
Optimizing Disk Performance for a Multimedia

Storage Server∗

Ian Alderman Mamadou Diallo

Abstract

One potential bottleneck point in a multimedia server is the disk sys-

tem. The capacity and sustained transfer rates for inexpensive disks have

increased significantly in recent years, making it plausible to build a mul-

timedia storage server from commodity hardware. However, currently

available file systems were not designed for use with multimedia access

patterns, which involve periodic transfer of large quantities of data with

real time constraints. We compare the performance of several different

methods of accessing the disk system on Solaris and FreeBSD. We con-

clude that the performance overhead of accessing data through existing

file systems outweighs the convenience advantage, and that scheduling

disk accesses to minimize seek times and reduce the variation in response

time is important in providing peak performance.

1 Introduction

Networking technology promises to change the way we receive information. Al-
though the new media has not yet replaced the old, applications such as in-
teractive TV, on-demand course content, web based news supplemented with
multimedia, and the rise of economically feasible music distribution systems
such as those recently proposed by Napster and mp3.com, indicate that the
change is coming.

The popular adage is that, “A picture is worth a thousand words.” In
digital storage, it’s worse: a picture takes more than a thousand words worth of
storage space, and continuous media, such as digital audio and video, takes up
even more. For example, an eight minute audio track encoded using MPEG-1,
Layer 3 at 192 Kbps takes 11.25 MB to store. A one hour MPEG-1 video (1.5
Mbps) takes 675 MB, And an MPEG-4 video of a 100 minute movie (4.0 Mbps)
takes 3 GB to store. It is not feasible to store this quantity of data in memory
for cost reasons: it must be stored on disk [6].

Multimedia file servers built from commodity hardware can store hundreds
of gigabytes of data, and serve hundreds of customers simultaneously. The
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performance of these servers is not necessarily constrained by network capacity,
since modern switches and network cards can handle gigabit speeds, and a single
server could be attached to the network through several NICs.

Although disk capacity has increased significantly in recent years, disk per-
formance has not increased as rapidly. In some prototype testing, we determined
that a multimedia file server’s disk interface can exhibit poor performance if de-
signed incorrectly. We built a simple application that read data in the manner
that a multimedia server would if each stream was served by a single process. We
ran one instance of this simple application and measured the performance. Then
we ran several instances concurrently and noticed that the overall throughput
from the disk decreased when several streams were being accessed simultane-
ously.

Our goal in this paper is to determine the fastest interface to the disk sys-
tem for a multimedia file server running on commodity hardware. We com-
pare several different methods of I/O, including read and pread, mmap, and
asynchronous reads through implementations of the POSIX.2 standard. We at-
tempted to allow the system to optimize the concurrency and ordering of disk
requests through system and user level threads, and compare the performance to
single threaded versions. We compare the performance of FreeBSD and Solaris.

2 Motivation

Streaming media servers have different performance criteria from traditional file
servers. Continuous media has, on one hand, a real time constraint: clients must
receive data on a stream before playback, and the time at which a segment of
a file must be received is determined by the time at which the client begins
playback and the rate at which playback occurs. Although some jitter from the
disk system and from the network is acceptable, to provide smooth playback,
it must be kept to a minimum. On the other hand, there is not a performance
reason why a segment should be received much before it is needed, in fact, timely
delivery prevents exhausting client buffers. A key insight is that minimizing the
tail of the response time distribution is more important for performance given
the real time requirements of continuous media than minimizing the average
response time [11].

Stated differently, blocks retrieved from a video file server are retrieved on a
strict schedule, and missing deadlines in this schedule is acceptable only rarely.

Our goals in performing this research included:

• Quantifying the performance characteristics of various methods for access-
ing continuous media data stored on disk.

• Determining the maximum number of concurrent streams of data our test
system could support given a certain playback rate, and the best method
for retrieval.

• Determining why some retrieval methods performed better than others.
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• Contributing to the development of a video file server for the SWORD
project1, by providing a tool for the analysis of various design decisions
such as the amount of memory included and the number of disks attached,
and by providing a basis for the implementation of the disk interface for
this server.

3 Related and future work

Disk scheduling is a well understood area, and several groups have explicitly
addressed the specific needs of multimedia storage systems [6, 10, 3, 5], as well
as comparing various approaches to striping multimedia data across several disks
for load balancing [7, 11, 9]. However, none of these papers explicitly measure
disk performance, nor do they compare the performance of interfaces such as
raw I/O and FFS.

We hope to expand the research summarized in this paper to test new tech-
niques to improve the performance of our storage server prototype. One obvious
addition would be to include several disks in the benchmarks to determine the
implementation complexity and assess the potential for contention on the system
and SCSI busses.

In the database community, it is recognized that managing disks directly
allows the application developer to perform optimizations explicitly, and pre-
vents the operating system from attempting unsuitable optimizations [8]. We
have quantified these differences specifically for the multimedia storage server
application, which has quite different performance goals from databases, such
as real-time requirements.

4 Methodology

Our test hardware consisted of a standard PC with two 500MHz Pentium II’s,
512 MB of memory, and four Seagate ST39183W SCSI-2 8638MB drives at-
tached to two Adaptec 2940 Ultra SCSI adapters. Solaris and FreeBSD were
installed on the first two drives, and tests were performed on one of the others.

For the tests which involved the file system, we first created a new file system
with 8 KB blocks, the maximum allowed under Solaris. We then populated the
file system completely with 100 MB files, written sequentially 1MB per write.
We thought that this might lead to misleading results if the files were accessed
in the same order they were written, so we wrote them in a randomly permuted
order, but one after the other. No other file system aging was done. We believe

1The SWORD project is a research effort at the University of Wisconsin-Madison the goals
of which include “Scalable Wide-area On-demand Reliable Data Delivery.” Research results
to date include bandwidth conserving stream merging techniques [2] and caching strategies [1].
Analytic and simulation results are confirmed through the development of a prototype, which,
in its current implementation, does not store video files, but rather performs stream merging
and caching. Future plans include the possible development of a storage server which would
provide a fast interface to a number of attached disks.
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that this will produce somewhat optimistic results from the file system tests:
that is, a real system may be somewhat more fragmented and provide somewhat
poorer performance than that which we describe here.

For each test, we took as input a number of streams, a block size for each
read, and a bit rate. All tests were written in C, and designed to compile on
both Solaris and FreeBSD. Seven binaries were produced, each corresponding
to a different I/O method. The specifics of each are described in greater detail
below.

Each program first calculated the amount of time allotted for each round,
where a round is defined to be the period of time allowed for retrieval of the
given block size for the streams. For each round, two metrics were captured:
whether or not the round was completed by its (strict) deadline, and how long
the round took since it began. As described above, a strict deadline is defined by
the playback schedule of the client, and consists of a point in time determined by
the start of playback and the playback rate. Each test consisted of 100 rounds.

In addition to checking whether each round was completed by its strict
deadline, we also captured the absolute amount of time each round took to
complete and kept some statistical information on these times.

Between tests, we flushed the file system buffer cache by unmounting and
remounting the file system.

5 I/O Methods

In this section, we discuss the implementation details of some of the I/O methods
we employed. There are several different parameters we could vary, described
in the subsections below.

• Operating system: we tested on Solaris and FreeBSD.

• I/O system call: read (pread), asynchronous I/O (aio), and mmap.

• Block size: we tested 1024 KB blocks and 512 KB blocks.

• Thread model: we tested a single thread of execution, system scheduled
threads, and user library threads (pthreads). System scheduled threads
are not available on FreeBSD.

• File system: through the file system, and through the associated character
device.

However, we did not test all combinations for various reasons. For example,
mmap is not available on character devices. We only tested multiple threads with
read, since aio provided poorer performance.
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5.1 Operating System

Our code provided cross-platform support between Solaris 8 / Intel and FreeBSD
4.2 (a custom kernel was built to include AIO support) through the use of
#define macros; in general the interfaces were similar. We attempted to include
Linux in our tests, but the lack of support for files larger than 2GB (required
for accessing the raw I/O device) prevented us from doing this easily. We were
able to configure the system to dual boot these two systems, so the hardware
we tested was exactly the same.

The intent of performing the tests on multiple operating systems was to
determine whether there were implementation specifics and differences in what
options were configurable that would affect the results of the tests.

5.2 File system vs. Character Device

The difference between file system access and character device access was one
of the most significant differences we tested and the differences provide our key
result. Notably, file system performance differed significantly between the two
implementations, with Solaris providing much poorer performance.

The differences between accessing files through the file system and through
the character device (which appears as a single 8636 MB file to the operat-
ing systems) required a different binary for each test, but for tests that were
performed both through the file system and the character device, the only dif-
ferences between the two versions are in the code that opens and reads the
data.

Reading files larger than 2GB (including raw I/O access to partitions larger
than 2GB) requires a modification to the original FFS on which the file systems
for Solaris and FreeBSD are based; Solaris provides two interfaces to files, one
of which uses 32 bit offsets and another which uses 64 bit offsets; we used the
regular (32 bit) interface for the file system tests and the 64 bit interface for the
raw access. FreeBSD uses large offsets by default.

To make sure that we weren’t skewing our performance results, we ran a
simple test using the raw I/O method and determined that reads at the begin-
ning of the disk (6.9 seconds per 100 MB) are quite a bit faster than reads at
the end of the disk (10.9 seconds per 100MB). In order to make sure that our
tests took this variation into account, when a raw test was performed that used
some number of streams less than 86, we spread the initial offsets of the streams
out across the entire disk.

The following table illustrates the file system implementation performance
differences between Solaris and FreeBSD. The data presented is the number of
seconds to retrieve 100 MB, averaged across the entire disk.

Solaris FreeBSD
RAW I/O 7.8 7.8
File system 13.9 7.9
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In Solaris, sequential raw reads of 100 MB across the entire disk averaged 7.8
seconds, while sequential reads of 100 MB files filling the file system averaged
13.9 seconds. In FreeBSD, sequential raw reads of 100 MB averaged 7.8 seconds,
while sequential reads averaged 7.9 seconds. This poor file system performance
for sequential reads on Solaris affected all of the results obtained through the
file system.

5.3 Block Size

For the majority of our tests, we chose a block size of 1 megabyte, chosen based
on results from [7]. Özden et. al. suggest that efficiency can be improved by
allowing the system to perform sequential reads which are as large as possible
and by minimizing the number of seeks that are required.

Since we get nearly 60 concurrent streams maximum performance from a
two year old disk in our performance tests, and if we imagine that a production
multimedia file server will have approximately 10 disks attached, we think that
block sizes larger than 1 MB will result in a prohibitively expensive memory
requirement. If we assume 10 disks and 60 streams per disk, the system will
transfer 600 MB each round. While a round is being transfered from disk, the
previous round also needs to stay in memory, so that it can be transfered over
the network, so this 10 disk system will require 1.2 GB of memory. Larger
blocks would increase the memory requirement, correspondingly increasing cost
of the file server significantly.

Tests were performed using smaller block sizes, and the results confirmed
the expected results that fewer streams were supported.

5.4 Blocking Reads

Our implementation of synchronous reads used read when reading through the
file system, and pread when reading the character device. This was certainly
the simplest implementation, and surprisingly provided the best performance,
achieving near optimal throughput, despite allowing no concurrency in I/O re-
quests.

5.5 Asynchronous reads

We expected that asynchronous reads would provide near peak performance
through the file system due to our hope that the kernel and disk system would
schedule reads in the most optimal order. We were disappointed because (as far
as we’ve been able to determine) the system does not transfer each 1 MB block
in an atomic operation, preventing the disk’s firmware optimizations from being
effective for large data transfers. From a resource management perspective, this
is the correct approach, but for our application, it provides poorer performance.

The code that performed asynchronous reads initiates all reads at once (using
aioread in Solaris, and the corresponding aio read in FreeBSD), and then
loops, waiting for each one to return (aiowait, aio waitcomplete).
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Asynchronous reads are included by default in Solaris, but require a kernel
recompilation in FreeBSD. They are not available in Linux.

To the contrast of synchronous I/O mentioned above, once processes have
requested data from the system and they can not be serviced immediately, they
do not have to block until their request returns. Instead, they move on to
doing something else and are notified of the completion of their request. One
observation that can be immediately inferred from asynchronous I/O is that it
requires a lot more overhead than its traditional synchronous counterpart. The
system is now forced to keep track of more process state for the processes until
their requests have been fulfilled. As a result, asynchronous I/O can turn out to
be worse than expected (as will be shown shortly); for instance, as the number of
requesting processes grows, performance degradation increases, leading to poor
performance.

We believe that asynchronous I/O can provide performance improvements
in some applications, with different performance requirements than ours. We
refer the reader to [4], where it has been shown that in some benchmarks AIO
outperforms synchronous I/O by as much as 50%.

In Solaris, a system thread is generated for each request. Once all the pro-
cesses have been lined up for service, the threads are multiplexed around the
required resource. As already mentioned, AIO boosts performance by allowing
the calling process to perform other critical tasks until it can no longer pro-
ceed without accessing the results of the outstanding AIO operations. There
are situations when the user may want to check the status of the outstanding
AIO operations regularly. However, we want to minimize excess checking for
performance reasons. Using polling to check the status also hurts performance.
A better choice is to use asynchronous notification for the completion of AIO
operations via perhaps a signal handler.

We considered implementation of the more traditional asynchronous read
options in UNIX, select and poll, but found that they don’t work on normal
files: both always return true, indicating that a non-blocking read is possible,
when in fact this is not the case with 1 MB reads.

5.6 Mmap

Through the file system, mmap provides the best performance on Solaris, despite
our extremely simple implementation (we transformed each blocking read call
into an mmap call followed by a checksum of each 512th bit to confirm that the
data had in fact been copied into memory). It would be interesting to com-
pare this technique with the asynchronous alternative, issuing one mmap call
for each stream first and then attempting to do the reads, although our expe-
rience with asynchronous disk scheduling was disappointing. Single threaded
read performed slightly better than mmap under FreeBSD. Neither Solaris nor
FreeBSD allowed mmap to a character device.
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5.7 Multithreading vs. Single Threading

Another approach that we took to allowing the system to optimize the order in
which multiple asynchronous reads are performed was to spawn several threads,
each of which waits on a signal to start reading at the beginning of each round.

This code was more complicated and took longer to implement and debug.
We implemented threads using the pthreads interface, which is shared between
Solaris and FreeBSD. Solaris allows the programmer to set the level at which
threads are scheduled to be “system”; FreeBSD does not. On Solaris, both sys-
tem level threads and user level threads performed the same, however. FreeBSD
does not support system level threads, and we were unable to run some of the
tests using the file system and threads to completion perhaps due to implemen-
tation errors, in our code or in the system libraries; the same tests completed
on Solaris.

6 Results

Table 1 summarizes the results we obtained through the various I/O methods we
implemented (using our strictest method for calculating the maximum number
of streams and 1MB reads). This strict method allowed a maximum of one
round to complete after its deadline as defined by the start time and the bit
rate of the stream.

method RAW I/O File System
Solaris FreeBSD Solaris FreeBSD

read 63 63 25 53
aio 33 33 23 39
threads (user) 29 49 18 N/A
mmap N/A N/A 31 51

Table 1: Comparison of maximum number of 1.5 Mbps streams for various I/O
methods (1 MB block size).

The maximum number of streams (63) was obtained through the raw inter-
face on both Solaris and FreeBSD. This number is quite close to the expected
maximum derived in two different ways.
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Özden et. al. suggest that the maximum number of streams q for a given
disk must satisfy the following equation [7] (the parameters are from vendor
supplied information for the disk we’re using):

display rate rdisp 1.5 Mbps

inner track disk transfer rate rdisk 120 Mbps
settle time tsettle .6 ms
seek time tseek 17 ms
rotational latency trot 8.33 ms
block size d 1 MB

q ·

(

d

rdisk
+ trot + tsettle

)

+ 2 · tseek ≤
d

rdisp

This calculation results in a maximum of 70 streams.
The other method for calculating the maximum number of streams involves

the observed average sequential transfer rate (100 MB / 7.8 s = 102.6 Mbps):

nstreams =
rxfer
rdisp

=
102.6 Mbps

1.5 Mbps / stream
= 68 streams

Given these calculations, our target of nearing the maximum throughput of
the disk is achieved.

The following charts draw out some of the reasons why various techniques
fail to perform optimally. Our tests measured the maximum number of streams
attainable by incrementally increasing the number of streams and reading 100
MB for each stream. In each round per test, the amount of time required to
complete the round was captured. The maximum number of streams without
errors was calculated by subtracting one from the number streams in the first
test that contained errors. The distribution of the response times in the first
test that contained errors is depicted here; complete plots of the response times
for several of the methods are provided later in the paper.

In these plots, the X axis indicates the number of streams for which the
response data is collected; for each method the number of streams selected is
the least with any errors at all. In the Y axis, he darker line indicates the mean
(the horizontal line in the middle) and standard deviation (extending above
and below the mean) of the response times for that method at that number of
streams, while the thinner line indicates the maximum and minimum response
time.
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For example, in Solaris, the number of streams in which an error was first
observed for the FS/read method was 23, the mean was 4.07, the standard
deviation was 0.49, the maximum was 7.6, and the minimum was 1.44.

The Raw/read method performs better than the others on both Solaris and
FreeBSD. In addition, synchronous reads through the file system perform second
best on FreeBSD, but only near the worst on Solaris; slower than any method
on FreeBSD. In fact, all of the file system methods performed much worse on
Solaris than on FreeBSD.
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With the exception of mmap on Solaris, the variation in response time from
the file system methods was significantly greater than it was in any of the raw
methods. On both Solaris and FreeBSD, both Raw/AIO and Raw/threads
suffered from a performance problem that is not related to a high variation in
response time.

The following charts illustrate the distribution of the response times for four
tests directly: the X axis here is the round number, and the Y axis is the
number of seconds that round took to complete in this test. In each chart, the
dotted line is the 5.3 second deadline for each round. The charts on the left
show clearly how much more variable synchronous reads through the file system
are than through the raw interface, and give some insight to what degrades
performance for these methods.

The distributions selected were those with the mean service time at the
maximum observed less than the deadline. Solaris was able to deliver just 36
streams through the file system under this condition, while FreeBSD delivered
61 streams. Both delivered 63 streams using the raw interface.
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Note that the first round takes much longer than most of the other rounds,
and that the last round takes much less. We surmise that this is because the first
round is performing some prefetching and that the last round’s data has been
fetched already during the previous round. The pattern of access in FreeBSD
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is much more regular; regular spikes occur perhaps indicating that more data
than normal is being retrieved in these rounds.

7 Conclusions

We tested the performance characteristics of various I/O techniques on Solaris
and FreeBSD and their suitability for a multimedia storage server application.
We found that in Solaris, file system performance for sequential reads is quite
poor, and that on both systems, file system performance was more highly vari-
able (and thus unsuitable for a multimedia storage server) than through the
raw interface to the disk. We found that explicitly scheduling disk requests to
minimize seek time resulted in better performance than allowing the system to
schedule disk requests using asynchronous I/O or threads.
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