Library Express - Interlibrary Loan Request

e/ 2013

ARPACI-DUSSEAU, REMZ
Requestor ID 37476385950

Charges for article approved

Email remzi@cs.wisc.edu
Status: Staff/Faculty
Citation
Daley, R.C., and Dennis, J.B. MM
Virtual Memory, Processes, and Sharing in MULTICS
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 306-312. /

§
%K

Notice warning concerning copyright restrictions: The Copyright Law of the United States (Title 17, United 9
States Code) governs the making of photocopies or other reproductions of copyrighted material. Under

certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other g
reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for Agm (0
any purpose other than private study, scholarship, or research.” If a user makes a request for, or later

uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright C/
infringement. This institution reserves the right to refuse to accept a copying order if, in its]udgement

fulfillment of the order would involve violation of copyright law.

Upon receipt of this electronic reproduction of the publication you have
requested, we ask that you comply with copyright law by not systematically
reproducing it, or in any way distributing or making available multiple copies of it.

ISSN/ISBN o00l-0182

Updated:

OCLC #

Notified

teen
The
3 ca-
wte.
iives
it of
5. In
3 be
:uml'l.
ither
. off-

sther
con-
Hffice

o

- — The May issve is de-
W"WMM"Tl voted to the publica-
—<! fion of papers pre-
sented at the ACM

Symposium on Oper-

gz’f/)?;ll[ating System Prin-
P ciples, Gatlinburg,
Tennessee, October

1967. Seventeen diverse papers

'_ Itre presented at the Symposium; ten

,"‘Ple’e popers are here presented

fuMWlrating conflicting schools of thought

olved in formulating basic operating
m principles.
Symposium was sponsored by the
M Special Interest Committee on
~Sharing (SICTIME).

sormation concerning editorial maotters,

fiptions, and advertising appears on
& A4,

fisheq monthly at Mt. Royal & Guil-

Aves., Baltimore, Md., 21202, by
Association for Computing Machinery.
ond class postage paid at Baltimore,
 Copyright © 1968, by the Assodia-
o c°"1puﬁng Machinery.

295

297

306

313

323

334

341

347

360

365

370

294

293

379

381

390

COMMUNICATIONS OF THE

VOLUME 11 / NUMBER 5 / MAY, 1968

contrbutions

Proceedings of the ACM Symposium on Operating System Principles, Gatlinburg, Tennessee,
October 1-4, 1967

Program [The program includes abstracts of papers not published in full in this issue.]
Complete papers
Dynamic Storage Allocation Systems B. Randell and C. J. Kuehner

Virtual Memory, Processes, and Sharing in MULTICS Robert C. Daley and Jack B. Dennis

Resource Management for a Medium Scale Time-Sharing Operating System
G. Oppenheimer and N. Weizer

The Working Set Model for Program Behavior Peter J. Denning

Considerations in the Design of a Multiple Computer System with Extended Core Storage
Kurt Fuchel and Sidney Heller

The Structure of the “THE"-MuIﬁprogromming System Edsger W. Dijkstra
A Scheduling Philosophy for Multiprocessing Systems Butler W. Lampson
Three Criteria for Designing Computing Systems to Facilitate Debugging Earl C. Van Horn
Protection in an Information Processing Utility Robert M. Graham

A Position Paper on Computing and Communications Jack B. Dennis

departments

LeHers to the Editor—L. D. Yarbrough/R. J. Abbott/J. D. Beyer/W. D. Maurer/F. K. Bamberger/
G. C. Dodd

Official ACM—President’s Letter to the ACM Membership
Washington Commentary—Assault on Systems Procurement
News

ACM Reference Guides—Special Interest Groups/Special Interest Committees

'PUBLICATION OF THE ASSOCIATION FOR COMPUTING MACHINERY

67. Proc. AFIPS 1966 Spring Joint Comput. Corf., Vol. 28.
Spartan Books, New York, pp. 61-78.

10. Graser, E. L., CouLEUR, J. F., AND Ouiver, G. A. System
design of a computer for time-sharing applications. Proc.
AFIPS 1965 Fall Joint Comput. Coni., Vol. 27, Part 1.
Spartan Books, New York, pp- 197-202.

11. Guuck, S. E. Impact of scratchpad memories in design:
multifunctional scratchpad memories in the Burroughs
B8500. Proc. AFIPS, 1965 Fall Joint Comput. Conf. Vol.
27, Part 1. Spartan Books, New York, pp. 661-666.

12. Hort, A. W Program organization and record keeping for
dynamic storage allocation. Comm. ACM 4, 10 (Oct. 1961),
422-431.

13. Iuirre, J. K., axp JopEtT, J. G. A dynamic storage alloca-
tion scheme. Comput. J. 8, 3 (1962) 200-209.

14. KiLsugN, T., Epwarps, D. B. G., LaNiGax, M. J., AND SuM-

16. LoNeRrGaN, W., anp King, P. Design of the B5000 system

tio:

Datamation 7, 5 (1961) 28-32. du
17. MacKenzig, F. B. Automated secondary storage manage. 7 ad
ment. Datamation 11, 11 (1965) 24-28.
18. McCurLoucH, J. D., SeetermaN, K. H., aNp ZURcHER, F. W ma
A design for a multiple user multiprocessing system. Proc. {
AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Part 1: us¢

Spartan Books, New York, pp. 611-617. o
19. McGeg, W. C. On dynamic program relocation. IBM Syst. g

4, 3 (1965) 184-199. m

20. O’NEILL, R. W. Experience using 2 time-sharing multipro. st
gramming system with dynamic address relocation hard-. uni
ware. Proc. AFIPS 1967 Spring Joint Comput. Conf., VoI, sha
30. Thompson Books, Washington, D. C. pp. 611-621,

ey
91. Vyssorsky, V. A., CorBato, F. J., aND GranaMm, R. M. p .
Structure of the MULTICS supervisor. Proc. AFIPS 1965 '
Fall Joint Comput. Conf., Vol. 27, Part L. Spartan Books, | (6]

~ER, F. H. One-level storage system. IEEE Trans. EC 11,

2 (1962) 223-235. New York, pp. 203-212. cej
15. ——, Howarth, D. J., PAYNE, R. B., anp Sumxer, F. H. 29. Warp, B. Utilization of a multiprocessor in comuiand and init
The Manchester University ATLAS Operating System Part control. Proc. IEEE 54, 12 (1966) 1885-1888.]

1: The Internal Organization. Comput. J. 4, 3 (1961) 222- 93. — . The descriptor—a definition of the B5000 information as
225. processing system. Burroughs Corp., Detroit, Mich., 1961. b

: an(
dre
whi

Co
/ &
int
y to-
. tat)

1 1 1 con
Virtual Memory, Processes, and Sharing in MULTICS o

’ . Spe

Robert C. Daley and Jack B. Dennis it

Massachusetis Institute of Technology, Cambridge, Massachusetts of «

at
sup
Some basic concepts involved in the design of the MULTICS Introduction 1
operating system are introduced. MULTICS concepts of In wmurrics [1] (Multiplexed Information and Com-: pro
processes, address space, and virtual memory are defined and puting Service), fundamental design decisions were made con
the use of paging and segmentation is explained. The 5o the system would effectively serve the computing needs for
means by which users may share procedures and data is of a large community of users with diverse interests;: tur.
discussed and the mechanism by which symbolic references are operating principally from remote terminals. Among the - tior
dynamically transformed into virtual machine addresses is de- objectives were these three: mo
scribed in detail. (1) To provide the user with a large machine-in(_1 \Qra]
KEY WORDS AND PHRASES: virtual memory, information sharing, shared pendent virtual memory, thus placing the responsibility sha
procedures, data sharing, dynamic linking, segmentation, paging, multi- for the management of physical storage with the SySt"'ql] E
programming, storoge management, storage hierarchies, file maintenance software. By this means the user 1S pI'OVided with an { hay
CR CATEGORIES: 373, 4.32 address space large enough to eliminate the need ' gro
plicated buffering and overlay techniques. Users, therefo :y §

o are relieved of the burden of preplanning the traps’ Yp

Presented at an ACM Symposium on Operating System Principles, of information between storage levels. and user progr as |
Gatlinburg, Tennessee, October 1-4, 1967 revised December, 1967. b ‘nd dent of th ¢ f, th rious stor fetc
This paper is based on notes prepared by J. Dennis for the Uni- ecome 1 ependent 0 e nature o eva sou
versity of Michigan Summer Conference on Computer and Pro- devices in the system. o fet,
gram Organization, June 1966. , (2) To permit a degree of programming genel'ahty : int
The work reported herein was supported in part by Project previously practical. This includes the ability of one P} n‘ ‘
MAC, an M.I.T. research project sponsored by the Advanced Re- cedure to use another procedure knowing only its DI or

search Projects Agency, Department of Defense, under Office of
Naval Research Contract Nonr-4102(01). Reproduction of this re-
port, in whole or in part, is permitted for any purpose of the United
States Government.

Communications of the ACM

306

and without knowledge of its requirements for storage
the additional procedures upon which it may in tur
For example, a user should be able to initiate a compU g

Volume 11 / Number 5 / May

7*
tem. tion merely by specifying the symbolic name of a proce-
dure at which the computation is to start and by allowing
e additional procedures and data to be provided auto-
) matically when and if they are needed.
l;l‘\o\c. (3) To permit sharing of procedures and data among
o1 users subject only to proper authorization. Sharing of
procedures in core memory is extremely valuable in a
st J. multiplexed system so that the cluttering of auxiliary
_ storage with myriad copies of routines is avoided, and so
T}pig unnecessary information transfers are eliminated. The
» ‘\701? sharing of data objects in core memory is necessary to
3 permit efficient and close interaction between processes.
2. M. These objectives led to the design of a computer system
3 1965 (6] (the General Electric Model 645) embodying the con-
3ooks, cepts of paging [8] and segmentation [3] on which the
d and initial implementation of MurTICcs Wwill run.

In this paper we explain some of the more fundamental
nation aspects of the muLTIics design. The concepts of “process”
- 1961. and “address space” are defined, some details of the ad-

dressing mechanism are given, and the mechanism by
which “dynamic linking” is accomplished is explained.

Concepts of Process and Address Space
Several interpretations of the term “process” have come
into recent use. The most common usage applies the term
d to the activity of a processor in carrying out the compu-
tation: specified by a program [4, 5]. In MULTICS, the
concept of process is intimately connected with the con-
cept of address space. Processes stand in one-to-one corre-
spondence with virtual memories. Each process runs in'
its own address space, which is established independently
. of other address spaces. Processes are run on a processor
. at the discretion of the traffic controller module of the

- SUDErvisor.

- The virtual memory (or address space) of a MuLTICS
Com- . Process is an ordered set of as many as 2 segments each
o made consisting of as many as 2'® 36-bit words. The arguments
g needs for providing a generous address space having this struc-
terests, ture have been given by Dennis [3]. Briefly, the motiva-
ng the tion is to avoid the necessity of procedure overlays or the
Movement of data within the address space, which gen-
\e-inde- erally lead to naming conflicts and severe difficulties in

sibility sharing information among many processes.
system Each segment is a logically distinct unit of information
vith &8 having attributes of length and access privilege and may
or com* 8ow or shrink independently of other segments in the
;erefores System. For present purposes, we consider two segment

types: (1) data, and (2) procedure. A segment is treated
82 rocedure if it is intended to be accessed for instruction
clch Ly g processor. Other segments (including, e.g., a
jource program file) are considered to be data. Instruction
h:¢tch references to procedure segments are allowed, as are
Mternal dats reads. Writing into a procedure segment is
Omally considered invalid and is prohibited by the
]7 tem. (In certain cases, reading of a procedure segment
{ another procedure may also be prohibited while execu-
0 1s allowed.) Thus procedure segments are nonself-

e 11/ Number 5 / May, 1968

modifying or pure procedures. Instruction fetches from
data segments are invalid, and any data segment may be
write protected. The overall design of MuLTICS protec-
tion mechanisms is discussed by Graham [7].

directory
structure

segments

virtuol
memory

Fic. 1. Virtual memory in a MULTICS process

The size of address space provided to processes makes it
feasible to dispense with files as a separate mechanism for
addressing information held in the computer system. No
distinction need be drawn between files and segments!

The directory structure [2] is a hierarchical arrangement
of directories that associates at least one symbolic name
(but perhaps many) with each segment. These names
have meaning that is invariant over all processes in exist-
ence. Figure 1 portrays the concept of a process as a
virtual memory made up of segments selected from the
directory structure.

Addressing

The Generalized Address. Each word in the address
space of a process is identified by a generalized address. As
shown in Figure 2, a generalized address consists of two
parts—a segment number and a word number. The address-
Ing mechanisms of the processor are designed so that a
process may make effective reference to a word by means
of its generalized address when the word has an assigned
location in main memory. Together with supervisor soft-
ware, these mechanisms make reference by generalized

segment number word number

F1a. 2. The generalized address

address, effective regardless of where the word might
reside in the storage hierarchy by placing it in main
memory when needed. Thus the generalized address is a
location-independent means of identifying information. In

Communications of the ACM 307

the following paragraphs we explain how generalized
addresses are formed in the processor and give a brief
discussion of how they are made effective.

¥
[XI } [BP 1 I
(4 N EF__1__ 1]

Fig. 3. Processor registers for address formation

Address Formation. Each processor of the computer
system (Figure 3) has an accumulator A, a multiplier/
quotient Q, eight index registers X0, X1, ---, X7, and a
program counter PC, which serve conventional functions.
For the implementation of generalized addressing and
intersegment linking, a descriptor _base reqister, a procedure
base_register, and four base pair_registers are included in
each processor. The function of the deseriptor base register
will be discussed in a later paragraph since it does not
participate in generalized address formation. The proce-
dure base register always contains the segment number of

the procedure being executed. Each of the four base pair
registers (called simply base registers in the sequel) holds
a complete generalized address (segment number/word
number pair) and is named according to its specific func-
tion in MULTICS:

base pair designalion funclion
0 ap argument pointer
1 bp base pointer
2 lp linkage pointer
3 sp stack pointer

The functions of these pointers will become clear when
the linkage mechanism is explained.

The instruction format of the processor is given in
Iigure 4. Instructions are executed sequentially except
where a transfer of control occurs. Hence, the program
counter is normally advanced by one during the execution
of each instruction.

address external filag

segment tog l

l

operation code |addressing mode
I I

Instruction format

Fic. 4.

-l . When the processor requires an instruction word from
““memory, the corresponding generalized address is the
segment number in the procedure base register coupled
with the word number in the program counter (Figure 5).
For data references, a field in the instruction format

Communications of the ACM

308

the base registers ii
the external flag is on. The effective address computed

called the segment tag selects one of

from the address field of the instruction by the usual)
indexing procedure.is added to the word number portion
of the selected base to obtain the desired generalized
address. This operation is illustrated by Figure 6 and is
used to reference all information outside the current pro-
cedure segment. If the external flag is off, then the gener-
alized address is the segment number taken from the pro-
cedure base register coupled with an effective word num-
ber computed as before. This mechanism is used for internal
reference by a procedure to fetch constants or for trans-

fer of control. A
e

generalized oddress

|seqmen' number l word number;!

\ PC [PBR | \
FiG. 5. Address formation for instruction fetch ?

N

. - generalized address

~NF

segment number word number

/ M

segment number word number
base register

mode {

segment
tag

r | oddress | orr ‘11

index reg.

Fic. 6. Address formation for data access

Indirect Addressing. As will be seen when the linkage
mechanism is discussed, a method of indirect addressing
in terms of generalized addresses is very valuable. In the ’
processor the addressing mode field of instructions may
indicate that indirvect addressing is to be used. In this ©
case, the generalized _address, formed as explained abcve
for data references, is used. to feteh a pair of 36-bit. _\y;Ofds
which is interpreted as shown in Figure 7. If the address
mode field of the first word contains the code its (indire¢

generalized oddress

[?gmem number l word numbeLJ

segment number \ (-——=———~
word number /J_._—__.__

Fic. 7. lnterpretation of word pair as indirect address

its

mode

Volume 11 / Number 3 / May

to s
fields
ThlS :
mode
addre:

The
ACTLSE
As30Ci
locati:
ment
direct
justif:

The
for a
look -t
numb
index
descr,
segm(
proce:
descr
ing n
that «
segm

The
locat(
Note
nonl:.
infor)
Figur.
Slmpl 1
iIlg o1
from
Swap,
hew ¢

In
humt.
éuCce:

i to segment), the segment number and word number
d ficlds are combined to produce a new generalized address.
This address is augmented by indexing according to the
. ninde field of the second word of the pair. Further indirect
d addressing may also be specified.

is The Descriptor Segment. Implementation of a memory
)- access specified by a generalized address calls for an
r- assoclative mechanism that will yvield the main memory
)- location of any word within main memory when a seg-
1- ment number/word number combination is supplied. A
il direct use of associative hardware was impossible to
< justify in view of the other possibilities available.

The means chosen to implement. the generalized address
for a process is essentially a two-step hardware table
look-up procedure as illustrated by Figure S. The segment
number portion of the generalized address is used as an

descriptor segment of the associated process. This descriptor
segment contains a deseriptor for each segment that the
process may reference by generalized address. Each
T descriptor contains information that enables the address-
ing mechanism to locate the segment and information
that establishes the appropriate mode ot protection of the
segment for this process.

segment number word number]

X y

information
segment

descriptor
segment

/|
/1

F16. 8. Addressing by generalized address

1ge
ing

‘he -

‘l‘;}; The descriptor base register is used by the processor to
o K:cate the d}ascﬁptor segment of the process in execution.
ds ote thgt since segment numbers and word numbers are
o8 ?Ofnlocat.}on depen‘dent_data, the only location dependent
oct - ormation contained in the processor registers shown in

vlflgure 3 is in the descriptor base register. This fact greatly
Simplifies the bookkeeping required by the system in carry-
218 out reallocation activity. In fact, switching a processor
from One process to another involves little more than
apping processor register status and substituting a
W descriptor base.

0 practice this implementation requires that segment
g Mbers be assigned starting from zero and continuing
,,u‘_’CESSiVer for the segments of procedure and data re-
b "ed by each process. An immediate consequence is that

‘f’lumc 11/ Number 5 / May, 1968

index to perform a table look-up in an array called the’

the same segment will, in general, be identified by different
segment numbers in different processes.

Paging. Both information segments and descriptor
segments may become sufficiently large enough to make
paging desirable in order to simplify storage allocation
problems in main memory. Paging allows noncontiguous
blocks of main memory to be referenced as a logically
contiguous sct of generalized addresses. The mapping of
generalized addresses into absolute memory locations is
done by the system and is transparent to the user.

Paging is implemented by means of page tables in main
memory which provide for trapping in case a page is not
present in main memory. The page tables also contain
control bits that record access and modification of pages
for use by storage allocation procedures. A small associa-
tive memory is built into each processor so that most
references to page tables or descriptor segments may be
bypassed.

Intersegment Linking and Addressing

The ability of many users to share access to procedure
and data information and the power of being able to
construct complex procedures by building on the work of
others are two prime desiderata of multiprocess computer
systems. The potential value of these features to the
advancement of computer applications should not be
underestimated. The design of a system around the notion
of a generalized, location-independent address is an essen-
tial ingredient in meeting these objectives. It remains to
show how the sharing of data and procedure segments
and the building of programs out of component procedure
segments can be implemented within the framework of
the muLTICcs addressing mechanisms just described. In
particular we must show how references to external data
(and procedure) segments occurring within a shared pro-
cedure segment can be correctly interpreted for each of
possibly many processes running concurrently.

Requirements. Necessary properties of a satisfactory
intersegment addressing arrangement include the following:

(1) Procedure segments must be pure; that is, their
execution must not cause a single word of their con-
tent to be modified.

Pure procedure is a recognized requirement for general
sharing of procedure information.

(2) It must be possible for a process to call a routine by
its symbolic name without having made prior arrange-
ments for its use.

This means that the subroutine (which could invoke in
turn an arbitrarily large collection of other procedures)
must be able to provide space for its data, must be able
to reference any needed data object, and must be able to
call on further routines that may be unknown to its caller.

(3) Segments of procedure must be invariant to the
recompilation of other segments.

Communications of the ACM 309

¢

This requirement has the following implication: The
values of identifiers that denote addresses within a seg-
ment which may change with recompilation must not
appear in the content of any other segment.

Making a Segment Known. Meeting condition (1)
requires that a segment be callable by a process even if
no position in the descriptor segment of the process has
been reserved for the segment. Hence a mechanism is
provided in ‘the system for assigning a position in the
descriptor segment (a segment number) when the process
first makes reference to the segment by means of its sym-
bolic name. We call this operation making the segment
known to the process. Once a segment_is_known, the

process may reference it by its segment number.

The pattern of descriptor segment assignment will be
different for each process. Therefore 1t is not possible, in
general, for the system to assign a unique segment number
to a shared routine or data object. This fact is a major

consideration in the design of the linking mechanism. In~

the following paragraphs we describe a scheme for imple-
menting the linkage of segments that meets the require-
ments stated above.

Tt is worth emphasizing that this discussion has nothing
to do with the memory management problem that the
supervisor faces in deciding where in the storage hierarchy
information should reside. All information involved in the
linkage mechanism is, as will be seen, referenced by gen-
eralized addresses which are made effective by the mecha-
nisms described earlier. The fact that pages of the seg-
ments referred to in the following discussion may be in or
out of main memory at the time a process requires access
to them is irrelevant.

Linkage Data. Before a segment becomes known to a
process the segment may only be referenced by means of
a symbolic path name [2] which permanently identifies
the segment within the directory structure. Since the
segment number used to reference a particular segment is
process dependent, segment numbers may not appear
internally in pure procedure code. Tor this reason, a seg-

L

Fic. 9. An intersegment reference by procedure P

Communications of the ACM

310

|

ment is identified within a procedure segment by a sym-
bolic segment reference name./Before a procedure can com-
plete an external segment reference, the reference name
must be translated into a path name by means of a direc-
tory searching algorithm and the desired segment made
known to the process. Once the segment has become

known to the process, we wish to substitute the efficient #

addressing mechanism based on the generalized address
for the time-consuming operation of searching the direc-
tory structure. .

Consider a procedure segment P that makes reference .
to a word at location x within data. segment D, as illus-
trated in Figure 9. In assembly language this would be
written as: !

OPR <D> |[x]

The angle brackets indicate that the enclosed character
string is the reference name of some segment. This name
will be used to search.the directory structure the first
time segment P is referenced by a process. The square
brackets indicate that the enclosed character string is a
symbolic address within an external segment. Since by
requirement (3) we wish segment P to be invariant to
recompilation of D, only the symbolic address [x] may
appear in P, Furthermore, we wish to_delay the evaluation
of [x] until a reference to it is actually made in the running
of a process. -
The following problem arises: Initially process o in
executing procedure P may reference (D) | [x] only by
symbolic segment name and symbolic external address.
After segment D has been made known to proce== a, and
a first reference has been effected, we wish to malke urther

i:gferences by the generalized address d % .|x. The question
i is- How can we make the transition from symbolic refer- -
ence to generalized addressing without altering the y— :

tent of segment P?

It should be clear that a change must be made someé
place that can effect the change in addressing mechanism
Further, the data that is changed must partivipate 1
every reference to the information. We call the informs
tion that is altered in value to make this transitior

the link data for linking segment P to symbolic address.

P Lg 0

|- i\

% indicates
indirect oddressing

|
|

Fic. 10. Linkage of P to D | x for process

Volume 11 / Number 5 / May>

)|
exte
3 linkc
Li
Pis
whet
. whet
a o
Y segin:
~ secti
linku
L1
linka
ence
| ence
link
éegnl
r}afer«
the |
will

T

addrc
lishec
refer
procc
that

Proce
pair |
this i
field
fields
Super
Dolic

“addr
£stab
datg,

It]
-Lonta
‘addre
. shoy],

T

ce
8-

be

ter
me
rst
re

by
to
ay
ion
ng

in
by
1S,
wnd
her
ion
fer-
on-

me
sm.
ma-
rion
ress_

(DY [x] in process a. The collection of link data for all
external references originating in segment P is called the
linkage section of procedure P. ¥ -

Link data is private data of its process because whether
P 1= linked to Dix for process « is entirely independent of
whether the same is true for any other process. Therefore,
whenever a procedure segment is made known to a process,
a copy of the procedure’s linkage section is made as a
segment within that process. In certain cases the linkage

- sections of several procedures are combined into a single

linkage segment private to the process.

Linking. Figure 10 shows segments P, D and the
linkage section L, for P in process «. To implement refer-
ence to D|x from within segment P will require two refer-
ences by generalized address—one to access the pertinent
Jink data in La, and one to fetch the word addressed in
segment D. Realization of this minimum number off
references implies use of the indirect addressing feature of
the processor. Thus the link data for an established link

will e an indirect word pair containing the generalized

—)

ta)

—/

mode

pointer to <D>|[x]

D#, its Ny
x mode |
/

) -

Fi1c. 11. States of the link data

_addres~ D % ,.[x (Figure 11a). Before the link is estab-

lished, an attempt by a process of computation « to

" Teference D|x through the link must lead to a trap of the

Process and transfer of control to the system routines
hat will establish the link and continue operation of the
Process. For this purpose a special form of indirect word
pair is used which causes the desired trap. In Figure 11b
nhls is indicated by the code jt in the addressing mode
Beld of the pair. The segment number and word number
dields of the-indirect word can then be used to inform
SUpervisory routines of the place to look to find the sym-

holic. address (D) | [x] associated with the link. This

address must be translated into a generalized address to
Stablish the link. The operation of changing the link
data to establish a link is called linkiag.

t 15 desirable to keep the procedure segment P self-
Ontained if at all possible. Consequently the symbolic
ddress (D) | [x] pointed to by the unestablished link

uld be part of the procedure segment P. Two look-up
“Perations are required on the part of supervisory routines
° establish the link. The symbolic reference name D

st b_e associated with a specific segment through a

ch in the directory structure, and this segment must

olume 11/ Number 5 / May, 1968

be made known to the process if a segment number has
not already been assigned.

The word number corresponding to the symbolie. word
name x must also be .determined. The set of associations
between symbolic word names and word numbers for g
segment 1s its symbol table and is part of the segment. Thus,
in our example, a list of word numbers corresponding to
symbolic word names that may appear in references to
segment D from other segments is included as part of
segment D at a standard position known to the system.
This list is searched by a system routine to find the word
number required to establish a link.

The Link Pointer. A remaining question is: How does
a process produce the generalized address L # o|w required
to_access the link data? One might suppose that word
address w could be fixed permanently at the time proce-
dure segment P was created. This is not possible because
the set of segments required by each process that might
share use of procedure P will in general be unrelated: If
the linkage sections of several procedures were placed in
a single segment, assigning a fixed position to a link for
all processes would produce intolerable conflicts. On the
other hand, the code by which an intérsegment reference is
represented in segment P must be fixed and identical for
all computations to meet the pure procedure constraint.
Any data that allow different addresses to be formed from
fixed code must reside in processor registers. By this
argument. we see the necessity of associating a lLinkage
pointer with each process. The linkage pointer is a gener-
alized address that resides in a dedicated base register
(designated Ip). As shown in Figure 12, it is the origin :
L # ofs of the portion of a linkage segment that contains °
the links for intersegment references made from the seg- |
ment being executed.)

References to external segments are coded relative to
the link pointer and have the form shown in Figure 12.
The displacement k is determined by the coding of P and
is invariant with respect to the process using P. -

Procedure Call and Return. The coding used to trans-
fer control to a subprocedure and the subsequent return
of control must meet the requirements of programming
generality. In particular, no assumptions may be made
regarding the detailed coding of either the calling or
called procedure other than those aspects uniformly es-
tablished by convention. Conventions for four aspects of
subroutine calling are relatively familiar:

(1) Transmission of arguments.

(2) Arranging for return of control.

(3) Saving and restoring processor state.

(4) Allocating private storage for the called procedure.
Item (4) is necessary in murTiCs because of the pure
procedure requirement, and the generality requirement
which forbids prior arrangement of a called procedure’s
storage needs. This private storage is supplied by asso-
ciating the stack segment with each process in which a

frame of private storage is reserved at each procedure call.

311

Communications of the ACM

The frame is released upon return of control. This mecha-
nism is implemented by the stack pointer (designated
sp) which is the generalized address of the stack frame
origin for the procedure in operation. The usc of the
stack segment makes every procedure in MULTICS
automatically recursive by associating separate stack
frames with successive entries into the same procedure.
Due to the pure procedure requirement, only fixed argu-
ments that do not depend on segment numbers may ap-
pear in procedure segments. Pointers and variable argu-
ments must be placed in the stack segment, the linkage
segment, or elsewhere. So that the language designer
may have his choice of implementation, the argument
pointer (designated ap) is at procedure entry the general-
ized address of the list of arguments for the called proce-
dure.

In addition to these conventional requirements, the
method of dynamic linking just described introduces one
new problem: When process a, in executing procedure P,
transfers control to procedure Q, the value of linkage

pa—

. |8

|~

{agesection for P

kﬁ_ﬂ T o [l %]

Fic. 12. Addressing the link data

V;

< D:>|[x]

pointer must be changed to the generalized address of
the linkage section for procedure Q. Since the new value
of the linkage pointer contains a segment number, it is
private data of process and cannot be placed in segment
Por Q.

This problem requires a somewhat modified form of
intersegment linkage from that used for data references.
Since it is desirable that the machine code necessary to
load the linkage pointer for a procedure segment be as-
sociated with that segment, the following solution was
adopted. For each external entry point within a procedure
segment, two additional instructions are placed in the
procedure’s linkage section at compilation time. The first
instruction loads the linkage pointer with the appro-
priate value at procedure entry, and the second instrue-
tion transfers control to the entry point in the called
procedure segment. Thus in establishing the link for an
external procedure call, the generalized indirect address
placed in the calling procedure’s link data points to the
corresponding instruction pair in the linkage section of
the procedure being called. When control passes to the

Communications of the ACM

312

linkage segment during an external procedure call, the
segment number portion of the desired linkage pointer is
easily obtained from the procedure base register, since ’»
the process is now executing in the desired linkage seg.

ment.
P linkage section ’ tinkege section Q
| for P for Q
1pP = lpQ
| //‘ - .
[/] ¥

call /71 its -y

<0>|[¢]

O its P
{ " 2
-~
—
1
—] 1p°--->l_g

TpKTRA ¥|— — —
TRAY, ¥

Fic. 13. Linkage mechanism for procedure entry

Figure 13 depicts the linkage mechanism requircd for
an external procedure call from procedure P to scgment
Q at entry point e. The solid lines indicate the individual
steps taken through indirect addresses, while the dashed
‘lines indicate resulting flow of control.

In executing a call to an external procedure, the caller's 4
machine conditions, including the procedure base register
and program counter, are saved in the stack segment by
the caller. Return from the called procedure can ihius be
effected by simply restoring the caller’s machine condi-
tions from the stack segment.

Acknowledgments. The evolution of the concepts pre-
sented in this paper represents the efforts of many mem-
bers of the MULTICS programming staff. However, the
authors wish to express particular appreciation of the
work of F. J. Corbato and R. M. Graham in dev.loping
the basic design of the MULTICS linkage mechanisii.

REFERENCES

1. CorBato, F. J., AND VYSSOTSKY, V. A. Introductiou and over- : [
view of the MULTICS system. Proc. AFIPS 1965-Fall
Joint Comput. Conf., Vol. 27, Part 1. Spartan Books, New -
York, pp. 185-197.

2. DaLey, R. C., axp NevMany, P. G. A general purpose file
system for secondary storage. Proc. AFIPS 1965 Fuil Joint '3
Comput. Conf., Vol. 27, Part 1. Spartan Books, New York, pp- -}
213-229. ;

3. Dennis, J. B. Segmentation and the design of multipro- .
grammed computer systems. J. ACM 12, 4 (Oczt. 1965}, ':
589-602. Y

, anp Van Horn, E. C. Programming semantics for multl'x |

programmed computations. Comm. ACM 9, 3 (Oct. 1966),
143-155.

5. DuksTra, E. W. Cooperating sequential processes
logical U., Eindhoven, The Netherlands.

6. Graser, E. L., CouLeur, J. F., aND Ouiver, G. A.
design of a computer for time sharing applications. ;
\FIPS 1965 Fall Joint Comput. Conf., Vol. 27, Par® L
Spartan Books, New York, pp. 197-202.

7. GraHam, R. M. Protection in an information pf©
utility. Comm. ACM 11,5 (May 1968), 365-369. Fi

8. KiLsury, T., Epwarps, D., LanNiGan, M., anp SuMNERs E
One level storage system. [EEE Trans. EC-11,2 (Aypril 196
223-235. :

9. Savtzer, J. H. Traffic controlin a multiplexed computer ?ys"
tem. Tech. Rep. No. MAC-TR-30 (Ph.D. thesis). prol
MAC, MIT, Cambridge, Mass., 1964.

’I‘echno-:

cessi

Volume 11 / Number 5 / May:

