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The Pilot operating system provides a single-user,
single-language environment for higher level software
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1. Introduction

close user/system cooperation, allowing full exploitation
of a resource-rich environment. Such a system can also
function as its user’s representative in a larger community
of autonomous personal computers and other information
resources, but tends to deemphasize the largely
adjudicatory role of a monolithic time-sharing system.

The Pilot operating system is designed for the per-
sonal computing environment. It provides a basic set of
services within which higher level programs can more
easily serve the user and/or communicate with other
programs on other machines. Pilot omits certain functions
that have been integrated into some other operating
systems, such as character-string naming and user-com-
mand interpretation; such facilities are provided by higher
level software, as needed. On the other hand, Pilot
provides a more complete set of services than is normally
associated with the “kernel” or “nucleus” of an operating
system. Pilot is closely coupled to the Mesa programming
language [16] and runs on a rather powerful personal
computer, which would have been thought sufficient to
support a substantial time-sharing system of a few years
ago. The primary user interface is a high resolution bit-
map display, with a keyboard and a pointing device.
Secondary storage is provided by a sizable moving-arm
disk. A local packet network provides a high bandwidth

As digital hardware becomes less expensive, moreonnection to other personal computers and to server
resources can be devoted to providing a very high gradg/stems offering such remote services as printing and
of interactive service to computer users. One importanthared file storage.
expression of this trend is the personal computer. The Much of the design of Pilot stems from an initial set of

dedication of a substantial computer to each individuahssumptions and goals

rather different from those

user suggests an operating system design emphasizingderlying most time-sharing systems. Pilot is a single-

language, single-user system, with only limited features
for protection and resource allocation. Pilot's protection

Permission to copy without fee all or part of this material is grantedmechanisms ardefensiverather tharabsolute[9], since
provided that the copies are not made or distributed for direct '

commercial advantage, the ACM copyright notice and the title of thd & 5'”9|‘?'!Jser system, errors ar_e a r_nore_se”ou_s problem
publication and its date appear, and notice is given that copying is bhan maliciousness. All protection in Pilot ultimately

permission of the Association for Computing Machinery. To copy depends on the type-checking provided by Mesa, which is

otherwise, or to republish, requires a fee and/or specific permission.

A version of this paper was presented at the 7th ACM Symposiu

sextremely reliable but by no means impenetrable. We

on Operating Systems Principles, Pacific Grove, Calif., Dec. 10-12have chosen to ignore such problems as “Trojan Horse”

1979

Authors’ address: Xerox Business Systems, 3333 Coyote Hill Rd.

Palo Alto, CA 94304.
© 1980 ACM 0001-0782/80/0200-0081 $00.75.

81

programs [20], not because they are unimportant, but
because our environment allows such threats to be coped

with adequately from outside the system. Similarly,
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Pilot’'s resource allocation features are not oriented to- Pilot contains two kinds of interfaces:

ward enforcing fair distribution of scarce resources . - . ,
: ; . . (1) Public interfaces defining the services provided by
among contending parties. In traditional multi-user sys- . . . . )
Pilot to its clients (i.e., higher level Mesa programs);

tems, ”.“’St resources tenq t(.) b? n short ;upply, an&) Private interfaces, which form the connective tissue
prevention of inequitable distribution is a serious prob- binding the implementation together

lem. In a single-user system like Pilot, shortage of some
resource must generally be dealt with either througfhis section describes the major features supported by the
more effective utilization or by adding more of the public interfaces of Pilot, including files, virtual memory,
resource. streams, network communication, and concurrent
The close coupling between Pilot and Mesa is basegrogramming support. Each interface defines some
on mutual interdependence; Pilot is written in Mesa, andumber of named items, which are denotkder-
Mesa depends on Pilot for much of its runtime supportface.ltem There are four kinds of items in interfaces:
Since other languages are not supported, many of thgpes, procedures, constants, and error signals. (For ex-
language-independence arguments that tend to maintaiimple, the interfacEile defines the typ&ile.Capability,
distance between an operating system and a programmitlge procedureFile.Create the constantfile.maxPages
language are not relevant. In a sense, all of Pilot can beerFile, and the error signdile.Unknown) The discus-
thought of as a very powerful runtime support package fosion that follows makes no attempt at complete enumer-
the Mesa language. Naturally, none of thesation of the items in each interface, but focuses instead on
considerations eliminates the need for careful structurinthe overall facility provided, emphasizing the more
of the combined Pilot/Mesa system to avoid accidentaimportant and unusual features of Pilot.
circular dependencies.
Since the Mesa programming language formalizes and
emphasizes the distinction between iaterfaceand its 2.1 Files
implementationit is particularly appropriate to split the The Pilot interfacegile andVolumedefine the basic
description of Pilot along these lines. As an environmentfacilities for permanent storage of data. Files are the
for its client programs, Pilot consists of a set of Mesatandard containers for information storage; volumes
interfaces, each defining a group of related typestepresent the media on which files are stored (e.g., mag-
operations, and error signals. Section 2 enumerates tietic disks). Higher level software is expected to super-
major interfaces of Pilot and describes their semantics, iimpose further structure on files and volumes as neces-
terms of both the formal interface and the intendedary (e.g., an executable subsystem on a file, or a detach-
behavior of the system as a whole. As a Mesa programaple directory subtree on a removable volume). The
Pilot consists of a large collection of modules supportinggmphasis at the Pilot level is on simple but powerful
the various interfaces seen by clients. Section 3 describgsimitives for accessing large bodies of information. Pilot
the interior structure of the Pilot implementation andcan handle files containing up to about a million pages of
mentions a few of the lessons learned in implementing aBnglish text, and volumes larger than any currently
operating system in Mesa. available storage device (<2its). The total number of
files and volumes that can exist is essentially unbounded
(2°%. The space of files provided is “flat,” in the sense
2. Pilot Interfaces that files have no recognized relationships among them
(e.g., no directory hierarchy). The size of a file is
In Mesa, a large software system is constructed fromadjustable in units of pages. As discussed below, the
two kinds of modulesprogram modules specify the contents of a file are accessed by mapping one or more of
algorithms and the actual data structures comprising thiés pages into a section of virtual memory.
implementatiorof the system, whilelefinitionsmodules The File.Create operation creates a new file and
formally specify theinterfacesbetween program mod- returns a capability for it. Pilot file capabilities are
ules. Generally, a given interface, defined in a definitionsntended fordefensiveprotection against errors [9]; they
module, isexportedby one program module (iismple- are mechanically similar to capabilities used in other
mentor) and imported by one or more other program systems for absolute protection, but are not designed to
modules (itsclients). Both program and definitions mod- withstand determined attack by a malicious programmer.
ules are written in the Mesa source language and aiMore significant than the protection aspect of capabilities
compiled to produce binary object modules. The objecis the fact that files and volumes are named by 64-bit
form of a program module contains the actual code to beniversal identifiers (uids) which are guaranteed unique in
executed; the object form of a definitions moduleboth space and time. This means that distinct files,
contains detailed specifications controlling the bindingcreated anywhere at any time by any incarnation of Pilot,
together of program modules. Modular programming inwill always have distinct uids. This guarantee is crucial,
Mesa is discussed in more detail by Lauer and Sattertlsince removable volumes are expected to be a standard

waite [13]. method of transporting information from one
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Pilot system to another. If uid ambiguity were allowedambiguity concerning the contents of the file. For ex-
(e.g., different files on the same machine with the samample, a higher level “linkage editor” program might
uid), Pilot’s life would become more difficult, and uids wish to link a pair of object-code files by embedding the
would be much less useful to clients. To guaranteeid of one in the other. This would be efficient and
unigueness, Pilot essentially concatenates the machim@mambiguous, but would fail if the contents were copied
serial number with the real time clock to produce eaclinto a new pair of files, since they would have different
new uid. uids. Making such files immutable and using a special
Pilot attaches only a small fixed set of attributes tooperation(File.Replicatelmmutablegallows propagation
each file, with the expectation that a higher level directorpf physical copies to other volumes without changing the
facility will provide an extendible mechanism for uids, thus preserving any direct uid-level bindings.
associating with a file more general properties unknown As with files, Pilot treats volumes in a straightforward
to Pilot (e.g., length in bytes, date of creation, etc.). Pilofashion, while at the same time avoiding oversimplifica-
recognizes only four attributes: size, type, permanencéions that would render its facilities inadequate for de-
and immutability. manding clients. Several different sizes and types of
The size of a file is adjustable from 0 pages t& 2 storage devices are supported as Pilot volumes. (All are
pages, each containing 512 bytes. When the size of a filarieties of moving-arm disk, removable or nonremova-
is increased, Pilot attempts to avoid fragmentation oble; other nonvolatile random access storage devices
storage on the physical device so that sequential aould be supported.) The simplest notion of a volume
otherwise clustered accesses can exploit physical contivould correspond one to one with a physical storage
guity. On the other hand, random probes into a file arenedium. This is too restrictive, and hence the abstraction
handled as efficiently as possible, by minimizing file presented at th&olume interface is actually dogical
system mapping overhead. volume; Pilot is fairly flexible about the correspondence
The type of a file is a 16-bit tag which is essentially between logical volumes amphysical volumege.g., disk
uninterpreted, but is implemented at the Pilot level to aighacks, diskettes, etc.). On the one hand, it is possible to
in type-dependent recovery of the file system (e.g., after have a large logical volume which spans several physical
system failure). Such recovery is discussed further ivolumes. Conversely, it is possible to put several small
Section 3.4. logical volumes on the same physical volume. In all
Permanencas an attribute attached to Pilot files that cases, Pilot recognizes the comings and goings of
are intended to hold valuable permanent informationphysical volumes (e.g., mounting a disk pack) and makes
The intent is that creation of such a file proceed in fouaccessible to client programs those logical volumes all of
steps: whose pages are on-line.
Two examples which originally motivated the flexi-
(1) The file is created usingile.Createand has tempo- bility of the volume machinery were database applica-

rary status. tions, in which a very large database could be cast as a
(2) A capability for the file is stored in some permanentmulti-disk-pack volume, and the CoPilot debugger, which
directory structure. requires its own separate logical volume (see Section 2.5),

(3) The file is made permanent using thebut must be usable on a single-disk machine.

File.MakePermanentperation.
(4) The valuable contents are placed in the file.

2.2 Virtual Memory

If a system failure occurs before step 3, the file will be The machine architecture on which Pilot runs defines
automatically deleted (by the scavenger; see Section 3.4)simple linear virtual memory of up td°216-bit words.
when the system restarts; if a system failure occurs aftéll computations on the machine (including Pilot itself)
step 2, the file is registered in the directory structure andun in the same address space, which is unadorned with
is thereby accessible. (In particular, a failure betweemny noteworthy features, save a set of three flags attached
steps 2 and 3 produces a registered but nonexistent fil|y each pagereferenced written, and write-protected.
an eventuality which any robust directory system must b@ilot structures this homogenous address space into con-
prepared to cope with.) This simple mechanism solves thigguous runs of page callegpaces accessed through the
“lost object problem” [25] in which inzxessibleifes take interfaceSpace.Above the level of Pilot, client software
up space but cannot be deleted. Temporary files are alsaperimposes still further structure upon the contents of
useful as scratch storage which will be reclaimedspaces, casting them as client-defined data structures
automatically in case of system failure. within the Mesa language.

A Pilot file may be madénmutable.This means that While the underlying linear virtual memory is con-
it is permanently read-only and may never be modifiedentional and fairly straightforward, the space machinery
again under any circumstances. The intent is that mubuperimposed by Pilot is somewhat novel in its design,
tiple physical copies of an immutable file, all sharing theand rather more powerful than one would expect given
same universal identifier, may be replicated at manythe simplicity of theSpaceinterface. A space is capable
physical sites to improve accessibility without danger off playing three fundamental roles:
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Allocation Entity. To allocate a region of virtual promote thrashing. Further optimization is possible using
memory, a client creates a space of appropriate size.  the SpaceActivat®peration. This operation advises Pilot
Mapping Entity.To associate information content and that a space will be used soon and should be swapped in
backing store with a region of virtual memory, a clientas soon as possible. The inverse operation.
maps a space to a region of some file. Space.Deactivajeadvises Pilot that a space is no longer
Swapping EntityThe transfer of pages between pri- needed in primary memory. Th&pace.Kill operation
mary memory and backing store is performed in units ochdvises Pilot that the current contents of a space are of no
spaces. further interest (i.e., will be completely overwritten before
Any given space may play any or all of these rolesnext being read) so that useless swapping of the data may
Largely because of their multifunctional nature, it is oftenbe suppressed. These forms of optional advice are
useful to nest spaces. A new space is always created agntended to allow tuning of heavy traffic periods by
subspace of some previously existing space, so that tlediminating unecessary transfers, by scheduling the disk
set of all spaces forms a tree by containment, the root @frm efficiently, and by insuring that during the visit to a
which is a predefined space covering all of virtualgiven arm position all of the appropriate transfers take
memory. place. Such advice-taking is a good example of a feature
Spaces function as allocation entities in two sensesvhich has been deemed undesirable by most designers of
when a space is created, by calliSgace.Createit is  timesharing systems, but which can be very useful in the
serving as the unit of allocation; if it is later broken intocontext of a dedicated personal computer.
subspaces, it is serving as an allocation subpool within There is an intrinsic close coupling between Pilot’'s
which smaller units are allocated and freed [19]. Suclile and virtual memory features: virtual memory is the
suballocation may be nested to several levels; at sonmnly access path to the contents of files, and files are the
level (typically fairly quickly) the page granularity of the only backing store for virtual memory. An alternative
space mechanism becomes too coarse, at which poiwbuld have been to provide a separate backing store for
finer grained allocation must be performed by highewirtual memory and require that clients transfer data
level software. between virtual memory and files using explicit read/
Spaces function as mapping entities when the opemrite operations. There are several reasons for preferring
ation Space.Mapis applied to them. This operation the mapping approach, including the following.
associates the space with a run of pages in a file, th
defining the content of each page of the space as t
content of its associated file page, and propagating the
write-protection status of the file capability to the space
At any given time, a page in virtual memory may be
accessed only if its content is well-defined, i.eexéctly
one of the nested spaces containing it is mapped. If none
of the containing spaces is mapped, the fatal error
AddressFaultis signaled. (The situation in which more 3
than one containing space is mapped cannot arise, sin{:e)
the Space.Mapoperation checks that none of the ances-
tors or descendents of a space being mapped are them-
selves already mapped.) The decision to cast
AddressFaultand WriteProtectFault(i.e., storing into a 4)
write-protected space) as fatal errors is based on th<e
judgment that any program which has incurred such a
fault is misusing the virtual memory facilities and should
be debugged; to this end, Pilot unconditionally activates
the CoPilot debugger (see Sectihb). The Pilot virtual memory also provides an advice-like
Spaces function as swapping entities when a page ofaperation callepace.ForceOutwhich is designed as an
mapped space is found to be missing from primarynderpinning for client crash-recovery algorithms. (It is
memory. The swapping strategy followed is essentially t@dvice-like in that its effect is invisible in normal
swap in the lowest level (i.e., smallest) space containingperation, but becomes visible if the system crashes.)
the page (see Section 3.2). A client program can thuSorceOutcauses a space’s contents to be written to its
optimize its swapping behavior by subdividing its mappedacking file and does not return until the write is com-
spaces into subspaces containing items whose accqdsted. This means that the contents will survive a sub-
patterns are known to be strongly correlated. In theequent system crash. Since Pilot's page replacement
absence of such subdivision, the entire mapped spaceafgorithm is also free to write the pages to the file at any
swapped in. Note that while the client can always opt fotime (e.g., betweeRorceOuts) this facility by itself does
demand paging (by breaking a space up into one-pag®t constitute even a minimal crash recovery mechanism;
subspaces), this isot the default, since it tends to itis intended only as a “toehold” for higher level software

xg) Separating the operations of mapping and swapping
decouples buffer allocation from disk scheduling, as
compared with explicit file read/write operations.

(2) When a space is mapped, the read/write privileges of
the file capability can propagate automatically to the
space by setting a simple read/write lock in the
hardware memory map, allowing illegitimate stores to
be caught immediately.

In either approach, there are certain cases that gen-
erate extra unnecessary disk transfers; extra “advice-
taking” operations likeSpace.Killcan eliminate the
extra disk transfers in the mapping approach; this does
not seem to apply to the read/write approach.

It is relatively easy to simulate a read/write interface
given a mapping interface, and with appropriate use
of advice, the efficiency can be essentially the same.
The converse appeatrs to be false.
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to use in providing transactional atomicity in the face ofig. 1. A pipeline of cascaded stream components.

system crashes.
Client —-I Filter 1 ]—---—l Filter n H Transducer ]— Device
2.3 Streams and I/O Devices

A Pilot client can access an /O device in three
different ways:

transducer and a set of filters can be cascaded to provide a
pipeling as shown in Figure 1.

The transducer occupies the lowest position in the
pipeline (i.e., nearest the device) while the client program
accesses the highest position. Each filter accesses the next
lower filter (or transducer) via thStreaminterface, just
In keeping with the objectives of Pilot as an operatinggs if it were a client program, so that no component need
system for a personal computer, most /O devices arlee aware of its position in the pipeline, or of the nature of
made directly available to clients through low-level pro-the device at the end. This facility resembles tivex
cedural interfaces. These interfaces generally do littigipe and filter facility, except that it is implemented at the
more than convert device-specific /0O operations intonodule level within the Pilot virtual memory, rather than
appropriate procedure calls. The emphasis is on providings a separate system task with its own address space.
maximum flexibility to client programs; protection is not
required. The only exception to this policy is for devices
accessed implicitly by Pilot itself (e.g., disks used for2.4 Communications
files), since chaos would ensue if clients also tried to Mesa supports a shared-memory style of interprocess
access them directly. communication fortightly coupledprocesses [11]. Inter-

For most applications, direct device access via thaction betweetoosely couplegrocesses (e.g., suitable to
device driver interface is rather inconvenient, since all theeside on different machines) is provided by the Pilot
details of the device are exposed to view. Furthermorgommunicationdacility. This facility allows client pro-
many applications tend to reference devices in a basicalesses in different machines to communicate with each
sequential fashion, with only occasional, and usually vergther via a hierarchically structured family of packet
stylized, control or repositioning operations. For these€ommunication protocols. Communication software is an
reasons, the Pilattreamfacility is provided, comprising integral part of Pilot, rather than an optional addition,
the following components: because Pilot is intended to be a suitable foundation for
network-based distributed systems.

The protocols are designed to provide communication
0ss multiple interconnected networks. An inter-
connection of networks is referred to as iaternet. A
Bilot internet typically consists of local, high bandwidth

) 286 t[2321anddqu|xt[18]. tavhich ¢ Ethernet broadcast networks [15], and public and private
) stahdard forstream componentsvhich connec long-distance data networks lilkeBs TELENET, TYMNET,

str'e ams to various devices and/or !mplement On'thest, andacs. Constituent networks are interconnected by
fly” transformations of the data flowing through them.

3) A ; di ber of orimiti ‘ internetwork routergoften referred to agatewaysin the
(8) A means for cascading a number of primitive Srean?iterature) which store and forward packets to their
components to provide a compound stream.

destination using distributed routing algorithms [2, 4]. The
There are two kinds of stream components defined bgonstituent networks of an internet are used only as a
Pilot: the transducer and the filter. #hansduceris a  transmission medium. The source, destination, and
module which imports a device driver interface andinternetwork router computers att Pilot machines. Pilot
exports an instance of the Pil8treaminterface. The provides software drivers for a variety of networks; a
transducer is thus the implementation of the basic seiven machine may connect directly to one or several
quential access facility for that device. Pilot providesnetworks of the same or different kinds.
standard transducers for a variety of supported devices. Pilot clients identify one another by meansetwork
A filter is a module which imports one instance of theaddressesvhen they wish to communicate and need not
Pilot standardStreaminterface and exports another. Its know anything about the internet toplogy or each other’s
purpose is to transform a stream of data “on the flylocations or even the structure of a network address. In
(e.g., to do code or format conversion). Naturally, clientgarticular, it is not necessary that the two communicators
can augment the standard set of stream componerits on different computers. If they are on the same
provided with Pilot by writing filters and transducers of computer, Pilot will optimize the transmission of data
their own. TheStreaminterface provides for dynamic between them and will avoid use of the physical network
binding of stream components at runtime, so that #&esources. This implies that an isolated computer (i.e.,

() implicitly, via some feature of Pilot (e.g., a Pilot file
accessed via virtual memory);

(2) directly, via a low-level device driver interface ex-
ported from Pilot;

(3) indirectly, via the Pilot stream facility.

(1) Thestreaminterface, which defines device independ-
ent operations for full-duplex sequential access to Acr
source/sink of data. This is very similar in spirit to the
stream facilities of other operating systems, such
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one which is not connected to any network) may stillpacket, routing table update packet, and so on. Various
contain the communications facilities of Pilot. Pilot level 2 protocols are defined according to the kinds of
clients on the same computer should communicate witlevel 2 packets they use, and the rules governing their
one another using Pilot's communications facilities, asnteraction.

opposed to the tightly coupled mechanisms of Mesa, if The Socketinterface provides level 1 access to the
the communicators are loosely coupled subsystems thabmmunication facilities, including the ability to create a
could some day be reconfigured to execute on differerdocket at a (local) network address, and to transmit and
machines on the network. For example, printing and fileeceive internetwork packets. In the terms of Section 2.3,
storage server programs written to communicate in theockets can be thought of agtual devices accessed
loosely coupled mode could share the same machine dfirectly via the Socket (virtual driver) interface. The
the combined load were light, yet be easily moved tgrotocol defining the format of the internetwork packet
separate machines if increased load justified the extrprovides end-to-end communication at the packet level.
cost. The internet is required only to be able to transport

A network address is a resource assigned to clients bgdependently addressed packets from source to desti-
Pilot and identifies a specifisocket on a specific nation network addresses. As a consequence, packets
machine. A socket is simply a site from which packets ar&ransmitted over a socket may be expected to arrive at
transmitted and at which packets ageaived; it is rather their destination only witthigh probability and not nec-
like a post office box, in the sense that there is n@ssarily in the order they were transmitted. It is the
assumed relationship among the packets being sent anesponsibility of the communicating end processes to
received via a given socket. The itgnof a socket is agree upon higher level protocols that provide the ap-
unique only at a given point in time; litay be reused, propriate level of reliable communication. Ti8ocket
since there is no long-term static association between theterface, therefore, provides service similar to that pro-
socket and any other resources. Protection against davided by networks that offedatagramservices [17] and
gling references (e.g., delivery of packets intended for & most useful for connectionless protocols.
previous instance of a given socket) is guaranteed by The interfaceNetworkStreamdefines the principal
higher level protocols. means by which Pilot clients can communicate reliably

A network address is, in reality, a triple consisting of abetween any two network addresses. It provides access to
16-bit network number, a 32-bit processor ID, and a 16the implementation of theequenced packet protoeeh
bit socket number, represented by a system-wide Medavel 2 protocol. This protocol provides sequenced, du-
data typeSystem.NetworkAddresshe internal structure plicate-suppressed, error-free, flow-controlled packet
of a network address is not used by clients, but by theommunication over arbitrarily interconnected commu-
communications facilities of Pilot and the internetworknication networks and is similar in philosophy to the Pup
routers to deliver a packet to its destination. TheByte Stream Protocol [2] or the Arpa Transmission
administrative procedures for the assignment of networkcontrol Protocol [3, 24]. This protocol is implemented as
numbers and processor IDs to networks and computers, transducer, which converts the device-l&ecketin-
respectively, are outside the scope of this paper, as are ttesface into a Pilot stream. Thus all data transmission via
mechanisms by which clients find out each othersa network stream is invoked by means of the operations
network addresses. defined in the standa@treaminterface.

The family of packet protocols by which Pilot pro- Network streams provide reliable communication, in
vides communication is based on our experiences with thbe sense that the data is reliably sent from the source
Pup Protocols [2]. The Arpa Internetwork Protocol familytransducer’s packet buffer to the destination transducer’s
[8] resemble our protocols in spirit. The protocols fallpacket buffer. No guarantees can be made as to whether
naturally into three levels: the data was successfully received by the destination

Level 0: Every packet must be encapsulated forclient or that the data was appropriately processed. This
transmission over a particular communication mediumfinal degree of reliability must lie with the clients of
according to the network-specific rules for that commu-network streams, since they alone know the higher level
nication medium. This has been termed level 0 in ouprotocol governing the data transfer. Pilot provides com-
protocol hierarchy, since its definition is of no concern tomunication with varying degrees of reliability, since the
the typical Pilot client. communicating clients will, in general, have differing

Level 1: Level 1 defines the format of theternet- needs for it. This is in keeping with the design goals of
work packet which specifies among other things thePilot, much like the provision of defensive rather than
source and destination network addresses, a checksuahsolute protection.
field, the length of the entire packet, a transport control A network stream can be set up between two com-
field that is used by internetwork routers, and a packemunicators in many ways. The most typical case, in a
type field that indicates the kind of packet defined at levehetwork-based distributed system, involvesaver (a
2. supplier of a service) at one end andient of the service

Level 2: A number of level 2 packet formats exist, at the other. Creation of such a network stream is
such as error packet, connection-oriented sequencéaherently asymmetric. At one end is the server which
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advertises a network address to which clients can conneietre the most common needs, while still allowing clients
to obtain its services. Clients do this by calliNgtwork  to custom tailor their own solutions to their communi-
Stream.Create specifying the address of the server ascations requirements if that proves necessary.

parameter. It is important that concurrent requests from

clients not conflict over the server’s network address; to

avoid this, some additional machinery is provided at th.5 Mesa Language Support

server end of the connection. When a server is The Mesa language provides a number of features
operational, one of its procesdistensfor requests on its which require a nontrivial amount of runtime support
advertised network address. This is done by callingl6]. These are primarily involved with the control struc-
NetworkStream.Listerwhich automatically creates a new ture of the language [10, 11] which allow not only
network stream each time a request arrives at theecursive procedure calls, but also coroutines, concurrent
specified network address. The newly created networkrocesses, and signals (a specialized form of dynamically
stream connects the client tnother unique network bound procedure call used primarily for exception han-
address on the server machine, leaving the serverdling). The runtime support facilities are invoked in three
advertised network address free for the reception ofvays:

additional requests.

. 1) explicitly, via normal Mesa interfaces exported by
The switchover from one network address to anothe‘ Pilot (e.g., theProcessnterface);

Is transparent to the client, and is part of the definition OIZ) implicitly, via compiler-generated calls on built-in
the sequenced packet protocol. At the server end, the procedur,eS'

Stream.Handl€for the newl)_/ _created stream is typically (3) via traps, when machine-level op-codes encounter
passed to aragent a subsidiary process or subsystem . .
. . . . : . exceptional conditions.
which gives its full attention to performing the service for
that particular client. These two then communicate by Pilot's involvement in client procedure calls is limited
means of the new network stream set up between them ftr trap handling when the supply of activation record
the duration of the service. Of course, NetworkStream  storage is exhausted. To support the full generality of the
interface also provides mechanisms for creatingMesa control structures, activation records are allocated
connections between arbitrary network addresses, whefeom a heap, even when a stristo usage pattern is in
the relationship between the processes is more generfakce. This heap is replenished and maintained by Pilot.
than that of server and client. Coroutine calls also proceed without intervention by
The mechanisms for establishing and deleting a corPilot, except during initialization when a trap handler is
nection between any two communicators and for guardingrovided to aid in the original setup of the coroutine
against old duplicate packets are a departure from tHakage.
mechanisms used by the Pup Byte Stream Protocol [2] or Pilot's involvement with concurrent processes is
the Transmission Control Protocol [22], although oursomewhat more substantial. Mesa casts process creation
protocol embodies similar principles. A network stream isas a variant of a procedure call, but unlike a normal
terminated by callingNetworkStream.DeleteThis call procedure call, such eorRk statementalways invokes
initiates no network traffic and simply deletes all the datePilot to create the new process. Similarly, termination of a
structures associated with the network stream. It is thprocess also involves substantial participation by Pilot.
responsibility of the communicating processes to hav&lesa also provides monitors and condition variables for
decideda priori that they wish to terminate the stream.synchronized interprocess communication via shared
This is in keeping with the decision that the reliablememory; these facilities are supported directly by the
processing of the transmitted data ultimately rests wittmachine and thus require less direct involvement of Pilot.
the clients of network streams. The Mesa control structure facilities, including con-
The manner in which server addresses are advertisetirrent processes, are light weight enough to be used in
by servers and discovered by clients is not defined bthe fine-scale structuring of normal Mesa programs. A
Pilot; this facility must be provided by the architecture oftypical Pilot client program consists of some number of
a particular distributed system built on Pilot. Generally,processes, any of which may at any time invoke Pilot
the binding of names of resources to their addresses facilities through the various public interfaces. It is Pilot's
accomplished by means of a network-based databasesponsibility to maintain the semantic integrity of its
referred to as alearinghouseThe manner in which the interfaces in the face of such client-level concurrency (see
binding is structured and the way in which clearinghouseSection 3.3). Naturally, any higher level consistency
are located and accessed are outside the scope of tkmnstraints invented by the client must be guaranteed by
paper. client-level synchronization, using monitors and condition
The communication facilities of Pilot provide clients variables as provided in the Mesa language.
various interfaces, which provide varying degrees of Another important Mesa-support facility which is
service at the internetworking level. In keeping with theprovided as an integral part of Pilot is a “world-swap”
overall design of Pilot, the communication facility at- facility to allow a graceful exit to CoPilot, the Pilot/Mesa
tempts to provide a standard set of features which capnteractive debugger. The world-swap facility saves the
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contents of memory and the total machine state and theéty. 2. Major components of Pilot.
starts CoPilot from doot-file, just as if the machine’s

bootstrap-load button had been pressed. The original st¢ Pilot Client(s)
is saved on a second boot-file so that execution can |

resumed by doing a second world-swap. The state Network Streams
saved with sufficient care that it is virtually always

possible to resume execution without any detectabl Sockets

Mesa Support (High-level)

perturbation of the program being debugged. The worlc
swap approach to debugging yields strong isolation be

Router

tween the debugger and the program under test. Not or Virtual Memory Manager
the contents of main memory, but the version of Pilot, th
accessible volume(s), and even the microcode can | Network Drivers File Manager

different in the two worlds. This is especially useful when
debugging a new version of Pilot, since CoPilot can rui
on the old, stable version until the new version become Filer
trustworthy. Needless to say, this approach is not directl
applicable to conventional multi-user time-sharing
systems.

Swapper

Mesa Support (Low-level)

Machine

3. Implementation

The implementation of Pilot consists of a large num-primary memory, but only parts of which are needed at
ber of Mesa modules which collectively provide the clientany one time. A client-level program would simply place
environment as decribed above. The modules are groupedch a database in a file and access it via virtual memory,
into largercomponentseach of which is responsible for but if Pilot itself did so, the resulting circular depend-
implementing some coherent subset of the overall Pilogncies would tie the system in knots, making it unreliable
functionality. The relationships among the majorand difficult to understand. One alternative would be the
components are illustrated in Figure 2. invention of a special separate mechanism for low-level

Of particular interest is the interlocking structure ofdisk access and main memory buffering, used only by the
the four components of thetorage systemwhich together storage system to access its internal databases. This
implement files and virtual memory. This is an examplewould eliminate the danger of circular dependency but
of what we call themanager/kernepattern, in which a would introduce more machinery, making the system
given facility is implemented in two stages: a low-levelbulkier and harder to understand in a different sense. A
kernel provides a basic core of function, which is eximore attractive alternative is the extraction of a stream-
tended by the higher level manager. Layers interposeiihed kernel of the storage system functionality with the
between the kernel and the manager can make use of tladowing properties:
kernel and can in turn be used by the manager. The sa
basic technique has been used before in other systems
good effect, as discussed by Habermann et al. [6], wh
refer to it as “functional hierarchy.” It is also quite similar
to the familiar “policy/mechanism” pattern [1, 25]. The
main difference is that we place no emphasis on th
possibility of using the same kernel with a variety of
managers (or without any manager at all). In Pilot, the
manager/kernel pattern is intended only as a fruitful Figure 2 shows the implementation of such a kernel
decomposition tool for the design of integrated mechastorage facility by the swapper and the filer. These two

It can be implemented by a small body of code which
resides permanently in primary memory.

&) It provides a powerful enough storage facility to
significantly ease the implementation of the remainder
of the full-fledged storage system.

&) It can handle the majority of the “fast cases” of client-

level use of the storage system.

nisms. subcomponents are the kernels of the virtual memory and
file components, respectively, and provide a reasonably
3.1 Layering of the Storage System Implementation powerful environment for the nonresident subcom-

The kernel/manager pattern can be motivated bponents, the virtual memory manager, and the file man-
noting that since the purpose of Pilot is to provide a morager, whose code and data are both swappable. The
hospitable environment than the bare machine, it woul@ternel environment provides somewhat restricted virtual
clearly be more pleasant for the code implementing Pilatnemory access to a small number of special files and to
if it could use the facilities of Pilot in getting its job preexisting normal files of fixed size.
done. In particular, both components of teerage The managers implement the more powerful opera-
system(the file and virtual memory implementations) tions, such as file creation and deletion, and the more
maintain internal databases which are too large to fit iromplex virtual memory operations, such as those that
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traverse subtrees of the hierarchy of nested spaces. The The swapper, or virtual memory kernel, manages
most frequent operations, however, are handled by thgrimary memory and supervises the swapping of data
kernels essentially on their own. For example, a page fauttetween mapped memory and files. For this purpose it
is handled by code in the swapper, which calls the filer toneeds access to information in the hierarchy. Since the
read the appropriate page(s) into memory, adjusts tHeierarchy is swappable and thus off limits to the swapper,
hardware memory map, and restarts the faulting processthe swapper maintains a residepace cachavhich is

The resident data structures of the kernels serve dgsaded from the hierarchy in the manner described in
caches on the swappable databases maintained by tBection 3.1.
managers. Whenever a kernel finds that it cannot perform There are several other data structures maintained by
an operation using only the data in its cache, ithe swapper. One is a bit-table describing the allocation
conceptually “passes the buck” to its manager, retainingtatus of each page of primary memory. Most of the
no state information about the failed operation. In thidookkeeping performed by the swapper, however, is on
way, a circular dependency is avoided, since such failethe basis of theswap unit or smallest set of pages
operations become the total responsibility of the managettansferred between primary memory and file backing
The typical response of a manager in such a situation is tdorage. A swap unit generally corresponds to a “leaf’
consult its swappable database, call the residergpace; however, if a space is only partially covered with
subcomponent to update its cache, and then retry thrmibspaces, each maximal run of pages not containing any
failed operation. subspaces is also a swap unit. The swapper kespa@

The intended dynamics of the storage system implednit cachecontaining information about swap units such
mentation described above are based on the expectatias extent (first page and length), containing mapped
that Pilot will experience three quite different kinds ofspace, and state (mapped or not, swapped in or out,
load. replacement algorithm data).

The swap unit cache is addressed by page rather than
by space; for example, it is used by the page fault handler
to find the swap unit in which a page fault occurred. The
(2) Most of the time, the client working set will be content of an entry ?n this cach_e is logically de_rived_from

. - S ... a sequence of entries in the hierarchy, but direct imple-
changing slowly, but the description of it will fit in . . . )
: : mentation of this would require several file accesses to
the swapper/filer caches, so that swapping can take ; . )
construct a single cache entry. To avoid this, we have

Elif:gvewg;/slgr?] 3;?:@:22 disk activity to access thechosen to maintain another database:pttogection. This

(3) Periodically, the client working set will change dras-is a second swappable database maintained by the virtual
! memory manager, containing descriptions of all existing

tically, requiring extensive reloading of the caches aSéwap units, and is used to update the swap unit cache. The
well as heavy swapping. . - .
existence of the projection speeds up page faults which
It is intended that the Pilot storage system be able tocannot be handled from the swap unit cache; it slows
respond reasonably to all three situations: In case (1), fown space creation/deletion since then the projection
should assume a low profile by allowing its swappablenust be updated. We expect this to be a useful
components (e.g., the managers) to swap out. In case (®ptimization based on our assumptions about the relative
it should be as efficient as possible, using its caches foequencies and CPU times of these events; detailed
avoid causing spurious disk activity. In case (3), it shouldneasurements of a fully loaded system will be needed to
do the best it can, with the understanding that whilevaluate the actual effectiveness of the projection.
continuous operation in this mode is probably not viable, An important detail regarding the relationship between
short periods of heavy traffic can and must be optimizedhe manager and kernel components has been ignored up
largely via the advice-taking operations discussed irfo this point. That detail is avoiding “recursive” cache
Section 2.2. faults; when a manager is attempting to supply a missing
cache entry, it will often incur a page fault of its own; the
handling of that page fault musbt incur a second cache
3.2 Cached Databases of the Virtual Memory fault or the fault episode will never terminate. Basically
Implementation the answer is to make certain key records in the cache
The virtual memory manager implements the clientineligible for replacement. This pertains to the space and
visible operations on spaces and is thus primarily conswap unit caches and to the caches maintained by the filer
cerned with checking validity and maintaining the da-as well.
tabase constituting the fundamental representation behind
the Spaceinterface. This database, called thierarchy,
represents the tree of nested spaces defined in Section 2323 Process Implementation
For each space, it contains a record whose fields hold The implementation of processes and monitors in
attributes such as size, base page number, and mappiRdot/Mesa is summarized here; more detail can be found

(1) For short periods of time, client programs will have
their essentially static working sets in primary mem-
ory and the storage system will not be needed.

information. in [11].
89 Communications February 1980
of Volume 23

the ACM Number 2



The task of implementing the concurrency facilities isbe completely reconstructed should they be lost. In par-
split roughly equally among Pilot, the Mesa compiler,ticular, this means that damage to any page on the disk
and the underlying machine. The basic primitives ar&an compromise only data on that page.
defined as language constructs (e.g., enterimgNToR, The primary map structure is the volume file map, a
WAITINg on a CONDITION variable, FORkKing a new B-tree keyed omfile-uid, page-numbérwhich returns
PROCES$ and are implemented either by machine op-the device address of the page. All file storage devices
codes (for heavily used constructs, evgajT) or by calls  check the label of the page and abort the I/O operation in
on Pilot (for less heavily used constructs, empRrk). case of a mismatch; this does not occur in normal
The constructs supported by the machine and the lowsperation and generally indicates the need to scavenge
level Mesa support component provide procedure callhe volume. The volume file map uses extensive com-
and synchronization among existing processes, allowingression of uids and run-encoding of page numbers to
the remainder of Pilot to be implemented as a collectiomaximize the out-degree of the internal nodes of the B-
of monitors, which carefully synchronize the multiple tree and thus minimize its depth.
processes executing concurrently inside them. These Equally important but much simpler is the volume
processes comprise a variable number of client processaliocation map, a table which describes the allocation
(e.g., which have called into Pilot through some publicstatus of each page on the disk. Each free page is a self-
interface) plus a fixed number of dedicated system pradentifying member of a hypothetical file of free pages,
cesses (about a dozen) which are created specially afowing reconstruction of the volume allocation map.
system initialization time. The machinery for creating The robustness provided by the scavenger can only
and deleting processes is a monitor within the high-levejuarantee the integrity of files as defined by Pilot. If a
Mesa support component; this places it above the virtualatabase defined by client software becomes inconsistent
memory implementation; this means that it is swappablejue to a system crash, a software bug, or some other
but also means that the rest of Pilot (with the exceptiomnfortunate event, it is little comfort to know that the
of network streams) cannot make use of dynamic processderlying file has been declared healthy by the scav-
creation. The process implementation is thus anotheenger. An “escape-hatch” is therefore provided to allow
example of the manager/kernel pattern, in which thelient software to be invoked when a file is scavenged.
manager is implemented at a very high level and thé&his is the main use of the file-type attribute mentioned
kernel is pushed down to a very low level (in this casein Section 2.1. After the Pilot scavenger has restored the
largely into the underlying machine). To the Pilot client,low-level integrity of the file system, Pilot is restarted,;
the split implementation appears as a unified mechanistmefore resuming normal processing, Pilot first invokes all
comprising the Mesa language features and the operalent-level scavenging routines (if any) to reestablish

tions defined by the Pild®rocessnterface. any higher level consistency constraints that may have
been violated. File types are used to determine which
3.4 File System Rbustness files should be processed by which client-level scaven-

One of the most important properties of the Pilot filegers.
system is robustness. This is achieved primarily through An interesting example of the first-class status of the
the use ofeconstructable mapsviany previous systems scavenger is its routine use in transporting volumes
have demonstrated the value ofila scavengera utility = between versions of Pilot. The freedom to redesign the
program which can repair a damaged file system, often ocomplex map structures stored on volumes represents a
a more or lesad hocbasis [5, 12, 14, 21]. In Pilot, the crucial opportunity for continuing file system perform-
scavenger is given first-class citizenship, in the sense thatce improvement, but this means that one version of
the file structures were all designed from the beginningPilot may find the maps left by another version totally
with the scavenger in mind. Each file page is self-ideninscrutable. Since such incompatibility is just a particular
tifying by virtue of itslabel, written as a separate physical form of “damage,” however, the scavenger can be in-
record adjacent to the one holding the actual contents @bked to reconstruct the maps in the proper format, after
the page. (Again, this is not a new idea, but is the cruciathich the corresponding version of Pilot will recognize
foundation on which the file system’s robustness ighe volume as its own.
based.) Conceptually, one can think of a file page access
proceeding by scanning all known volumes, checking the
label of each page encountered until the desired one 5 Communication Implementation
found. In practice, this scan is performed only once by the The software that implements the packet communi-
scavenger, which leaves behind maps on each voluntation protocols consists of a set of network-specific
describing what it found there; Pilot then uses the mapdrivers, modules that implement sockets, network stream
and incrementally updates them as file pages are creatt@nsducers, and at the heart of it alfpater. The router
and deleted. The logical redundancy of the maps does nds, a software switch. It routes packets among sockets,
of course, imply lack of importance, since the systensockets and networks, and networks themselves. A router
would be not be viable without them; the point is thatis present orveryPilot machine. On personal machines,
since they contaimnly redundant information, they can the router handles only incoming, outgoing, and intra
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machine packet traffic. On internetwork router machines4. Conclusion
the router acts as a service to other machines by
transporting internetwork packets across network The context of a large personal computer has moti-
boundaries. The router’s data structures include a list ofated us to reevaluate many design decisions which
all active sockets and networks on the local computercharacterize systems designed for more familiar situa-
The router is designed so that network drivers may easiltjons (e.g., large shared machines or small personal com-
be added to or removed from new configurations of Pilotputers). This has resulted in a somewhat novel system
this can even be done dynamically during executionwhich, for example, provides sophisticated features but
Sockets come and go as clients create and delete theamly minimal protection, accepts advice from client pro-
Each router maintains a routing table indicating, for agrams, and even boot-loads the machine periodically in
given remote network, the best internetwork router to usthe normal course of execution.
as the next “hop” toward the final destination. Thus, the Aside from its novel aspects, however, Pilot's real
two kinds of machines are essentially special cases of ttsignificance is its careful integration, in a single relatively
same program. An internetwork router is simply a routecompact system, of a number of good ideas which have
that spends most of its time forwarding packets betweepreviously tended to appear individually, often in systems
networks and exchanging routing tables with othewhich were demonstration vehicles not intended to
internetwork routers. On personal machines the routesupport serious client programs. The combination of
updates its routing table by querying internetwork routerstreams, packet communications, a hierarchical virtual
or by overhearing their exchanges over broadcasnhemory mapped to a large file space, concurrent pro-
networks. gramming support, and a modular high-level language,
Pilot has taken the approach of connecting a networgrovides an environment with relatively few artificial

much like any other input/output device, so that thdimitations on the size and complexity of the client
packet communication protocol software becomes part girograms which can be supported.
the operating system and operates in the same personal
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