key strokes cause procedures to be
enqueued for the context: the thread then calls the
procedures in the order received.

We consider a queue together with a thread
processing it an important building block of user
interfaces. This is borne out by the fact that our
system actually contains several minor variations of
MBQueue. Why is there not a more general
package? It seems that each instance adds
serialization to a specific interface already familiar
to the programmer. Furthermore, the serialization
is often on a critical interactive performance path.
Keeping a familiar interface to the programmer and
reducing latency cause new variations to be
preferred over a single generic implementation.

Miscellaneous

Many modules that do callbacks offer a fork boolean
parameter in their interface, indicating whether or
not the called-back procedure is to be called directly
or in a forked thread. The default is almost always
TRUE, meaning the callback will be forked.
Unforked callbacks are usually intended for experts,
because they make future execution of the calling
thread within the module dependent on successful
completion of the client callback.

4.9 Paradigm summary

Table 4 summarizes the absolute and relative
frequencies of the paradigms in our systems. Note
that in keeping with our emphasis on using threads
as program structuring devices this is a static count.
{Threads may be counted in more than one category
because they change their behavior.) Some threads
seem not to fit easily into any category. These are
captured in the "Unknown or other" entries.

Our categories seem to apply well to other systems.
For instance, Lampson and Redell describe the
applications Pilot, Violet and Gateway (which,
although Mesa-based, share no code with the
systems we examined), but do not identify general
types of threads [Lampson80]. Yet from the
published description one can deduce the following:

Pilot: almost all sleepers.
Violet: sleepers, one-shots and work deferral.
Gateway: sleepers and pumps.

Table 4. Static Counts

Cedar GVX

Defer work 108 31% 77 33%
Pumps

General pumps 48 14% 33 14%

Slack processes 7 2% 2 1%
Sleepers 67 19% 15 6%
Oneshots 25 7% 11 5%
Deadlock avoid 35 10% 6 3%
Task rejuvenate 11 3% 0 0%
Serializers 5 1% 7 3%
Encapsulated fork 14 4% 5 2%
Concurrency
exploiters 3 1% 0 0%
Unknown or other? 25 7% 78 33%
TOTAL 348 100% 234 100%

5. Issues in thread use

Given a modern platform providing threads, system
builders have the option of using thread primitives
to accomplish tasks that they would have used other
techniques to accomplish on other platforms. The
designer must balance the modest cost of creating a
thread against the benefits in structural
simplification and concurrency that would accrue
from its introduction. In addition to the cost of
creating it, a thread incurs a modest ongoing cost for
the virtual memory occupied by its stack. Our PCR
thread implementation allocates virtual memory for
the maximum possible stack size of each thread. If
there is very little state associated with a thread

this may be a very inefficient use of memory
[Draves91].

5.1 Easy thread uses

Our programmers have become very adept at using
the sleeper, oneshot, pump (in paths without critical
timing constraints) and work deferrer paradigms.
For the most part these require little interaction
between threads beyond taking care to provide
mutual exclusion (monitors) for shared data. Pump
threads interact with threads on either side of them
in pipelines, but the interactions generally follow
well-known producer-consumer patterns. Using
FORK to create sleeper threads has fallen into
disfavor with the advent of PCR thread
implementation: 100 kilobytes for each of hundreds
of sleepers’ stacks is just too expensive. The
PeriodicalProcess module, for timeout driven
sleepers, and other sleeper encapsulations often can
accomplish the same thing using closures to
maintain the little bit of state necessary between
activations.

“The large number of unknown threads in GVX is due to our
relative unfamiliarity with this code, rather reflecting any
significant difference in paradigm use

101

Deadlock avoiders also are usually very simple, but
the overall locking schemes in which they are
involved are often very, very complicated (and far
beyond the scope of this paper).

5.2 Hard thread uses

Some of the thread paradigms seem much more
difficult. First, there is little guidance in the
literature and in our experience for using
concurrency exploiters in interactive systems. The
arrival of relatively low-cost workstations and
operating systems supporting multiprocessing offers
new incentives to understand this paradigm better.

Second, designing slack processes and other pumps
in paths with timing constraints continues to
challenge both the slack process implementors and
the PCR implementors. Bad performance in the
pipelines that provide feedback for typing (character
echoing) and mouse motion is immediately apparent
to the user, yet improving the performance is often
very difficult.

One instance of a poorly performing slack process in
a user feedback pipeline involves sending requests
to the X server. Good X window system
performance requires batching communication with
the server and merging overlapping requests. In
one of our systems, the batching is performed using
the slack process paradigm embodied in a high
priority thread. The buffer thread accumulates
paint requests, merges overlapping requests and
sends them only occasionally to the X server. In the
usual producer-consumer style, an imaging thread
puts paint requests on a queue for the buffer thread
and issues a NOTIFY to wake it up. In order to
gather multiple paint requests the buffer thread
must not act on the single paint request in its queue
when it first wakes up so it YIELDs to cede the
processor to allow more paint requests to be
produced by the imaging thread; or so we hope. A
problem occurs when the buffer thread is a higher
priority thread than the image threads that feed it:
the scheduler always chooses the buffer thread to
run, not the image thread. Consequently the buffer
thread sends the paint request on to the X server
and no merging occurs. The result is a high rate of
thread and process switching and much more work
done by the X server than should be necessary.

Fixing the problem by lowering the priority of the
buffer thread is clearly wrong, since that could
cause starvation of screen painting. We believe that
the architecture of having a producer thread notify a
consumer (buffer) thread periodically of work to do
is a good one, so we did not consider changing the
basic paradigm by which these two threads interact.
Rewriting the buffer thread to simply sleep waiting
for a timeout before sending its events doesn't work
either, for reasons discussed in Section 6.3.

We fixed the immediate problem by creating a new

yield primitive, called YieldButNotToMe which
gives the processor to the highest priority ready
thread other than its caller, if such a thread exists.
Most of the time the image thread is the thread
favored with the extra cycles and there is a big
improvement in the system's perceived
performance. Fewer switches are made to the X
server, the buffer thread becomes more effective at
doing merging, there is less time spent in thread
and process switching, and the image thread gets
much more processor resource over the same time
interval. The result is that the user experiences
about a three-fold performance improvement.
Unfortunately, the semantic compromise entailed in
YieldButNotToMe and the uncertainty that the
additional cycles will go to the correct thread
suggest that the final solution to these problems
still eludes us.

Finally, even beyond the difficulties encountered
with priorities in managing a pipeline, we found
priorities to be problematic in general. Birrell
describes a stable priority inversion in which a high
priority thread waits on a lock held by a low priority
thread that is prevented from running by a middle-
priority cpu hog [Birrell91, pp. 99-100]. Like Birrell,
we chose not to incur the implementation overhead
of providing priority inheritance from blocked
threads to threads holding locks. (Notice that the
problem occurs for abstract resources such as the
condition associated with a CV as well as for real
resources such as locks: the thread implementation
has little hope of automatically adjusting thread
priority in such situations.) The problem is not
hypothetical: we experienced enough real problems
with priority inversions that we found it necessary
to put the following two workarounds into our
systems. First, for one particular kind of lock in the
system, PCR does donate cycles from a blocked
thread to the thread that is blocking it. This is done
only for the per-monitor metalock that locks each
monitor's queue of waiting threads. It is not done for
monitors themselves, where we don't know how to
implement it efficiently. Second, PCR utilizes a
high-priority sleeper thread (which we call the
SystemDaemon) that regularly wakes up and
donates, using a directed yield, a small timeslice to
another thread chosen at random. In this way we
ensure that all ready threads get some cpu resource,
regardless of their priorities.

5.3 Common mistakes

Our dynamic and static inspections of old code
revealed occasional correctness and performance
problems caused by improper thread usage. Two
questionable practices stood out.

First, we saw many instances of WAIT code that did
not recheck the predicate associated with the
condition variable. Recall that proper use of WAIT
when using Mesa monitors is

102

WHILE NOT (condition) DO WAIT ¢v END
not the
IF NOT (condition) THEN WAIT cv

which would be appropriate with Hoare's original
monitors.

The 1F-based approach will work in Mesa with
sufficient constraints on the number and behavior of
the threads using the monitor, but its use cannot be
recommended. The practice has been a continuing
source of bugs as programs are modified and the
correctness conditions become untrue.

Second, there were cases where timeouts had been
introduced to compensate for missing NOTIFYs
(bugs), instead of fixing the underlying problem.
The problem with this is that the system can become
timeout driven—it apparently works correctly but
slowly. Debugging the poor performance is often
harder than figuring out why a system has stopped
due to a missing NOTIFY. Of course, legitimate
timeouts can mask an omitted NOTIFY as well.

5.4 When a fork fails

Sometimes an attempt to fork may fail for lack of
resources. As with many other resource allocation
failures it's difficult to plan a response. Earlier
versions of the systems would raise an error when a
FORK failed: the standard programming practice
was to catch the error and to try to recover, but good
recovery schemes seem never to have been worked
out. The resulting code seems overly complex to no
good end: the machinery for catching the error is
always set up even though once an error is caught
nobody really knows what to do about it. Memory
allocation failures present similar problems.

Our more recent implementations simply wait in
the fork implementation for more resources to
become available, but the behaviors seen by the
user, such as long delays in response or even
complete unresponsiveness, go unexplained.

A number of techniques may be adopted to avoid
running out of resources: unfortunately, the better
we succeed at that, the less experience we gain with
techniques for appropriately recovering from the
situation.

5.5 On robustness in a changing environment

The archeology of thread-related bugs taught us two
other things worth mentioning as well. First, we
found many instances of timeouts and pauses with
ridiculous values. These values presumably were
chosen with some particular now-obsolete processor
speed or network architecture in mind. For user
interface-related timeouts, values based on wall-
clock time are appropriate, but timeouts related to
processor speeds, or more insidiously, to expected
network server response times, are more difficult to

specify simply for all time. This may be an area of
future research. For instance, dynamically tuning
application timeout values based on end-to-end
system performance may be a workable solution.

Second, we saw several places where the correctness
of threaded code depended on strong memory
ordering, an assumption no longer true in some
modern multiprocessors with weakly ordered
memory [Frailong93][Sites93]. The monitor
implementation for weak ordering can use memory
barrier instructions to ensure that all monitor-
protected data access is consistent, but other uses
that would be correct with strong ordering will not
work. As a simple example, imagine a thread that
once a minute constructs a record of time-date
values and stores a pointer to that record into a
global variable. Under the assumptions of strong
ordering and atomic write of the pointer value, this
is safe. Under weak ordering, readers of the global
variable can follow a pointer to a record that has not
yet had its fields filled in. As another example,
Birrell offers a performance hint for calling an
intialization routine exactly once [Birrell91, p. 97].
Under weak ordering, a thread can both believe that
the initializer has already been called and not yet be
able to see the initialized data.

5.6 Some contrasting experiences: multi-
threading and X windows

The usual, single-threaded client interface to an X
server is through Xlib, a library that translates an
X client's procedural interface into the message-
oriented interface of the X server. Xlib does the
required translation and manages the 1/O
connection to the server, both for reading events and
writing commands. We studied two approaches to
using X windows from a multi-threaded client. One
approach uses Xlib, modified only to make it thread-
safe [Schmitmann93]. The other approach uses XI,
an X client library designed from scratch with
multi-threading in mind [Jacobi92].

A major difference between the two approaches
concerns management of the 1/0 connection to the
server. Xl introduced a new serializing thread that
was associated with the I/O connection. The job of
this thread was solely to read from the I/O
connection and dispatch events to waiting threads.
In contrast, the modified Xlib allowed any client
thread to do the read with a monitor lock on the
library providing serialization. There were two
problems with this: priority inversion and honoring
the clients' timeout parameter on the GetEvent
routine. When a client thread blocks on the read
call it holds the library mutex. A priority inversion
could occur if the thread were preempted.
Furthermore, it is not possible for other threads to
timeout on their attempt to obtain the library
mutex. Therefore, each read had to be done with a

103

short timeout after which the mutex was released,
allowing other threads to continue. In contrast,
with the introduction of a reading thread, the client
timeout is handled perfectly by the condition
variable timeout mechanism and priority inversion
can only occur during the short time period when a
low-priority thread checks to see if there are events
on the input queue.

A second benefit of introducing this thread concerns
interaction between output requests and input
events. The X specification requires that the output
queue be flushed whenever a read is done on the
input stream. This ensures that any commands that
might trigger a response are delivered to the server
before the client waits on the reply. The modified
Xlib retained this behavior, but the short timeout on
the read operations (to handle the problem described
above) caused an excessive number of output
flushes, defeating the throughput gains of batching
requests. With the introduction of a reading thread,
however, there is no need to couple the input and
output together. The reading thread can block
indefinitely and other mechanisms such as an
explicit flush by clients or a periodic timeout by a
maintenance thread ensure that output gets flushed
in a timely manner.

Another difference in the two approaches is the
introduction of an extra thread for the batching of
graphics requests. Both systems do batching on a
higher level to eliminate unnecessary X requests.
X1 uses the slack process mentioned previously. It
makes the connection to the server asynchronous in
order to improve throughput, especially when
performing many graphics operations. The modified
Xlib uses external knowledge of when the painting
is finished to trigger a flush of the batched requests.
This limits asynchronous graphics operations and
leads to a few superfluous flushes.

In summary, this example illustrates the benefit of
introducing an additional thread to help manage
concurrency and interactions with external I/O
events.

6. Issuesin thread implementation

6.1 Spurious lock conflicts

A spurious lock conflict occurs between a thread
notifying a CV and the thread that it awakens.
Birrell describes its occurence on a multiprocessor:
the scheduler starts to run the notified thread on
another processor while the notifying thread, still
running on its processor, holds the associated
monitor lock. The notifyee runs for a few
microseconds and then blocks waiting for the
monitor lock. The cost of this behavior is that of
useless trips through the scheduler made by the
notifyee's processor [Birrell91].

We observed this phenomenon even on a

uniprocessor, where it occurs when the waiting
thread has higher priority than the notifying
thread. Since the Mesa language does not allow
condition variable notifies outside of monitor locks,
Birrell's technique of moving the NOTIFY out of the
locked region was not applicable. In our systems the
fix (defer processor rescheduling, but not the
notification itself, until after monitor exit) was
made in the runtime implementation. The changed
implementation of NOTIFY prevents the problem
both in the case of interpriority notifications and on
multiprocessors.

6.2 Priorities

PCR approximates a strict priority scheduler, by
which we mean that if a process of a given priority is
currently scheduled to run on a processor, no process
with higher priority is ready to run. As we have
seen in Section 5.2, strict priority is not a desirable
model on which to run our client code: a model that
provides some cpu resource to all runnable threads
has proven necessary to overcome stable priority
inversions. Similarly, the YieldButNotToMe and
SystemDaemon hacks, also described above, violate
strict priority semantics yet have proven useful in
making our system perform well. The
SystemDaemon hack pushes the thread model a bit
in the direction of proportional fair-share
scheduling (threads at each priority progress at a
rate proportional to a function of the current
distribution of threads among priorities), a model
intuitively better suited to controlling long-term
average behavior than to controlling moment-by-
moment processor allocation to meet near-real-time
requirements.

We do not regard this as a satisfactory state of
affairs. These implementation hacks mean that the
thread model is incompletely specified with respect
to priorities, adversely affecting our ability to
reason about existing code and to provide guidance
for engineering new code. Priority inversions and
techniques for avoiding them are the subjects of
considerable research in the realtime computing
context [Sha90][Pilling91]. We Dbelieve that
someone should investigate these techniques for
interactive systems and report on the result.

6.3 The effect of the time-slice quantum

Only after several months of study of the individual
thread switching events of the X server slack
process did we realize the importance of the time-
slice quantum. The end of a timeslice ends the effect
of a YieldButNotToMe or a directed yield. What we
did not realize for a long time is that it is the 50
millisecond quantum that is clocking the sending of
the X requests from the buffer thread. That is, the
only reason this performs well is that the quantum
is 50 milliseconds. For instance, if the quantum
were 1 second, then X events would be buffered for

104

one second before being sent and the user would
observe very bursty screen painting. Ifthe quantum
were 1 millisecond, then the YieldButNotToMe
would yield only very briefly and we would be back
to the start of our problems again.

Above we mentioned that it does not work to rewrite
the buffer thread to sleep for a timed interval,
instead of doing a yield. The reason is that the
smallest sleep interval is the remainder of the
scheduler quantum. Our 50 millisecond quantum is
a little bit too long for snappy keyboard echoing and
line drawing, both instances where immediate
response is more important than the throughput
improvement achieved by buffering. However, if the
scheduler quantum were 20 milliseconds, using a
timeout instead of a yield in the buffer thread would
work fine.

We conclude that the choice of scheduler quantum is
not to be taken lightly in the design of interactive
thread systems, since it can severely affect the
performance of different, correct,
multiprogramming algorithms.

7. Conclusions

We have analyzed two interactive computing
systems that make heavy use of light-weight
threads and have been in daily use for many years
by many people. The model of threads both these
systems use is one based on preemptable threads
that use monitors and condition variables to control
thread interactions. Both systems run on top of the
Portable Common Runtime, which provides
preemptable user-level threads based on a mostly
priority-based scheduling model.

Our analysis has focused on how people use threads
for program structuring rather than for achieving
multiprocessor performance. As such, we have
focused more on a static analysis of program code,
coupled with an analysis of thread micro-behavior,
than on macroscopic thread runtime statistics.

These systems exemplify some paradigms that may
be useful to the thread programmer who is ready for
more advanced thread uses, such as slack processes,
serializers, deadlock avoiders and task rejuvenators.

These systems also show that even very experienced
communities may struggle at times to use threads
well. Some thread paradigms using monitor
mechanisms are easy for programmers to use;
others, such as slack processes and priorities,
challenge both application programmers and thread
system implementors.

One of our major conclusions is a suggestion for
future work in this area: there is still much to be
learned from a careful analysis of large systems.
The more unusual paradigms described in this
paper, such as task rejuvenation and deadlock
avoidance, arose from a relatively small community

over a small number of years. There are likely other
innovative uses of threads waiting to be discovered.

Another area of future work is to explore the work
from the real-time scheduling community in the
context of large, interactive systems. Both strict
priority scheduling and fair-share priority
scheduling seem to complicate rather than ease the
programming of highly reactive systems.

Finally, reading code and microscopic analysis
taught us new things about systems we had created
and used over a ten year period. Even after a year of
looking at the same 100 millisecond event histories
we are seeing new things in them. To understand
systems it is not enough to describe how things
should be; one also needs to know how they are.

Bibliography

[Accetta86] Accetta, R. Baron, W. Bolosky, D.
Golub, R. Rashid, A. Tevanian, M. Young,
“Mach: A New Kernel Foundation for UNIX

Development.” Proceedings of the Summer
1986 USENIX Conference, July 1986.

[Bier92] E. Bier. “EmbeddedButtons: Supporting
Buttons in Documents.” ACM Transactions on
Information Systems, 10(4), October 1992,
pages 381-407.

[Birrell91] A. Birrell. “An Introduction to
Programming with Threads.” in Systems
Programming with Modula-3, G. Nelson
editor. Prentice Hall, 1991, pp. 88-118.

[Custer93] H. Custer. Inside Windows NT. Microsoft
Press, 1993.

[Draves91] R. Draves, B. Bershad, R. Rashid, R.
Dean. “Using Continuations to Implement
Thread Management and Communication in
Operating Systems.” Proceedings of the 13th
ACM Symposium on Operating Systems
Principles, in Operating Systems Review, 25(5),
October 1991.

[Frailong93]dJ. Frailong, M. Cekleov, P. Sindhu, J.
Gastinel, M. Splain, J. Price, A. Singhal. “The
Next-Generation SPARC Multiprocessing

System Architecture.” Proceedings of
COMPCON 93.

[Halstead90] R. Halstead, Jr., D. Kranz. “A Replay
Mechanism for Mostly Functional Parallel
Programs.” DEC Cambridge Research Lab
Technical Report 90/6, November 13, 1990.

[Jacobi92] Jacobi, C. “Migrating Widgets.”
Proceedings of the 6th Annual X Technical
Conference in The X Resource, Issue 1,
January 1992, p. 157.

[Lampson80] B. Lampson, D. Redell. “Experience
with Processes and Monitors in Mesa.”
Communications of the ACM, 23(2), Feb. 1980.

105

[Owicki89] Owicki, S. “Experience with the Firefly
Multiprocessor Workstation.” Research Report
51, Digital Equipment Corp. Systems
Research Center, September, 1989.

[Pier88] K. Pier, E. Bier, M. Stone. “An Introduction
to Gargoyle: an Interactive Il1lustration Tool.”
d.C. van Vliet (editor), Document
Manipulation and Typography, Proceedings of
the Int'l Conference on Electronic Publishing,
Document Manipulation and Typography, Nice
(France), April 20-22, 1988. Cambridge
University Press, 1988, pp. 223-238.

[Pilling91] M. Pilling. “Dangers of Priority as a
Structuring Principle for Real-Time
Languages.” Australian Computer Science
Communications, 13(1), February 1991, pp.
18-1-18-10.

[Powell91} M. Powell, S. Kleiman, S. Barton, D.
Shah, D. Stein, M. Weeks. “SunOS Multi—
thread Architecture.” Proceedings of the
Winter 1991 USENIX Conference,Jan. 1991,
pp. 65-80.

[Scheifler92] R. Scheifler, J. Gettys. X Window
System: The Complete Reference to Xlib, X
Protocol, ICCCM, XLFD. Third edition.
Digital Press, 1992.

[Schmitmann93] C. Schmidtmann, M Tao, S. Watt.
“Design and Implementation of a Multi—
Threaded Xlib.” Proceedings of the Winter 1993
Usenix Conference, Jan. 1993, pp 193-204.

[Sha90}] L. Sha, J. Goodenough. “Real-Time
Scheduling Theory and Ada.” IEEE Computer,
23(4), April 1990, pp 53-62.

[Sites93] Sites, R. “Alpha AXP Architecture.”
CACM 36(2), February, 1993, pp. 33-44.

[Smith82] D. Smith, C. Irby, R. Kimball, B.
Verplank, E. Harslem. “Designing the STAR
User Interface.” BYTE Magazine, (7)4, April
1982, pp. 242-282.

[Swinehart86] D. Swinehart, P. Zellweger, R.
Beach, R. Hagmann. “A Structural View of the
Cedar Programming Environment.” ACM
Transactions on Programming Languages and
Systems, (8)4, October, 1986.

[Weiser89] M. Weiser, A. Demers, C. Hauser. “The
Portable Common Runtime Approach to
Interoperability.” Proceedings of the 12th ACM
Symposium on Operating Systems Principles,
in Operating Systems Review, 23(5), December
1989.

