
A Performance Study of Java file I/O
Nathan Burnett, Deepak Jindal

University of Wisconsin-Madison
{ncb, jindal}@cs.wisc.edu

1 Abstract

Java’s performance for applications that are compute bound has been widely studied and
the affects of the JVM on such performance are well understood. However, very little has
been done to study how Java’s performance for I/O bound applications compares to non-
Java implementations. In this paper, we attempt to first compare Java’s I/O performance
to non-Java programs performing similar tasks. We then attempt to determine whether
the performance difference is simply due to the same factors affecting Java’s compute-
bound performance or whether there is additional overhead introduced by Java when
performing I/O operations.

2 Introduction

In this paper we look at the performance of I/O bound programs written in Java, running
under Sun Java Virtual Machine. This work is motivated by Java’s increasing acceptance
in both industry and academia, as well as the increasingly I/O bound nature of user
applications.

Java’s write-once, run-anywhere paradigm and its suitability for object-oriented software
design are making Java increasingly popular. Java is gradually supplanting C and C++ as
the language of choice for undergraduate education. Furthermore, the pervasiveness of
the Internet is making cross-platform compatibility more important than ever. Java
makes running on more than one platform nearly trivial. This is leading to Java’s
increasing use in Internet-centric applications. Thus, it is important to understand the
tradeoffs in choosing between Java and traditional programming languages. The
performance issues surrounding compute bound Java applications are well understood.
However, little work has been done for I/O bound applications. Here we examine the
tradeoffs that one encounters in writing I/O bound applications.

Some work has been done to discover techniques that the application programmer can
employ to improve Java’s I/O performance [2]. In this study, we aim to discover ways in
which Java’s I/O library classes could be modified or replaced in order to improve
performance. Figure 1 shows how the user-time of a sequential read of a file differs
between a C and a Java implementation. Both benchmarks read the file from beginning
to end. The Java benchmark used the BufferedReader class provided by the Java API
with a 4K buffer size, the C benchmark made read() calls, reading 4KB per call. This
plot clearly shows a large performance difference between the C and Java
implementations. The goal of our study is to discover ways to significantly improve the
performance of the Java implementation.

All of the Java benchmarks described herein were compiled and run using Sun’s JDK
1.2.2. C programs and Native methods were compiled with the GNU C Compiler (gcc)
version XXXXX. Most benchmarks were run on a XXXXX running RedHat Linux 7.0,
Linux kernel 2.X.X. Random read benchmarks were run on a 600 Mhz Pentium III
running RadHat Linux 6.2, Linux kernel 2.2.16. For the benchmarks that used buffering,
the buffering was done within the application and not in the OS.

Java vs. C Sequential Reads

0

200

400

600

800

1000

1200

1400

1600

256K 1M 4M 16M 64M 256M

File Size (Buffer Size = 4K)

T
im

e
(s

ec
o

n
d

s)

Java

C

Figure 1 sequential reads in Java vs. the same in C.

3 The Java I/O path

Before we start any performance analysis of the situation depicted in Figure 1, it is
important to understand the path of a read in Java. At the top is the JVM that is
responsible for bytecode interpretation. In Java each class is compiled in a platform
independent JVM instruction set, known as bytecode. To achieve portability, JVM
bytecode does not include instructions to interact with the operating system.
Consequently, each operating system call is wrapped in a Java method which is
implemented natively, that is, in a platform dependent way. These native methods need to
access objects and variables from JVM. Different JVMs can have different internal
representation of objects. To maintain portability between JVM and the native
implementations, Sun [3] has defined a standard Java Native Interface (JNI). JNI allows
one to write native methods that can be used by any JVM. We explain JNI later in this
report. Once the control of execution is transferred to native method, the native method
uses standard OS interface to perform any system activity.

3.1 OS interface

All of our benchmarks used the Linux read(), write() and lseek() calls respectively. We
do not explore this interface as much work has been done on both the interface to
operating system kernels and the inner workings of the kernel itself. All of our work was
done on top of the Linux second extended filesystem, which we also do not explore in
this paper.

3.2 Java Native Interface

At this point there are two paths we could have chosen toward our goal of improved Java
I/O performance. One would require us to modify the Java Virtual Machine in order to
improve performance. The other path, and the one we chose, was to implement our own
file I/O class using the Java Native Interface, thus bypassing most of the above described
layers of function calls.

Figure 2 shows the results of our initial attempt at using the Java Native Interface to
implement a file I/O class. This benchmark randomly seeks to a position in the file, reads
a single byte and then randomly seeks again. Our initial implementation was clearly
somewhat naïve since it performed worse than the implementation provided as part of the
Java API. To understand why this is so, we look at the basic usage of the Java Native
Interface.

�

0

10

20

30

40

50

60

70

80

90

100

16K 64K 256K 1M 4M 16M

File Size

T
im

e
(s

ec
o

n
d

s)

Java

Native

Figure 2 Random reads using a naïve native read implementation compared to the standard Java
implementation

-DYDB0\5HDGBUHDG�-1,HQY�HQY��MREMHFW�REM��^

 FOV� �HQY�!*HW2EMHFW&ODVV�REM���
� � ILG� �HQY�!*HW)LHOG,'�FOV��´IGµ��´,µ���
� � IG� �HQY�!*HW,QW)LHOG�REM��ILG���
� � ������
� � UHDG�IG��	EXI��EXIOHQ����

� � UHWXUQ�EXI��
� `�

In the above code the first three lines are the important ones. In these lines we’re
retrieving the value of a data member store in the Java object of which this function
(method) is a member. The first line fetches the class of the current object from the JVM
environment. The second line fetches the ID of the field (data member) and the third line
fetches the value we’re interested in, in this case the Unix file descriptor of the file being
read. Since this particular value will be the same every time this method is called from
this object, there is no reason to spend the time to fetch the value on every call to read.
The class type and field ID will also be the same for every call. We discovered that the
retrieval of the field ID is particularly expensive, probably due to passing in the field
name and type as strings. To solve this problem, we made the constructor of our file I/O
class a native method and fetch these three values and store them in C global variables
when the object is constructed. Figure 3 shows the results for sequential reads when we
cache the cls, fid and fd values rather than fetching them on every call to read(). This
gains a significant performance improvement over the Java implementation and over our
initial native implementation, however the performance is still significantly worse than
the implementation in C. The remainder of our study is focused on locating the source of
this slowdown.

0

200

400

600

800

1000

1200

1400

1600

256K 1M 4M 16M 64M 256M

File Size (Buffer Size = 4K)

T
im

e
(s

ec
o

n
d

s)

Java

Native

C

Figure 3 Sequential reads performed by a Java, C and non naïve native implementation.

3.3 Native method invocation and JVM
This is the last part of the Java I/O path we consider in this report. This part is
implementation specific and would hold for any application regardless of whether it is
I/O bound or not. We do not consider effects of different I/O interfaces provided by Java

standard library (java.io), as much work has already been done on evaluating this
interface [2].

4 Results and Analysis

In this section we explain our results and optimizations. First, we identify the
performance bottlenecks present in the Java I/O path explained earlier. Our methodology
for identifying these performance bottlenecks is to compare Java and C implementation
of the same benchmark. We assume that C implementation has the best performance we
could hope to achieve. The result of this assumption is that we need not consider
bottlenecks that have same performance overhead for both C and Java.

We only use the sequential read micro benchmark for studying bottlenecks. The
advantage of using a simple micro benchmark is that we get to analyze each interface
conclusively. Once we have identified the bottlenecks, we look at the different kinds of
benchmarks and report our results in the light of developed understanding of different
interfaces.

Our approach in understanding the performance implication of this system is bottom up.
We start looking at performance bottlenecks in OS interface and traverse our path
upwards to the JVM.

4.1 Analyzing the Java I/O path

To analyze the Java I/O path, we use a sequential read micro-benchmark. It reads a file
sequentially from beginning to end. It implements a byte-oriented read interface in which
the main loop reads one byte at a time. However, the UHDG���system call reads the
number of bytes specified by the buffersize, an argument to the benchmark. We use three
implementations of this benchmark – BufferedRead, NativeRead and C_Read.
BufferedRead and NativeRead are implemented in Java whereas C_Read is implemented
in C. BufferedRead uses BufferedInputStream defined in the standard Java package
java.io. BufferedInputStream provides a byte-oriented read interface but internally it uses
a buffer to read a number of bytes from the file. NativeRead uses our own
implementation of BufferedInputStream. Since we implement our own native read
function, this implementation gives us a handle to analyze the performance bottlenecks in
the native implementation. Finally C_Read implements the same functionality in C.
Appendix I contains the complete code of these implementations.

Having explained our benchmark, we are now ready to explore the Java I/O path.

4.1.1 OS Interface

First we study a possible performance bottleneck of using the Unix read system call. To
study the overhead we compare user time of two implementations – NativeRead as
described before and DummyNativeRead. DummyNativeRead is same as NativeRead
except the read system call is replaced by a dummy function call. Since read system call

is executed in kernel, we expected no improvement in user time when using
DummyNativeRead. Our initial experiments were confined to use read system call for
each byte (i.e. set the buffer size to 1). Contrary to our expectations, we saw a big
improvement in user time while not using the read system call. For 1 GB file there was
around 9.7 times improvement in user time. This raised a number of hypothesizes –

• Java uses green threads, which are threads handled by the JVM. The JVM might
be scheduling these threads in non-optimal fashion.

• There might be a problem with the Unix time utility that was being used to
measure kernel and system time.

• This difference can be due to the processor cache state. In the case when a system
call is used in every loop, the user process incurs a context switch during each
iteration and hence user process can never run in cached state. Both instruction
and data caches can improve performance dramatically.

We tried to disprove each hypothesis one by one. The first hypothesis can be disproved if
we use a JVM implementation that can use native threads or green threads and the results
are similar under both threads. Unfortunately, we couldn’t find any JVM implementation
that has both native and green threads. Finally we decided to do the same experiment in
C. We used C_Read and Dummy_C_Read (which replaces read system call by a dummy
function call). Interestingly, we saw an improvement of over 13 times in C rejecting our
first hypothesis.

To disprove the second hypothesis we used time utility of different Unix
implementations. All of them agreed with the current observation rejecting our
hypothesis.

The third hypothesis can be disproved if we let the user process run in cached state for a
while before using read system call and the results remain the same. We did this by
changing the buffer size while making the read system call. Our hope was that at some
particular buffer size, we would get all the benefits of caching and the user times for both
implementations (with or without read system call) would converge. Figure 4 shows the
result of this experiment. It met our expectations to some extent. The user time of
NativeRead did drop initially but once the buffer size reaches 64, there is virtually no
improvement. There still seems to be some kind of overhead for the read system call. To
contrast it with C, we repeated the same experiment with C implementations. Figure 5
shows the results for C implementations. As in the case of Java, User time drops
significantly till buffer size increases to 16. Afterwards, increase in buffer size results in a
small increase in user time. We hypothesize that this happens because large buffers are
not laid out in cache conscious manner. In case of Java, caching contents of buffer is not
as important as the state of JVM itself.

To differentiate the read system call overhead in C and Java, we plot the gap between
user times for both C and Java implementations. Figure 6 shows the resulting graph.

0

100

200

300

400

500

600

700

800

900

1000

1 4 16 64 256 1K 4K 16K

Buffer Size (File size = 1GB)

T
im

e
(s

ec
o

n
d

s)
With I/O

Without I/O

0

50

100

150

200

250

300

350

400

1 4 16 64 256 1K 4K 16K

Buffer Size (File Size = 1 GB)

T
im

e With I/O

Without I/O

Figure 5: User time for the two C implementations – C_Read
(with I/O) and C_Dummy_Read (w/o I/O).

Figure 4: User time for the two Java implementations – NativeRead
(with I/O) and DummyNativeRead (w/o I/O).

 It is clear from the figure that this overhead of read system call is same for C and Java.
We hypothesize that this is because of the code generated by the compiler for a read
system call. Since it is same for both C and Java, we do not explore this further.

4.1.2 Native Method Invocation and JVM

Our final experiment was to measure the overhead of native method invocation. We
measure performance of two programs – EmptyNative and PureJava. Both have a main
loop that calls a dummy function, which just increments a counter. EmptyNative uses
native implementation of that function whereas PureJava uses a java implementation of
the same method. Figure 7 shows the resulting bar graph. PureJava is slower than
EmptyNative proving that the overhead of native method invocation is similar to a pure
java method invocation.

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K

Buffer Size (File Size = 1GB)

T
im

e C

Java Native

Figure 6: Comparing overhead of read system call in C and Java

0

50

100

150

200

250

300

350

400

450

500

Native Call Non-native Call

T
im

e
(s

ec
o

n
d

s)

Figure 7: Native call overhead

4.2 Overall performance

The previous analysis indicated that in the Java I/O path, the bytecode interpretation is
the main performance bottleneck. The lack of system calls in bytecode does not degrade
the I/O performance. Before we conclude that Java I/O is significantly slower than C I/O,
we examine a few more benchmarks. The problem with our previous read benchmark is
that it assumes that applications always use I/O in byte-oriented fashion. Consequently,
there is a significant bytecode overhead for each byte of I/O. In this section, we examine
performance of the benchmarks that have low bytecode overhead per byte of I/O
performed. These benchmarks represent the I/O bound applications more accurately. We
also study the result of random I/O in which total time is dominated by disk seeks rather
than CPU. Figure 8 and 9 show the results of these benchmarks.

The results of random I/O show the difference in user time for C and Java
implementation. Total execution of a program had three components – user time, kernel
time and disk I/O time. In the case of random I/O the disk seek would dominate the total
running time making this difference in user time insignificant. We wanted to measure the
effect of seeks on the real time, but once the file size increases beyond 16MB, the
program does not finish in 32 hours.

BigRead is a micro-benchmark that is intended to track the performance of applications
that use a buffered interface to read files. In this case instead of reading a byte at a time,
the application reads a buffer at a time. As shown in the resulting graph, the overall time
goes down as the buffer size is increased. Once the buffer size reaches 64, only the disk
I/O determines the total running time.

5 Conclusion and Future Work

From this study we conclude that while I/O bound applications written in Java do have
poorer performance than their C counterparts, that slowdown is for the same reasons that
compute bound Java Applications run slower than their C counterparts. The applications
where I/O is significantly more than CPU activity, Java does not perform very poorly. In
addition to the application level techniques described in [2], implementing I/O
functionality natively. Doing this, of course, gives up some of the platform independence
that makes Java attractive. We believe that by implementing classes with native methods
that present the same interface to the application that the standard Java API presents, it is
reasonable to implement applications that can use the Java API classes when high-
performance native versions are not available.

Random Write User Time

0

20

40

60

80

100

120

140

16K 64K 256K 1M 4M 16M

File Size

T
im

e
(s

ec
o

n
d

s)

Java

Native

C

Sequential Reads

0

500

1000

1500

2000

2500

3000

3500

1 4 16 64 256 1K 4K 16K

Buffer Size (File Size = 1 GB)

T
im

e
(s

ec
o

n
d

s)

User time

Kernel time

Real time

Figure 8: Comparing User time in C, Java and our implementation
of native read method

Figure 9: Measuring performance of BigRead

6 Acknowledgments

We wish to thank the Program Chair, Publicity Chair, Steering Committee, Chief of
Staff, and Commander in Chief, Professor Remzi H. Arpaci-Dusseau. We also wish to
thank the University of Wisconsin Computer Systems Lab for providing the equipment
for this study. We would also like to appeal to the Commander in Chief that he not count
the appendix toward the limit of 12 pages since one does not really have to read it in
order to understand our work, rather it is provided to satisfy the curiosity of the reader.

7 Bibliography

[1] Bonachea, D., “Bulk File I/O Extensions to Java” Java 2000, San Francisco, CA

[2] Dickens, P. And Thakur, R., “An Evaluation of Java’s I/O Capabilities for High-
Performance Computing” Java 2000, San Francisco, CA

[3] JNI™ Java Native Interface http://java.sun.com/products/jdk/1.2/docs/guide/jni/

8 Appendix I
Here we list the code used in our sequential read micro-benchmarks.

8.1 BufferedRead.java
It uses the BufferedInputStream class from java.io package.

LPSRUW�MDYD�LR���
�
SXEOLF�FODVV�%XIIHUHG5HDG^�
��SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJV>@��^�
���LI��DUJV�OHQJWK�� ����^�
�����6\VWHP�HUU�SULQWOQ����ILOH�QDPH!��EXIIHU�VL]H!����
�����6\VWHP�H[LW�����
���`�
���LQW�EXIIHUBVL]H� ��QHZ�,QWHJHU�DUJV>�@���LQW9DOXH����
���WU\�^�
�����)LOH,QSXW6WUHDP�ILV� �
���������QHZ�)LOH,QSXW6WUHDP�DUJV>�@���
�����%XIIHUHG,QSXW6WUHDP�ELV� �
���������QHZ�%XIIHUHG,QSXW6WUHDP�ILV��EXIIHUBVL]H���
�����LQW�FQW� ����
�����LQW�E��
�����ZKLOH���E� �ELV�UHDG����� �����^�
�������LI��E� �
?Q
��
���������FQW����

�������`�
�����ELV�FORVH����
�����6\VWHP�RXW�SULQWOQ�FQW���
���`�
���FDWFK��,2([FHSWLRQ�H��^�
�����6\VWHP�HUU�SULQWOQ�H���
���`�
�`�
`�

8.2 NativeRead.java
It is similar to BufferedRead.java except it uses our own implementation to
BufferedInputStream.

The main function is implemented as before. Here we list our implementation of the read
method of BufferedInputStream.

-1,(;3257�MLQW�-1,&$//�
-DYDB1DWLYH5HDGBUHDG�-1,(QY�HQY��MREMHFW�REM�^�
����MFODVV�FOV��
����MILHOG,'�ILG��
����LQW�IG��
�
�������*HW�WKH�FODVV�RI�REM��WKLV���
����FOV� �HQY�!*HW2EMHFW&ODVV�REM���
�

���*HW�WKH�ILHOG�,'�IURP�WKLV�FODVV�ZKLFK�LV�RI�W\SH������
���,QW�DQG�LV�QDPHG��IG��

����ILG� �HQY�!*HW)LHOG,'�JOREDOBFOV���IG����,����
�
�������*HW�WKH�YDOXH�RI�WKLV�ILHOG�
����IG� ��HQY�!*HW,QW)LHOG�REM��JOREDOBILG���
�

���EXIBOHQJWK�DQG�EXIBSRV�DUH�VWDWLFDOO\�GHILQHG�
���YDULDEOHV�

����LI�EXIBOHQJWK�� ���^�
��������EXIBOHQJWK����
��������UHWXUQ�EXI>EXIBSRV��@��
����`�
�
�������0DNLQJ�WKH�UHDG�V\VWHP�FDOO�
�������EXIBVL]H�LV�D�JOREDO�YDULEOH�VHW�RQFH�LQ�WKH�RSHQ�
�������PHWKRG�
����EXIBOHQJWK� �UHDG�JOREDOBIG��EXI��EXIBVL]H���
�
����LI�EXIBOHQJWK� ����UHWXUQ�����
�
����EXIBSRV� ����
����EXIBOHQJWK����

����UHWXUQ�EXI>EXIBSRV��@��
�
`�

8.3 C_Read.c
It implements the same functionality in C.

�LQFOXGH��VWGLR�K!�
�LQFOXGH��HUUQR�K!�
�LQFOXGH��IFQWO�K!�
�
�
VWDWLF�LQW�EXIBVL]H��
VWDWLF�LQW�EXIBOHQJWK� ����
VWDWLF�LQW�EXIBSRV��
VWDWLF�FKDU��EXI��
�
LQW�P\BUHDG�LQW�IS��FKDU��F�^�
�
����LI�EXIBOHQJWK�� ���^�
��������EXIBOHQJWK����
��������F� �EXI>EXIBSRV��@��
��������UHWXUQ����
����`�
�
����EXIBOHQJWK� �UHDG�IS��EXI��EXIBVL]H���
�
����LI�EXIBOHQJWK� ����UHWXUQ����
�
����EXIBSRV� ����
����EXIBOHQJWK����
����F� �EXI>EXIBSRV��@��
����UHWXUQ����
�
`�
�
PDLQ�LQW�DUJF��FKDU��DUJY�^�
����LQW�IS��
����FKDU�F��
����LQW�FQW�UHW��
����LQW�FRXQW��
�
����LI�DUJF�����^�
��������SULQWI���ILOH�QDPH!��EXIIHU�VL]H!?Q����
��������UHWXUQ�����
����`�
�
����EXIBVL]H� �DWRL�DUJY>�@���
����EXI� ��FKDU���PDOORF�EXIBVL]HVL]HRI�FKDU����
�
����FRXQW� ����

����FQW� ����
����IS� �RSHQ�DUJY>�@�2B5'21/<�����
�
�������7KH�0DLQ�/RRS�
����ZKLOH�P\BUHDG�IS��	F�� ��^�
��������LI�F� �
?Q
��FRXQW����
����`�
�
����SULQWI���G?Q��FRXQW���
����FORVH�IS���
`�

