
THE V DISTRIBUTED SYSTEM

The V distributed System was developed at Stanford University as ,part of
a research project to explore issues in distributed systems. Aspects ‘of the
design suggest important directions for the design of future operating
systems and communication systems.

DAVID R. CHERITON

The V distributed system is an operating system de-
signed for a cluster of computer workstations connected
by a high-performance network. The system is struc-
tured as a relatively small “distributed” kernel, a set of
service modules, various run-time libraries and a set of
commands, as shown in Figure 1. The kernel is distrib-
uted in that a separate copy of the kernel executes on
each participating network node yet the separate copies
cooperate to provide a single system abstraction of
processes in address spaces communicating using a base
set of communication primitives. The existence of multi-
ple machines and network interconnection is largely
transparent at the process level. The service modules
implement value-added services using the basic access
to hardware resources provided by the kernel. For in-
stance, the V file server implements a UNIX-like file
system using the raw disk access supported by the
kernel. The various run-time libraries implement con-
ventional language or application-to-operating system
interfaces such as Pascal I/O and C stdio [Zl]. Most V
applications and commands are written in terms of
these conventional interfaces and are oblivious to the
distributed nature of the underlying system. In fact,
many programs originated in non-distributed systems
and were ported with little or no modification-the
original source was simply linked against the V run-
time libraries.

0 1988 ACM OOl-0782/88/0300-0314 $1.50

The development of V was motivated by the growing
availability and functionality of relatively low-cost
high-performance computer workstations and local net-
works. Our basic hypothesis was that an operating sys-
tem could be developed that managed a cluster of these
workstations and server machines, providing the re-
source and information sharing facilities of a conven-
tional single-machine system but running on this new,
more powerful and more economical hardware base.
This hypothesis contrasts with the conventional single
mainframe approach to supporting a user community. It
also contrasts with the personal computer approach in
which the focus is on individual use; the sharing of
information and hardware resources between com-
puters may be difficult, if not impossible. The main-
frame solution is less extensible, less reliable and less
cost effective than appears possible with good use of a
workstation cluster. However, the conventional per-
sonal computer approach fragments the hardware and
software base, wastes hardware resources and makes
system management difficult. As an extreme example,
an engineering firm might require a simulation package
be available to each of its personnel. Each of its per-
sonal computers would require the disk space, memory
capability and processing power to run the simulation
(as well as possibly the license to do so). Yet, the utili-
zation of hardware and software would be much lower
than for a conventional timesharing solution, possibly
resulting in a higher cost. Moreover, the personal com-
puter solution would be slower for the cases in which

314 Communications of the ACM March 1988 Volume .31 Number 3

Special Section

the full power of the mainframe would have been
available, such as running the simulation at night.

A first tenet in our design philosophy is that high-
performance communication is the most critical facility
for distributed systems. By high performance, we mean
providing fast exchange of significant amounts of data
matching in essence the requirements of conventional
file access. Slow communication facilities lead to poor
performance and a proliferation of elaborate techniques
for dealing with these limited facilities, analogous to
the effect of slow and expensive memory on operating
systems technology in the 1960s and 1970s. Fast com-
munication allows the system to access state, such as
files, without concern for location, thereby making true
network transparency feasible. This is analogous to the
liberating affect that low-cost memory has had on oper-
ating systems and applications since the late 1970s. Not
only are the resulting systems faster, they are also sim-
pler because there is no need to highly optimize the use
of communication as a scarce resource.

A second tenet of the design philosophy is that the
protocols, not the software, define the system. In partic-
ular, any network node that “speaks” the system proto-
cols (or a sensible subset) can participate, independent
of its internal software architecture. Thus, the chal-
lenge is to design the protocols that lead to a system of
performance, functionality, reliability and even secu-
rity required for the system goal. Given the protocols,
their implementation is essentially a software engineer-
ing and programming problem. This uniform protocol
approach is a central theme in the international stan-
dards effort for so-called open systems interconnection
but is less recognized in the distributed operating

I V distributed Kernel

\

I I I J
Legend: Run-time library m

Command Program m

Service Program m

FIGURE 1. The V Distributed Operating System

systems research community. The uniform protocol
approach in combination with our belief in the impor-
tance of performance requires protocols that are both
fast and general purpose; the development of such pro-
tocols has been central to our work.

A final major tenet is that a relatively small operating
system kernel can implement the basic protocols and
services, providing a simple network-transparent pro-
cess, address space and communication model. The rest

of the system can then be implemented at the process
level in a machine and network independent fashion.
Our goal is for the kernel to provide a software backplane
analogous to what a good hardware backplane provides
for hardware systems. That is, it provides slots into
which one can plug modules, power to run those mod-
ules, and communication facilities by which these
modules can interact, accommodating a wide range of
configurations. The design of the system bus and back-
plane determines many of the major system design de-
cisions and is thus largely responsible for the technical
success or failure of the system. With system bus and
backplane design, the maximum number and size of
the slots, the nature and totality of the power, and the
flexibility and performance of the communication facil-
ity determine the possible hardware systems that can
be build on this chassis. A board designer is limited by
these system bus attributes. (On the positive side, a
board designer need only design to interface to the
backplane in order to have his board interface to the
rest of the system, at least at the hardware level.) Our
research goal was to understand how to provide a simi-
lar base for a distributed operating system running a
cluster of workstations, recognizing the performance
and functionality requirements of a range of configura-
tions and applications, and the reliability, security and
maintainability benefits to keeping the kernel as small
as possible.

In the course of this work, two additional ideas signif-
icantly affected the design. First, the handling of shared
state was recognized as the primary challenge of dis-
tributed systems. Shared memory is the most natural
model for handling shared state. Shared memory can be
implemented across multiple machines i.e., by caching
referenced data as virtual memory pages and imple-
menting a consistency protocol between the page frame
caches on different machines. The major disadvantage
is the cost of consistency operations when contention
arises. Thus, we have been investigating efficient
mechanisms for implementing consistency between
network nodes, software structuring techniques that
reduce contention and non-standard forms of consis-
tency that are less expensive than conventional consis-
tency, so-called problem-oriented shared memo y.

Second, we recognized that modern systems often
deal with groups of entities, the same as they deal with
individual entities. Examples include the group of users
working on a project and the group of processes at-
tached to one terminal. Group support is accentuated
further in distributed systems where the sets of file
servers, network nodes, printers and other resources
constitute additional groups, replacing the single in-
stances of these resources in conventional systems. Ap-
plied to the communication domain, interest in group
communication has led to support in V for multicast’
and the development of various group communication
protocols.

’ Multicast is defined as sending to a specific subset of the hosts or processes as
opposed to broadcast which is sending to all hosts or processes on the network.

March 1988 Volume 31 Number 3 Communications of the ACM 315

Special Section

It was not a goal of the research to develop new
programming models or structuring methods for this
environment. Conventional programming models are
supported; only the underlying implementation is
differlent. Thus, the V operating system appears to
the application as a set of procedural interfaces that
provide access to the system services. Each system-
provided service procedure is part of one of the V run-
time libraries. On invocation, the procedure performs
the operation directly within the address space if possi-
ble. Otherwise, it uses the kernel-provided interprocess
communication (IPC) to communicate with V service
modules to implement the operation. The implementa-
tion OF get-byte operation, a performance-critical opera-
tion in many application environments, illustrates this
structure.

The V get-byte operation first checks the correspon-
ding I,/0 buffer in the invoking process’s address space
to see if there is another byte available in the buffer. If
so, it returns the byte immediately. (In fact, this routine
is cornpiled in-line so the cost of the operation in the
minimal case is a few microseconds.) If not, it sends
a read request to the I/O service module in the file
server associated with the open file, as shown in Fig-
ure 2. In general, the performance of the I/O operations
depends on the kernel providing efficient communica-

THE V KERNEL AS A SOFTWARE BACKPLANE
The V kernel provides a network-transparent abstrac-
tion of address spaces, lightweight processes and inter-
process communication. These facilities are analogous
to those provided by a hardware backplane. The ad-
dress space corresponds to a backplane slot; a program
can be plugged into an address space independent of
what is running in other address spaces just as a circuit
board can be plugged in. The lightweight process cor-
responds to the electrical power delivered by the back-
plane; it is some portion of the power available in the
system.’ Finally, interprocess communicatio:n corre-
sponds to the data and control lines provided on the
backplane bus, allowing slots to communicale. A good
hardware backplane provides the slots, power and com-
munication with the best possible performame, relia-
bility and security for the money, and nothing else.

/ Application V Kernel Network V Ksrnsl File 3 FIGURE 3. Basic Interaction using V IPC:

I.ocaI
Getbyts +,,u,,.,r +Read --&Send -

f e
A similar minimalist philosophy was used in the design
of the V kernel.

\ / The basic notion of an operating system kernel that

FIGURE 2. Get-byte Invoking a Remote Read Operation

tion between the application and the various I/O ser-
vice modules (such as the file servers). It also depends
on the interfaces implemented by these service mod-
ules and the I/O run-time procedures operating effi-
ciently on top of the communication facility. For
example, the buffered implementation of get-byte
means that the kernel is not invoked on most get-byte
calls and a large data transfer is made when the kernel
IPC is invoked, reducing the overhead per byte trans-
ferred. Finally, the various I/O modules must provide a
common interface so that the I/O operation can access
any one of these modules without special code for each
different type thereby handling the wide variety of files
and devices available in modern systems. Finally, oper-
ations that use character-string names, such as the file
open operation, require a way to locate the file based
on the name plus an efficient identifier for the client
and the server to use once the file is opened for read
and write operations.

This article describes how V supports efficient file
access and other operating system services in terms of
the V interprocess communication, I/O, naming and
memory management.

only provides an interconnection mechanism for con-
necting applications to service modules, and avoids im-
plementing the services directly is quite old. For in-
stance, Brinch-Hansen [5] developed such a system, the
RC 4000, in the late 1960s. This system, one ‘of the first
academically reported message-based systems, was
characterized by an elegant design and problematic
performance. Other systems followed, including Thoth
[9, 141, DEMOS [3] and Accent [28], but performance
remained a key concern. A major focus of ou.r research
with the V kernel has been exploring ways to achieve
good interprocess communication performance.

Interprocess Communication
The kernel interprocess communication facility was
designed to provide a fast transport-level service for
remote procedure calls, as characterized by file read
and write operations. A client Send operation sends a
request to a server and waits for, and returns, the re-
sponse. The request corresponds to a (remote) call
frame and the response corresponds to the return re-
sults. The timing of this operation with respect to the
receiving process is shown in Figure 3. The server may

‘We use process in its usual sense as a locus of control that can logically
execute in parallel with other processes. Lightweight means that each process
does not carry the weight of a separate address space. That is, ihere can be
multiple processes per address space. each such process sharing the same
address space descriptor. The terms thread and task have been ,used as well.

316 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

execute as a separate dedicated server process, receiv-
ing and acting on the request following the message
model of communication, That is, the receiver executes
a Receive kernel operation to receive the next request
message, invokes a procedure to handle the request and
then sends a response. Alternatively, the server may
effectively execute as a procedure invocation executing
on behalf of the requesting process, following the re-
mote procedure call model. In the message model, the
request is queued for processing should the addressed
process be busy when the request is received. The
client process is oblivious to which model is used by
the server because the client process blocks waiting for
the response in both cases. The message model appears
preferable when the serialization of request handling is
required. The procedure invocation model is preferred
when there are significant performance benefits to con-
current request handling.

The interconnection provided by the V kernel is il-
lustrated in Figure 4. A Send to a service module is
trapped into the local IPC module if the service module
is local. Otherwise, it is processed by the network IPC
module, using the VMTP transport protocol [12] to
communicate with the remote kernel and remote
service module.

I VMTP Network Traffic

FIGURE 4. Local and Remote Interconnection
using V IPC

Fast interprocess communication in V is achieved by:
using relatively simple and basic interprocess commu-
nication primitives; by using a transport protocol that is
carefully designed to support these primitives; by op-
timizing for the performance-critical common cases;
and by internally structuring the kernel for efficient
communication. Here we will focus on specific, illus-
trative techniques we have used to achieve good per-
formance.

One example of the simplicity of the IPC is the
request-response behavior of the operations. The client
actions of sending a request and receiving a response
are combined into the single Send primitive. This com-
bination results in one kernel operation for the com-
mon case of a remote procedure call, reducing the re-
scheduling overhead and simplifying the buffering
(because the request data can be left in the client’s
buffer and the response data can be delivered directly
into this buffer). It also simplifies the transport-level
protocol because both error handling and flow control

exploit the response to acknowledge a request and au-
thorize a new request.

Another example is the support for fixed-sized mes-
sages (of 32 bytes) with an optional data segment of up to
16 kilobytes. As recognized by Almes [l] in his remote
procedure call implementation using V, the short mes-
sage is analogous to the general-purpose registers of a
processor for local procedure calls: they introduce some
extra complexity to handle well but the resulting per-
formance benefits justify the effort.3 The handling of
the fixed-length messages is optimized at the kernel
interface, kernel buffering and network packet trans-
mission and reception. Given that more than 50 percent
of our message traffic fits into these short messages [19],
this optimization seems appropriate.

Network IPC performance benefits from the use of
the VMTP transport protocol, which is optimized for
request-response behavior. In particular, there is no ex-
plicit connection setup or teardown. In the common
case, a message transaction consists of a request packet
and a response packet, the response acknowledging the
request. Communication state for a client is established
upon receiving a request from that client. It is updated
on each subsequent request, providing for duplicate
suppression as well as caching of information about the
client, including authentication information. VMTP
also includes the short fixed-size message in the VMTP
header, aiding the efficiency of handling small mes-
sages. In addition, VMTP supports multicast, datagrams,
forwarding, streaming, security and priority. Although
VMTP was designed to support efficient V network
IPC, we believe it is largely independent of V and suit-
able for more general use. For instance, we have a
UNIX kernel implementation of VMTP that exhibits an
8 millisecond return trip time and 1.9 Mbps data rate
between two Microvax II UNIX machines sharing an
Ethernet. We are attempting to export our experience
with efficient request-response protocols by proposing
VMTP as a candidate for a standard transport protocol
in the context of the Department of Defense’s Internet.

Finally, we have structured the kernel to minimize
the cost of the communication operations. For example,
every process descriptor contains a template VMTP
header with some of the fields initialized at process
creation. Using this header, the overhead of preparing
a packet as part of a Send operation is significantly re-
duced. In particular, there is no need to allocate a de-
scriptor or buffer for queuing on the network output
queue. The fixed-size message is transferred from ap-
plication to processor registers to the appropriate por-
tion of the process descriptor which is then queued
directly for network transmission, as illustrated in Fig-
ure 5. Consequently, the elapsed time for transmission
of a datagram request is less than 0.8 milliseconds on
a SUN-3/75 workstation. Reception of the response is
essentially the reverse of these actions.

V IPC performance is given in Table I by the elapsed

31nterestingly. processor registers can be used to great benefit to implement
efficient IPC [5]. In fact, the X-byte message is contained in 8 of the general-
purpose registers on kernel trap in both the Vax and MC 68000 implementa-
tions of V.

March 1988 Volume 31 Number 3 Communications of the ACM 317

Special Section

Process
space

Kernel
Space

Network
output

I header
I

FIGURE 5. Transmission of a 32-byte Request

time for the Send operation and the corresponding data
transfer rate with various amounts of segment data.
(These times were measured with two SUN 3/75’s con-
nected by 10 Mbit Ethernet.) The first row gives the
time for a basic message transaction exchanging the
82-byte short message and a null segment process to
process. The remaining rows reflect the effect of in-
creasing data segment size in a message transaction,
both in increased elapsed time and increased effective
data transfer rate. In each case, the second column
gives the elapsed time to send a %?-byte request and
receive a 82-byte response with a segment of data of the
size specified in column 1. (These measurements were
made with the server idle and insignificant processing
time between the time the server receives the request
and returns the response.) Table I only lists the times
for different sizes of responses, as would occur for file
reads, a performance-critical operation. Multi-packet
requests with a minimal response, such as arise with
file w:riting, are almost identical in cost.

TABLE I. V Network IPC Elapsed Time (in milliseconds)

OptrCatlOlI Time Data Rate
(data in Kbytes) fmiltiieconds) (Mblts/sl?o.)

0 2.54 0.10
1 3.93 2.08
4 11.2 2.92
8 17.8 3.68

12 23.0 4.27
16 30.0 4.37

Local IPC performance is considerably faster. For
instance, a 82-byte request-response to a local server
process is 0.480 milliseconds on a SUN-3/7X, and a
request with an 8 kilobyte response is 2.7 milliseconds
versus 17.8 milliseconds for the remote case. However,
our primary focus has been on the performance of net-
work interprocess communication. The local IPC per-
formance is regarded as an incidental benefit when
modules happened to be co-resident on the same host.

There are additional optimizations which would im-
prove the network interprocess communication further.
However, major improvements appear to require signif-
icant advances in network interface design; this is one
focus of our current research. Moreover, with the level
of performance of interprocess communication we have

achieved, the system performance appears more de-
pendent on other factors, such as the effectiveness of
local and remote file caching. For example, with only a
15.1 millisecond difference between accessing a 8 kilo-
byte block locally versus remotely, it is faster to access
a copy of the block at a remote server that has the data
in its RAM cache than to read it from a local disk.

Process Groups and Multicast Communication
Groups of processes arise in a number of settings in V,
exploiting the provision of multiple processes per user,
per service and per program. Examples include the
group of file servers, the group of processes executing a
job, and the group of processes executing a single paral-
lel program. V supports the notion of a process group as
a set of processes identified by a group identifier (cho-
sen from the same space as process identifie:rs). A group
can have any number of members scattered across any
number of hosts. A process can belong to multiple
groups.

/

FIGURE 6. Multicast Communication with Multiple
Responses

The kernel supports a variety of operations on pro-
cess groups including the ability to send to a group of
processes and receive multiple responses to the request.
This multicast communication behavior is ilmstrated in
Figure 6. Besides providing multi-destination delivery,
this facility provides logical addressing using the extra
level of indirection in the name mapping introduced by
the process group identification. For example, there is a
statically assigned, well-known process group identifier
for the group of file servers. This well-known identifier
can be used to send a message to a particular file
server, using additional discriminating information in
the message.

The multicast facility in V is used in a number of
ways. Multicast is used to map character string names
in the naming protocol, as described in the section on
Naming and illustrated in Figure 6. Multicast is used to
transmit clock synchronization information in the V
time servers. Multicast is used to request as well as
distribute load information as part of the distributed
scheduling mechanism. Multicast is also used as part
of the V atomic transaction protocol and is used in
the replicated file update protocol. The level of multi-
cast traffic has been measured in V at slightly less than
1 percent [19]. Each new use of multicast seems to
generate significantly more unicast traffic so we do not

318 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

expect the relative amount of multicast to increase ap-
preciably in the future. However, like a fire extin-
guisher, the value of multicast is not entirely repre-
sented by frequency use. It has been our experience
that when it is used, multicast is extremely useful.

A group Send optionally includes a qualifier in the
message indicating that the message should only be de-
livered to those members of the destination group that
are co-resident with the process specified in the quali-
fier. In its most common (and originally motivating)
use, a client uses this facility to address a message to
the manager of P, where P is a process specified in the
qualifier, knowing only the identifier for the group of
such managers. For example, process management is
handled in a distributed fashion by the group of process
managers, one per host. Thus, a suspend operation on a
process P is sent to the group of process managers with
a co-resident qualifier specifying process P, thereby de-
livering the request to only the manager in charge of
that process, not the entire group. In this fashion, the
client is able to address the right manager knowing
only the (well-known) group identifier for this group
and the process identifier of the process on which it
wishes to act. The kernel simply routes the request to
the host address for P. One can also specify a process
group identifier as the co-resident qualifier, in which
case the message is delivered to all members of the
destination group that are co-resident with group
specified by the co-resident qualifier.

The process group mechanism and multicast commu-
nication are used to implement distributed and repli-
cated implementation of services. The kernel-resident
servers that manage processes, memory, communica-
tion and devices are good examples of such distributed
services.

Kernel Servers
The kernel provides time, process, memory, communi-
cation and device management in addition to the basic
communication facilities. Each of these functions is
implemented by a separate kernel module that is repli-
cated in each host, handling the local processes, ad-
dress spaces and devices, respectively. Each module is
registered with the interprocess communication facility
and invoked from the process level using the standard
IPC facilities, the same as if the module executed out-
side the kernel as a process, as illustrated in Figure 7.
As illustrative examples: a new process is created by
sending the request to the kernel process server; a
block is read from the disk by sending a request to the
kernel device server; a process is added to a process
group by requesting this action from the communica-
tion server; and a new address space is created by send-
ing to the kernel memory server.

Replicating these modules in each instantiation of the
kernel and interfacing to these modules through the
standard IPC mechanism has several significant advan-
tages. First, operations on local objects, the common
case, are performed fast because the operation is han-
dled entirely by the local server. Also, the implementa-

tion of each module is simplified because each instance
of the server module only manages local objects, not
remote objects. Second, a client can access the kernel
servers the same as the other servers (using the same
IPC-based network-transparent access), allowing the
use of remote procedure call mechanisms and run-time
routines that support the high-level protocols. For ex-
ample, the device server implements the same I/O pro-
tocol as other process-level servers and can be accessed
using the same I/O run-time support. Use of the IPC
interface also minimizes the additional kernel mecha-
nism for accessing remote kernel servers. Third, the
use of the IPC primitives to access these servers avoids
adding additional kernel traps beyond that required by
the IPC primitives. Besides avoiding a proliferation of
“system calls”, this design simplifies the job of imposing
and verifying integrity and security requirements for
the kernel. Fourth, this design separates the IPC from
other kernel services so that the IPC mechanism, the
performance-critical portion of the system, can be
tuned independently of these other less performance-
critical services. Finally, the invocation mechanism is
general in that additional kernel server modules can be
added, as might be required in high-performance real-
time control systems.

Some portion of each of these services must be in-
cluded in the kernel to guarantee the integrity of the
extended machine implemented by the kernel, and be-
cause interrupts must be handled (at least to some de-
gree) by the kernel on most architectures. The V kernel
provides a definition of each facility based on maxi-
mizing performance, minimizing complexity in the
kernel and maximizing the reliability and security at-
tributes of the system.

\ /
Node J Node K

FIGURE 7. Invocation of a Kernel Sewer

Time
The kernel time service maintains the current time of
day (in Greenwich Mean Time-GMT) and allows a
process to get the time, set the time and delay for a
specified period of time. There is also an operation to
wake up a process that is delaying. The synchroniza-
tion of time service with other nodes is implemented
outside the kernel by a process that uses V IPC to coor-
dinate with its counterparts on other machines. The
kernel implementation of the time service provides the
accuracy of reading the time and delaying required for
real-time systems yet does not include the complexity
of a kernel-level time synchronization protocol and
mechanism.

March 1988 Volume 31 Number 3 Communications of the ACM 319

Special Section

Process Management
The kernel process server implements operations to
create, destroy, query, modify and migrate processes.
The primary sources of complication in process man-
agement for conventional operating systems are process
initiation, process termination, process scheduling and
exception handling. The V kernel minimizes the kernel
process management mechanism as follows:

First, process initiation is separated from address
space creation and initialization (which is discussed in
the next section), making the creation of a new process
simply a matter of allocating and initializing a new
process descriptor.

Second, process termination is simplified because
there are few resources at the kernel level to reclaim;
most operating system resources, such as open files, are
managed at the process level by various server mod-
ules. Moreover, the kernel makes no effort to inform
servers when a process terminates, further simplifying
termination. Each server is responsible for associating
each resource it allocates with a client process and
checking periodically whether the client exists, re-
claiming the resource if not. For example, the file
server has a “garbage collector” process that closes files
that are associated with deceased processes. Standard V
run-time routines executed by the client on normal
exit inform the servers to release resources, minimizing
the accumulation rate of these “dangling” resources in
servers in the common case. In our experience, the
garbage collection code in the servers is not significant
and the garbage collection overhead is minimal.

Third, scheduling is simplified by the kernel provid-
ing only simple priority-based scheduling. A second
level of scheduling is performed outside the kernel by a
dedicated scheduler process that manipulates priorities
to effectively implement timeslicing among interactive
and background processes. A number of high priority
levels are reserved for real-time processes and operate
independent of the scheduler. The priority-based
scheduling in the kernel provides simple, efficient
low-level dispatching yet is an adequate basis for the
higher-level scheduling. Besides simplifying the kernel
code, implementing the higher-level scheduling outside
the kernel makes the full kernel facilities, including the
interprocess communication, available to the process-
level scheduler. For example, the process-level schedu-
ler uses multicast communication with the group of
such scheduler processes to implement distributed
scheduling of programs within the workstation cluster.

The kernel scheduling policy requires the kernel en-
sure that all K processors are always running the K
highest priority processes at any given time. This policy
is implemented exactly in a uniprocessor system. How-
ever, with multiprocessors, the policy appears to incur
excessive overhead. In particular, with a strict imple-
mentation of this policy, it appears necessary to check
the priority of the process being executed by each pro-
cessor at the point that a process is made eligible for
execution. In our multiprocessor implementation, a
process is associated with a processor and its ready
queue. ‘The low-level dispatching deals only with the

priority of processes associated with that processor and
its ready queue. A periodically invoked kernel proce-
dure balances the processing load across the processors
by migrating processes between processors, Iwhich in-
volves simply changing their associated readly queue.
Further experience with our multiprocessor implemen-
tation is required to determine the adequacy of this
approach.

Finally, to avoid the full complexity of exception
handling in the kernel, the process management mod-
ule simply causes the exception-incurring process to
send a message describing its problem to the exception
server, a server provided at the process level, as illus-
trated in Figure 8. The exception server then takes
over, using the facilities of the kernel and other higher
level servers to deal with the process. For example, the
standard behavior in V is for the exception server to
invoke an interactive debugger. With this design, a
powerful, flexible and network transparent exception
handling mechanism can be implemented at the pro-
cess level with little kernel complexity.

/

Kernel .A
ProcMi *

. . S&er

hardware trap

FIGURE 8. Exception Handling

Process migration was retrofitted into V as part of
Theimer’s Ph.D. thesis project [33]. Modifications to the
kernel were relatively modest. Support was provided
for extracting kernel-level process information from the
originating host and initializing processes and address
spaces with the same information in a new host. Also,
the ability to freeze and unfreeze processes was added
to control the modifications to the address space during
migration. The ability to suspend a process in execution
was already available by setting the process to a special
low priority. The process migration work did, however,
point out a number of problems with the kernel design,
as described in the section on Kernel Design Mistakes.

It appears that removing any kernel-level process
management facilities from the V kernel would result
in significant loss of performance, function and integ-
rity. For example, a run-time or user-level implementa-
tion of lightweight processes, in place of the kernel
implementation, would preclude real parallel execution
of these processes on a multiprocessor machine (be-
cause the kernel processor scheduling would not know
about these processes) as well as introduce the ineffi-
ciencies of two-level dispatching and data tra.nsfer.
Moreover, the V kernel implementation of lightweight
processes is quite simple, essentially following the same
approach as used in Thoth [9]. The space cost of a
process is reduced by concentrating all per-address

320 Communications of the ACM March 1988 Volume 3;! Number 3

Special Section

space information in a separate address space descrip-
tor, with only per-process information plus a pointer to
the address space descriptor located in the process de-
scriptor, as suggested in Figure 9. In this figure, three

virtual address space

Address

process

\ descriptors /

FIGURE 9. Process and Address Space
Descriptors

processes are contained in one virtual address space.
The space cost is further reduced because of the sim-
plicity of the interprocess communication facilities and
other state required in the process descriptor. Also, the
kernel is structured so that there is a kernel stack per
processor, not per process. The simplicity of the kernel
operations means that a process does not need to main-
tain state on a kernel stack when it blocks as part of
kernel operation,

Currently, the V process descriptor is 260 bytes, an
acceptable cost given the low cost of memory. How-
ever, the current size is larger than strictly necessary
because of on-going experimentation with various ex-
tended facilities that use extra fields from time to time.
The time to create and then destroy a process in V is
4.6 milliseconds on a Microvax II. This time includes
the time to allocate a fixed-size stack in the (existing)
address space, perform the kernel initialization of the
process descriptor and then delete the process descrip-
tor and deallocate the stack.

Memory Management
The kernel must implement some level of memory
management to protect its integrity and that of pro-
cesses from accidental or malicious corruption or un-
authorized access, given that encapsulation in virtual
address spaces is the primary form of protection used
by V, and supported by the hardware for which V is
intended. Also, page faults are signaled initially to the
kernel.

In the V kernel memory management system, re-
cently extended to support demand paging [ll], an ad-
dress space consists entirely of ranges of addresses,
called regions, bound to some portion of an open file (or
UIO object in the parlance). A reference to a memory
cell of a region is semantically a reference to the corre-
sponding data in the open file bound to this region. The
kernel serves solely as a binding, caching and consist-
ency mechanism for regions and open files. A page fault
is simply a reference to a portion of a region that is not
bound at the hardware level to a cached copy of that
portion of the bound object. On a page fault, the kernel
maps from the virtual address to a block in the bound
UIO or open file, and then either locates that block in

the kernel page frame cache or else causes the faulting
process to send a read request requesting the data block
to the server implementing the open file. Physical
memory is managed as a cache of pages from these
open files. This behavior is illustrated in Figure 10.
Consistency is an issue because the block may be
stored in multiple page frame caches simultaneously. A
simple ownership protocol is used in conjunction with
a lock manager at the backing server to implement con-
sistency.

Using this virtual memory system, creation and ini-
tialization of address spaces for program execution con-
sists of allocating an address space descriptor and then
binding the program file into this address space. The
actual transfer of the program file pages and mapping
into the address space is handled on demand as the
process references portions of the new address space.
Thus, there is no special mechanism in the kernel for
program loading. In addition, the kernel memory server
supports file-like read/write access to address spaces
using the system-standard LJIO interface, allowing the
use of the normal I/O run-time procedures to read and
write the address space. This access is used by the
debugger to display and modify the debuggee’s address
space. The V IPC access allows the debugger to run
remotely relative to the debuggee with no special provi-
sion in the debugger. In the non-demand paged configu-
ration of the kernel, this facility is also used by the
migration program to copy the address space to be
migrated.

’ Virtual I

FIGURE 10. Page Fault Handling

An efficient file caching mechanism is provided
using the virtual memory caching mechanism in con-
junction with a process-level cache directory server.
The process-level server maps file open requests onto
locally cached open files. Client read and write opera-
tions on a cached file use the standard UIO interface to
the page cache data implemented by the kernel mem-
ory server and are satisfied from the page frame cache
when the data is in the cache, otherwise reading the
data into the page cache from the file server imple-
menting the real file. Using this mechanism, a one kil-
obyte read operation satisfied by data in the local page
frame cache takes 2.3 milliseconds on a Microvax II, as
compared to 8.7 milliseconds to read the page from the
backing file server (also a Microvax II], assuming the
file server and network are not loaded. The virtual
memory mechanism has added 3,306 lines of code and
13.6 kilobytes to the size of the V kernel, out of a
previous size of 13,006 lines and 86 kilobytes.

March 1988 Volume 31 Number 3 Communications of the ACM 321

Special Section

The cost in space and complexity is outweighed by
the performance and functionality provided by the
kernel-based memory management. In particular, the
system is able to make efficient use of large RAM con-
figurations, particularly for diskless workstations, be-
cause there is a single cache, namely the page frame
cache, for both file and program pages. Thus, the over-
heads of copying between caches, duplicating data be-
tween caches and allocating physical memory between
caches are eliminated. Also, processes are able to access
the cached data using either the mapped I/O or file
read/write paradigms with the efficiency of a direct
kernel access path to the data. This design effectively
provides a degenerate kernel-based file system that
only :implements the performance-critical file opera-
tions, namely file reading and writing. Directory man-
agement, disk space allocation, access control and other
conventional and complicated file system functions are
placed at the process level, thereby minimizing kernel
complexity for this facility at no significant cost in per-
formance.

Device Management
The device server implements access to devices sup-
ported by the kernel, including disk, network inter-
face, mouse, frame buffer, keyboard, serial line and
tape. The device server module itself is device- (and
machine-) independent code that interfaces between
the process-level client and the driver modules for the
individual devices. The device server implements the
UIO interface described in the I/O section at the client
interface (on top of the standard V IPC primitives), al-
lowing client processes to use the standard I/O run-
time support for device I/O.

The V kernel device support is designed to provide
efficient, reliable, machine-independent and secure de-
vice a.ccess while minimizing the amount of kernel de-
vice support. Process-level servers implement extended
abstractions using these basic interfaces. Some amount
of device support must be provided in the kernel be-
cause device interrupts go to the kernel, some device
control operations are privileged, and kernel control of
some device operations is required for kernel integrity.
As an example of the latter, a faulty or malicious pro-
cess could initiate a disk DMA operation that would
overwrite the kernel unless the kernel has control over
the DMA controller. Without this control, no guaran-
tees could be made of the kernel’s correct operation
without verifying all such modules outside the kernel,
an unacceptable requirement for reliable and secure
systems.

The! kernel interface to the mouse illustrates one
such minimal interface and the partitioning of function
between the kernel and process levels. The mouse ap-
pears as an open file that contains the x and y coordi-
nates and the button positions of the mouse. A process
reading from the mouse file is suspended until a change
has occurred in these values since the last time the
mouse file was read. The kernel mouse handling code
performs the polling and interrupt handling of the de-
vice interface to keep the file data up to date. With this

interface, no process activity need result until the
mouse moves or has a button change position. How-
ever, the normal events associated with mouse changes,
including moving the cursor, popping up a menu, and
such like are all performed at the process level. The
efficiency of the V lightweight process mechanism
allows the cursor tracking, rubberbanding and other
real-time display functions to be implemented at the
process-level with entirely acceptable performance.

As another example, the disk interface provides ac-
cess to each drive as a raw block device, an array of
integer-indexed data blocks. The file server implements
files using this interface.

Network connections are handled similarly. For
example, the kernel provides a block interfalce to the
Ethernet, providing the ability to read and write raw
Ethernet packets. The Internet server at the process
level implements TCP/IP, UDP and X.25.

As a final example, a graphics frame buffer is han-
dled as a block device of size corresponding to the
memory area of the frame buffer. Using the virtual
memory system, the frame buffer can be ma.pped into
the user process’s address space and accessed directly.
Thus, the (process-level) V display server is able to ac-
cess the frame buffer with the same efficiency as if it
were kernel resident. Because devices use the UIO
interface and the virtual memory system binds UIO
objects into address spaces, no special provision is
required for these types of devices.

Kernel Design Mistakes
The kernel design as presented so far may appear as a
straight-forward success story. The reality is that the
design has been (and continues to be) an iterative pro-
cess in which new ideas are tried out and old mistakes
are (painfully) thrown out. The following are some ex-
amples of “dirty laundry.”

The original design structured process identifiers
with a “logical host” subfield, which was used to
simplify allocation of process identifiers and mapping
process identifiers to the right host. Howeve:r, as
pointed out by the work of Theimer et al. [3.3], this
mechanism imposed unreasonable restrictio:ns on the
process migration facility because all processes associ-
ated with a logical host had to be migrated together. It
also led to complexity in the kernel to handle multiple
logical hosts per physical host. At the time of writing,
this subfield has been eliminated and we are working
to get the process migration facility working again after
the revisions. In the revised design, an individual pro-
cess can be migrated although normally one would
migrate all processes in an address space along with the
address space itself.

The original design also minimized the use of network-
level broadcast or multicast. Basic naming was pro-
vided by a special purpose GetPid function which
mapped logical process identifiers to actual process
identifiers using broadcast4. The primary use was to

‘This function originated in Thoth where it was also used as 1 he basis for the
system naming mechanism.

Communications of the ACM March 1988 Volume 31 Number 3

locate a name server. Process identifier allocation used
another specialized broadcast mechanism. These mech-
anisms required highly specialized code in the kernel
which was repeatedly found inadequate or incorrect.
The introduction of multicast and process groups elimi-
nated these design mistakes from the kernel and the
problems with these special-purpose mechanisms.
However, the concept of local process groups was intro-
duced at the same time, and this too turned out to be a
significant problem. A local group is one in which all
members of the group are local to one host. Local
groups were recognized for the optimization of being
able to unicast to the one host to communicate with the
group, as opposed to the normal multicast transmission.
However, with the introduction of process migration, a
process group that started out local to one host could
not be guaranteed to stay that way without restrictions
on migration or additional complications in the kernel.
Moreover, local groups were being used with some con-
tortions to address the managers of particular processes;
this use has now been replaced with the co-resident
addressing mechanism. The kernel support for local
groups has now been removed, simplifying the group
management and migration code significantly.

higher-level protocol used with the IPC facilities so that
programs, subsystems and modules can interact at a
larger grain than individual messages. It imposes a
standard structure and interpretation on the contents of
the messages that are exchanged. This application-level
implementation of I/O contrasts with the conventional
approach in which I/O is implemented as a kernel-
resident module of significant size and complexity.

A key issue in an I/O system is the uniformity of the
interface. An application should be able to bind dynam-
ically to any one of a wide range of I/O services, rather
than having to be written specifically for a particular
I/O service. This property is particularly important in
a distributed system in which extensibility is important
and heterogeneity is common. For example, a distrib-
uted system may include multiple file servers running
different file system software with different file attri-
butes. The challenge is to define a uniform I/O inter-
face that maximizes performance and functionality in
the distributed environment across a wide range of
I/O-like services.

As a final example, process and memory manage-
ment were originally provided in the kernel by a single
server pseudo-process, receiving request messages and
replying in the message model of a server. Because the
kernel otherwise executes as a shared (but protected)
library of procedures invoked by the process level, this
server structure required considerable specialized code,
exhibited poor performance and suffered from subtle
errors. In recognizing that one could easily support the
remote procedure invocation model in the basic IPC
mechanism, we revised the kernel server invocation to
use procedural invocation, thereby eliminating the spe-
cialized message handling code for the kernel server.
Subsequently, partitioning these services across multi-
ple servers corresponding to process, memory, device
and communication management improved the modu-
larity of the kernel.

V uses the UIO interface [lo] as its system-level I/O
interface (as opposed to the application-level interface,
which is implemented by the run-time I/O library in
terms of the UIO interface). In the UIO model, I/O is
accomplished by creating a UIO object that corresponds
to an open file in conventional systems. Read, write,
query and modify operations are then performed on
this UIO object. The UIO interface specifies the syntax
and semantics of these procedures; a presentation pro-
tocol specifies the mapping of the procedure parameters
onto IPC messages, analogous to the calling conventions
used by compilers. Programming language I/O opera-
tions, such as the C getc and putt operations, are
mapped onto the UIO operations by the run-time
libraries for the language.

In general, one great luxury we have in a university
research environment is the time to revisit and revise a
design that we have made to work. The incorporation
of fresh insights into the design allows our understand-
ing of good kernel design to iteratively improve, with
real testing of this supposedly improved design at each
stage. After all, as a research effort, our role is to build
an improved understanding of kernel design, not just
an improved kernel. The iterated kernel design also
provides the base on which to explore the next level of
research ideas, many of which are inspired by, and
made possible by, the V kernel facilities.

The UIO interface departs from conventional system
I/O interfaces in several ways. First, the UIO interface
uses a block-oriented data access model. That is, a UIO
object is viewed as a sequence of data blocks that are
read or written, rather than a byte stream. The block
model supports access to I/O services in which multi-
byte units have semantic significance, such as arises
with network packets, database records and terminal
input lines. The block concept is also used in other
services to indicate to the client an efficient unit of
transfer and buffering for reading and writing. Multi-
block reading and writing is also supported by some
servers.

I/O
Input and output are conventionally regarded as pri-
mary services of the operating system, the means by
which a program communicates with its environment.
In V, a program communicates with its environment,
including other programs, using the interprocess com-
munication facilities. The V I/O system is really just a

Second, the UIO interface is a stateful interface. The
UIO object represents state that must be initialized
prior to other I/O operations, must be reclaimed when
no longer needed, and must be recreated for recovery
after a I/O manager crash. The stateful interface is
required to handle I/O services such as pipes, windows
and network connections (to name but a few) which
only exist when “open” and are not amenable to the so-
called stateless techniques used in WFS [31] and NFS
[SO]. The stateful interface also provides a mechanism
for handling the client I/O state associated with locking
and recovery required to support atomic transactions.

March 1988 Volume 31 Number 3 Communications of the ACM

Special Section

323

Special Section

Finally, the UIO interface divides functionality into
cctmpulsoy, optional and exceptional functionality. The
compulsory functionality represents the lowest com-
mon d.enominator, roughly corresponding to a (sequen-
tially accessed) read-only or write-only stream. The op-
tional functionality allows individual I/O services to
make extended functionality available when feasible
and necessary for the particular service. For example,
file service should provide random access, not just se-
quential access. I/O services indicate extended func-
tionality in the UIO interface using standard attributes
of the UIO object. for example, the STORAGE and
RAND’OM-ACCESS attributes indicate that the UIO
object implements storage5 and random access
respectively. The attributes allow a client to check that
the UIO objects it is using have the required facilities
for its operation, avoiding discovery by failure at some
inconvenient point in its execution. The attributes also
allow :some important optimizations to be made in the
I/O runtime library. Finally, a control function pro-
vides a standard escape for invoking specialized I/O
operations, such as device-specific operations.

The UIO interface is implemented by a wide range of
V services, including files, pipes, Internet protocols,
multi--window displays, devices and printers. In addi-
tion, several other services use the UIO interface to
provide access to directories of information that they
maintain, even though the service itself may not fit into
the I/O paradigm. For example, the V program man-
ager (or team server) implements a directory of the cur-
rently executing programs in this fashion.

TABLE II. UIO Reading: Time per Kilobyte on Microvax II
fin milliseconds)

Server Location ga&-byta Disk (bytes) Disk(bhcks) PC.

Local 6.23 9.91 3.47 1.79
Remote 6.23 14.63 8.18 6.34

The cost of the UIO interface for byte-stream and
block-stream access is indicated by Table II. The get-
byte column lists the basic processing time for calling
the V version of the UNIX getc 1024 times (to return
1024 bytes), not including any filling or flushing of
the local buffer. (This measurement corresponds to
160.5 kilobytes per second or 6.08 microseconds per
byte.) The next column gives the elapsed time per kil-
obyte to do a 1 kilobyte read using 1024 getc operations
(includ.ing the cost of reading the 1 kilobyte read from
the file server). The third column lists the elapsed time
for a 1 kilobyte block read (without getting each byte)
from the V file server. The final column indicates the
basic interprocess communication cost portion of these
operations. If we view the UIO interface overhead as
the cost of reading minus the cost of the basic IPC
operation as a percent of the total time (factoring out

‘A UIO object with the STORAGE attribute guarantees that a block that is
reread returns the same data as before unless it has been overwritten in the
interim.

the get-byte overhead in the former case because it
should be the same (or worse) in any byte stream I/O
implementation), the overhead for the UIO interface is
11 percent for byte stream I/O and 22 percent for block
stream I/O for remote I/O. The UIO overhead includes
the cost of generating UIO request messages and pro-
cessing responses at the client end as well as the
processing of client UIO requests (including (extracting
the request data from the buffer pool) at the server end.
Because these overhead costs are essentially independ-
ent of the amount of data requested, reading in 8-16
kilobyte units reduces this overhead to negligible lev-
els, further supporting the conclusions of a previous
report [25] that 8-16 kilobyte reading appears more effi-
cient than larger or smaller sizes of transfer unit.

The UIO interface illustrates another important
principle in distributed system design: separation of
system-level interface from application interface. The
UIO interface is a system-level interface, optimized for
performance, reliability, security and flexibility. An
I/O run-time library implements the application
abstraction in terms of the system-level interface. For
example, the get-byte I/O interface provided in C and
Pascal is implemented by the run-time library in terms
of a local buffer and the UIO block read and write
operations to fill and flush this buffer, as was illustrated
in Figure 2. The distinction between the system and the
application interfaces takes on greater importance in
distributed systems than previous centralized systems
because of the following:

The “system call” in a distributed system may entail
communication with a remote node and thus incur
far greater cost than in a centralized system. Thus,
adding function to the run-time libraries t.o reduce
the frequency of remote system calls (thus further
separating the application and system interfaces) sig-
nificantly improves performance.
Server processing is a critical system resource be-
cause servers typically support a large collection of
clients. Migrating the processing load from the serv-
ers to clients by adding to the run-time routines
offloads the shared servers and improves overall sys-
tem performance.
The reduced cost of semiconductor memory has all
but eliminated the importance of using system serv-
ice modules as a mechanism for run-time code
sharing.

We have taken these considerations into account in
designing the UIO interface and plan to explore these
issues further in other areas of V run-time support.

NAMING
A number of system operations, such as file open,
query and modify, take a character-string name to spec-
ify the object on which to act. The system needs to
provide character-string naming with flexible user-
level name specification, efficient mapping, binding and
unbinding plus support for hierarchical structure, in-
cluding directories and the current working directory

324 Communications of the ACM March 1988 Volume 31 Number 3

Special Set

feature in UNIX [29]. In addition, a modern system
is expected to provide extensibility to new user- and
application-defined objects. A distributed system must
address this problem, recognizing that the objects may
be implemented by many different nodes in the system.
The naming problem is not restricted just to character
string names; an operating system must provide a way
to refer to a variety of different objects, including pro-
cesses, address spaces, communication ports, and open
files using compact binary identifiers. The V naming
facility is based on a three-level model, structured as
character-string names, object identifiers and entity
identifiers.

Character-string Names
In the V design, we observed the most efficient naming
design from a communication standpoint is to have
each object manager implement names for its own set
of objects. For example, each file server implements its
own directory system. Then, operations on objects
specified by name can be handled directly by the object
manager without communication with a name server,
provided only the client can determine which object
manager to contact, given an arbitrary name. This ap-
proach takes advantage of the fact that a name is gener-
ally only mapped as part of an operation on the object.
For example, a file name is generally only mapped to
the file as part of opening the file, removing it or query-
ing or modifying its file attributes. This approach has
several significant advantages in addition to efficiency.
First, consistency between objects and the directory
entries for the objects is simplified because both are
implemented by the same server. The design also elimi-
nates the need for a client-visible unique object identi-
fier as an identifier returned by a separate name server
and passed to the object manager, as is required in the
alternative design. Second, this design results in the
object directory being replicated to the same degree as
the objects being named, because the directory is repli-
cated when the manager is replicated. Thus, a client
never suffers from an object manager being available
but effectively inaccessible because of a name server
failure. Finally, this design facilitates incorporating
“foreign” or independently developed services, which
typically already have their own directory system and
(sometimes) their own syntax. With the merits of this
approach, our work has focused on the design of an
efficient, reliable and secure mechanism that ties these
individual object manager directories into a system-
wide name space and directory system. The result is
the V naming protocol which we describe next.

Each object manager mounts its object directory (or
directories) into the global name space by picking a
unique global name prefix for the object directory and
adding itself to the name handling (process) group.
Uniqueness may be ensured by a human administrator,
by a global name server, or by sending to the name-
handling group to check for duplicates. A client pro-
gram can then locate the appropriate object manager
for a given character string name by multicasting the

QueryName operation to the name handling group, as
suggested in Figure 6. Only the appropriate server
responds.

Each V program maintains a cache of name prefix
to object manager bindings that eliminates most of the
multicast queries. This cache is initialized on program
initiation to avoid startup name cache misses in the
common case, similar to the way that environment
variables in UNIX are initialized by the shell on pro-
gram initiation. With this cache mechanism, we mea-
sure that only 0.3 percent of the name lookup opera-
tions result in a multicast query operation. It should be
noted that the use of multicast to locate the object man-
agers means that a name lookup (for a valid name)
always succeeds if the network is working and the ob-
ject manager implementing the object is operational.

A problem with this basic design arises with the
mapping of invalid names or names for which the asso-
ciated object manager is inaccessible. The client simply
does not receive a response to its multicast query and
thus cannot determine whether the name is invalid or
simply inaccessible at this time. To address this prob-
lem, we combine our decentralized approach with a
highly resilient global naming system, as described by
Lampson [22]. The decentralized approach provides ef-
ficient, resilient name mapping for performance-critical
operations such as file opens. The global directory
mechanism provides a highly available database indi-
cating which portions of the global name space actually
correspond to object managers. It also can be used to
avoid multicasting “globally” on a name cache miss.

Several other issues arise with this design, including
efficient handling of current working directories, imple-
mentation of name aliases, handling of object directo-
ries partitioned across multiple servers and detection
of counterfeit name query responses. The interested
reader is referred to a forthcoming report [16] for fur-
ther discussion of this work.

One can view the V directory system as implement-
ing a shared memory to store the name bindings using
caches and multicast, analogous to the techniques used
in a shared-memory multiprocessor machine. The serv-
ers provide primary site storage for the bindings while
the client name caches correspond to per-processor
caches. The major difference is the way in which con-
sistency is handled. Multiprocessor machines rely on
an efficient, reliable broadcast facility at the hardware
level plus a write-broadcast or ownership protocol [2].
The V name caches rely on on-use detection of stale
data, relying on the fact that names are only mapped as
part of an operation invoked at the object manager. For
example, a client may discover that a cache entry is
stale when it uses the entry to map a file name to a
particular server. It then deletes this cache entry and
uses the multicast query name operation to get an
up-to-date entry.

Exploiting problem-specific characteristics to main-
tain consistency dramatically reduces the cost of con-
sistency maintenance for name caches compared to
that required to guarantee strict consistency. Moreover,

March 1988 Volume 31 Number 3 Communications of the ACM 325

Special Section

placing the name cache in each program’s address
space makes conventional consistency maintenance
(across all executing programs) infeasible but makes the
name cache access efficient. We have observed and ex-
ploited similar benefits in a number of other situations,
including distributed scheduling, time synchronization,
atomic transaction management and distributed game
programs. ProbIem-oriented shared memories [8] of this
nature appear to have general applicability in distrib-
uted rsystems as a compromise between shared memory
with its conceptual appeal but high consistency cost
over unreliable networks and ad hoc communication
techniques with efficiency benefits but significant pro-
gramming complexity.

Object Identifiers
Operations such as a file open map a character-string
name to an object; this object is a LJIO in the case of file
open operation. An efficient object identifier is used to
refer to the object in subsequent operations, avoiding
the overhead of character-string handling and lookup
each time. V Object identifiers are structured as shown
in Figure 11. The manager identifier is an IPC identifier
that specifies the object manager or one of its ports that
implements the object. The local-object-id specifies the
object. relative to this object manager. Object identifiers
are used to identify open files, address spaces and con-
texts or directories.

I manager-id I local-object-id I

FIGURE 11. Object Identifier Structure

With this structure, mapping an object identifier to
its implementation is efficient because the embedded
transport-level identifier for the object manager can be
used by the client to efficiently access the correct man-
ager module. The manager module then uses manager-
specific mechanisms to map the second portion of the
identifier to its implementation. Allocation of object
identifiers is also efficient because the manager module
can allocate a new unique identifier without interac-
tion with other managers, the uniqueness being con-
ferred by prepending its entity identifier. A similar
argument applies for deallocation.

Object identifiers are only used to identify objects
whose lifetime does not exceed the lifetime of the serv-
ice entity identifiers, because the entity identifier is
invalidated when the process crashes. Also, an object
manager is assigned a new entity identifier on reboot.
This approach also avoids going to long identifiers to
effectively guarantee against reuse, as would be re-
quired if the identifiers were used for long-term objects
such as files. For instance, in such a system, a user
could present such a file identifier at some arbitrary
time after the file had been deleted. The file server
would have to avoid reusing this identifier to avoid the
confusion that would otherwise ensue. Instead, object

identifiers are used in V for transient objects such as
open files. As mentioned earlier, permanent objects
such as files are named using character-string names.

An object manager may be replicated or distributed
across multiple nodes. For example, processes as ob-
jects are implemented by the distributed process server
in the kernel, with a server instance on each node
handling the processes currently local to that node.
Similarly, a replicated file system maintains replicas of
each file on each of several file server nodes. In both
cases in V, the object manager as a whole is identified
by a group identifier for the group of server instances,
one per node, with separate individual identifiers for
each instance. In the distributed case, a client may use
the group identifier to identify the server ha.ndling the
particular object of interest and subsequently use the
instance identifier for the particular server, avoiding
multicast to the group on every operation. For example,
a client performing an operation on a proces,s can locate
the particular server handling the process using the
group mechanism and then use the identifier for that
server for subsequent operations. When the object mi-
grates or the specific object manager crashes, the client
receives an error message on use of the individual
server identifier and rebinds to the new instance using
the group identifier. For example, a client reading a
replicated file in the read-only mode defined in the
UIO interface [lo] can rebind to another object mana-
ger supporting another replica if the specific object
manager it is using fails. Similarly, when a process is
migrated, the kernel process server identity for the
process changes. A client operating on this process has
to rebind to the new process server. Alternatively,
when the desired server is determined by its co-
residency with a given process, the co-resident address-
ing can be used in conjunction with the group address
to address the particular server. This mechanism works
with the same efficiency as when the individual server
is addressed directly; it also automatically rebinds (at
the IPC level) when a process migrates or a manager
crashes.

The group addressing is also used for operations that
affect the entire replicated or distributed manager. For
example, a write to a replicated file uses the group
address to update every copy. The client uses its list of
the individual servers and the responses it receives
from these individuals to ensure that every replica ac-
knowledges the write operation.

This discussion should make it apparent that the ker-
nel IPC naming, the process and process group identi-
fiers, provide the basis for character-string naming and
object identification. This third and lowest level of
naming is discussed next.

Entity, Process and Group Identifiers
Entity identifiers are fixed-length6 binary values used
to identify processes, groups of processes and transport-

‘Entity identifiers are currently 32 bits. However. we are changing to use
64bit identifiers.

326 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

level communication endpoints. The entity identifier is
used with the V communication primitives to identify
transport-level endpoints. Entity identifiers have also
served in V as process identifiers because a process
effectively has a single logical port on which to send
and receive messages.

A key property of entity identifiers that distinguishes
them from the endpoint identifiers in other transport
layer facilities is that they are host-address indepen-
dent. That is, a process can migrate from one host to
another without changing entity identifiers. This host
independence requires large entity identifiers as well as
a mapping mechanism from entity identifiers to host
addresses. The V kernel maps entity identifiers to host
addresses using a cache of such mappings along with a
multicast mechanism to query the other kernels for
mappings not found in the cache, analogous to the
name mapping cache described in the section on
Character-string Names. Group identifiers are mapped
using an embedded subfield in each identifier that is
hashed to a base multicast address used by V to gener-
ate the multicast host address for the group. Thus,
group identifiers are mapped many-to-one onto a range
of multicast addresses (or host group addresses [13]).
Host addresses are network- or internetwork-dependent
and handled by a low-level module in the kernel, ren-
dering most of the kernel and process-level V software
network-independent.

Another difficulty with host-address independent
identifiers arises with allocation because guaranteeing
uniqueness requires cooperation among all instantia-
tions of the kernel. Moreover, to avoid confusion, the
kernels must cooperate to ensure that an identifier can-
not be reused too quickly after its last use7. Otherwise,
the meaning of the identifier (which process it binds to)
may change over time, leading to incorrect behavior by
users of the identifier over this time period. In the origi-
nal V design (coming from Thoth [g]), there were sim-
ple mechanisms that attempted to provide what we call
T-stability-an identifier does not get reused in less
than T seconds. In redesigning the protocol for more
general Internet use, we have gone to 64-bit identifiers
to reduce the expected frequency of reuse. The diffi-
culty of implementing T-stability in a distributed envi-
ronment was not sufficiently recognized in an earlier
report [12] and is the subject of further investigation.

V SERVICES
The V kernel facilities, the naming protocol and the
UIO interface provide a basic framework for imple-
menting a variety of services. A number of service
modules have been designed and implemented that are
of research interest in their own right.

These service modules share a number of attributes
in common. First, they are structured as multiprocess
programs, exploiting the lightweight processes provided
by the V kernel. Second, most of them implement the

‘The finite size of entity identifiers and their dynamic allocation makes reuse
necessary and inevitable.

V naming protocol and UIO interface, the latter either
because they implement open file-like objects or be-
cause they implement an object directory that is ac-
cessed using the UIO interface. Finally, client access to
their services is provided entirely through the V IPC
primitives. (We are currently working to extend some
services to support the V atomic transaction protocol as
well.)

The pipe server implements UNIX-like pipes outside
the kernel using the IPC primitives and the UIO inter-
face. A pipe provides the “sex matching” that allows
two clients to connect with the asymmetric intercon-
nection provided by the UIO interface. In addition,
pipes support buffering, multiple readers and multiple
writers. Zwaenepoel studied this server [34] to investi-
gate the performance penalty from using a process-level
server as opposed to a kernel-level implementation.
Measurements indicate the penalty is under 16 percent
using 1 kilobyte data blocks. We have found the per-
formance adequate for our uses of pipes, especially
given that high performance IPC to servers is provided
directly by the normal IPC primitives. Pipes are used
primarily for relatively modest amounts of interpro-
gram I/O activity.

The Internet server implements the TCP/IP suite of
protocols [27] using the basic network access provided
by the kernel device server. Like the pipe server, the
Internet server relies on the V kernel for lightweight
processes, real-time scheduling, accurate timing and
fast interprocess communication to achieve good per-
formance without compromising its modular, multi-
process structure. Lantz et al. [24] report on the per-
formance of some applications using this server. The
performance of this service is competitive with per-
formance reported for the UNIX kernel implementation
of TCP and the benefits of implementing this service
outside the kernel are considerable. Besides allowing
the kernel to be much smaller, the Internet server has
been much easier to develop, debug and maintain than
if we had done a kernel implementation. In addition,
the Internet server is loaded on demand in V rather
than permanently configured in the standard system.
Finally, it is not uncommon for a remote terminal con-
nection to execute with the terminal program local to
the workstation but with the Internet server running
on a second machine, possibly sharing the server with
other clients. Because of the fast V IPC, the perfor-
mance difference using a remote Internet server rather
than a local instance is not generally noticeable, even
for character echoing.

The V file server was derived from the Thoth file
system and uses the same file descriptor and block allo-
cation disk data structures [g]. Most of our work with
this module has focused on providing a buffering
scheme that is well adapted to using large amounts
of RAM. In particular, the buffer pool currently uses
8 kilobyte buffers (which can be made larger), allowing
large network and disk transfers with minimal over-
head. (The contiguous allocation scheme of the file sys-
tem results in most files being data contiguous on the

March 1988 Volume 31 Number 3 Communications of the ACM 327

Special Section

disk even though the block allocation unit is 1 kilo-
byte.) Preliminary performance figures indicate signifi-
cant benefits from this approach [16]. We have also
been exploring the multi-process structuring of the file
server with the goal of achieving efficient parallel exe-
cution on the multiprocessor machines to which we are
porting V.

The printer server, developed by Tim Mann, exhibits
several interesting properties, even though it was never
a research project per se. First, it supports spooling of
print jobs even though it runs on a diskless node, ex-
ploiting V network IPC to write files to network file
servers. (A new recently installed configuration sup-
ports local spooling of files using a disk and a local
instance of the file server.) Second, it supports multiple
client protocols, allowing print files to be submitted
using either V IPC and the UIO interface or using TCP
connections. The latter access is implemented by the
printer server running an instance of the Internet
server.

The team server’ or program manager handles the
execution of programs on its host machine. It provides
an interface between client programs and the kernel
when initiating the execution of a program. It also im-
plements time-slice scheduling of programs with fore-
ground, background and “guest” priority classes. In ad-
dition, it serves as a process-level exception handler,
invoking the interactive debugger on faulting programs.
It also maintains a real-time database of information on
programs in execution and resource consumption sta-
tistics for programs and the host itself. Using this infor-
mation, it participates in the distributed scheduling of
programs within the cluster of machines constituting a
V domain. Finally, it handles program termination and
assists with process migration (although most of the
logic is handled by a separate program). We plan to
further exploit this process-level module to explore a
variety of issues in distributed scheduling both of single
node as well as multi-node distributed parallel pro-
grams.

The V display server implements multi-window facil-
ities using a bitmap display, a commonplace facility in
modern workstation systems. Like the other servers, it
makes good use of the processes and efficient interpro-
cess communication. For instance, mouse tracking is
performed by a helper process that sends updates to the
displa:y server to reposition the cursor. The display
server also represents an early effort to provide a high-
level graphics representation at the client interface.
This high-level representation significantly reduces the
data rates for transmitting structured data. More impor-
tantly, it allows some operations to be performed local
to the display server, rather than relying on application
facilities. For instance, the display server supports mul-
tiple views, zooming and redraw, making these facili-
ties available for all applications. Further details on this
work are described by Lantz and Nowicki [D].

Work continues on new servers, including a log

‘The term team is used in V, as it was in Thoth. to refer to a set of processes
sharing the same address space.

328 Communications of the ACM

server for optical disk [ZO], an atomic transaction server
and a time synchronization server.

THREE CLASSES OF V APPLICATIONS
Operating systems of the past have been generally tar-
geted for (interactive) timesharing, batch processing or
real-time control. V ambitiously attempts to handle all
three classes of applications.

The multi-user workstation cluster, illustrated in Fig-
ure 12, is the distributed systems equivalent of the con-
ventional interactive timesharing system. It differs in
that a user’s workstation provides most of his process-
ing resources in addition to display, keyboard and
mouse. The backend hosts or mainframes are reduced
to serving primarily (or possibly, exclusively) as file
servers and computation servers. Using the ‘d system,
each node runs a copy of the kernel plus various server
programs. Each node with secondary storage may run
the V file server software and offer file service. The
kernel’s interprocess communication makes this service
and others available in a network-transparent fashion
to all nodes on the network.

FIGURE 12. Multi-user Workstation Cluster

V also deals with the issue of the processing re-
sources of the cluster being fragmented across the pro-
cessors of the nodes, instead of being concentrated in
the single processor of a conventional timesharing sys-
tem. In particular, a user can transparently run a pro-
gram on another node in the cluster to make use of
available computing cycles. In practice, we see no per-
ceptible difference even running character-at-a-time in-
teractive editors such as emacs remotely on another
workstation. Using an experimental scheduler, V runs
each program on the least loaded node in the cluster,
thereby automatically distributing the load. With a
workstation per person, we observe a very law average
load per workstation, similar to what has been observed
for telephones and personal automobiles. As a conse-
quence, pooling the resources of the workstation cluster
is surprisingly effective, eliminating the need to dedi-
cate a pool of processors as computation servers, at least
in our environment. Besides saving on the base hard-
ware investment, this sharing of resources makes the
latest and fastest workstations in the cluster available
to everyone.

Several aspects of V are essential to make this facility
practical besides fast, network transparent interprocess
communication. First, the kernel encapsulates a pro-
gram in an address space so that it is no more a threat
to other programs when run on the same machine than
when it is run on a different machine. Thus, a user

March 1988 Volume 31 Number 3

Special Section

need not fear that guest programs will crash his ma-
chine or damage his programs or storage. Second, the V
scheduler runs guest programs at lower priority to min-
imize the interference they can cause local programs.
This priority affects all aspects of a program’s execution
including access to the processor(s), network interface,
servers, etc. Thus, the primary point of contention is on
the use of physical memory. We do not expect this
contention to be significant for systems with large
amounts of memory, as expected in the future. Finally,
V provides the ability to migrate a running program to
another node, allowing a user to offload guest programs
entirely. This also allows the load from long running
programs to be redistributed.

FIGURE 13. Multi-satellite Star Computation

With these facilities, a workstation cluster can have
all the advantages of a centralized timesharing system,
including shared file system, shared processing re-
sources and multi-user community services. In fact, the
total processing capacity often far exceeds that of many
current timesharing systems. For example, a cluster of
25 J-megabyte Digital Microvax II workstations is
roughly 25 MIPS of processing power with a total of
100 megabytes of memory. This configuration is far less
expensive than a conventional mainframe of compar-
able capacity. It also provides better interactive support
(including bitmap display and mouse) and it almost
never completely crashes. The major potential disadvan-
tage of the workstation cluster is the difficulty in har-
nessing a significant portion of the 25 MIPS to work on
one program.

programmable in the multi-satellite star model and sig-
nificant performance benefits were achieved over using
a single processor. Although the speedup for some pro-
grams, such as matrix multiplication, did suffer from
the communication overhead, the major significant
problem was the superfluous processing that often
arises as a result of parallelizing the computation. We
also observed the V multicast facility was a useful way
to distribute intermediate results within the computa-
tion, cutting down on this extra processing to some
degree.

Distributed Parallel Machine
Modern workstations such as the Digital MicroVAX,
the Apollo and the SMI SUN provide cost-effective
computation power in the l-10 MIPS range and are
destined to get cheaper and faster, benefiting from the
economies of mass production and VLSI technology. A
cluster of such machines would be a cost-effective way
to configure a powerful computation engine if only one
could write programs that could make good use of the
computational resources in the form provided, namely,
multiple processors and no physically shared memory.

We conclude from this preliminary study that a
workstation cluster running V has much the same com-
putational power for many problems as a shared mem-
ory multiprocessor. The key issue appears to be under-
standing how to program applications to execute in
parallel, with the differences between a shared memory
and distributed parallel machine less significant, at
least for many applications. Overall, it appears feasible
to extract a considerable amount of the latent process-
ing power in a workstation cluster for heavy duty com-
putation. Additional understanding of parallelism and
language support is required. The V operating system
facilities seem adequate although further improve-
ments in the network interprocess communication per-
formance would be of benefit.

Some recent work by Michael Stumm and myself
[la] is directed at understanding how to structure pro-
grams for this environment and investigating the ade-
quacy of the V facilities for such distributed parallel
programs. We structured several programs in what we
call the multi-satellite star model, logically depicted in
Figure 13. The application is structured as follows:

l A set of application-level instruction sequences we
call subtasks.

l A satellite processing module that executes subtasks.
l A master module, called star central, that allocates

subtasks to satellite processors, generates new sub-
tasks based on the results of other subtasks and
detects sufficient conditions for termination.

We have programmed several example problems using
this model, including the traveling salesman problem,
alpha-beta search, zero-finding and matrix multiplica-
tion. In each case, we found the problem was easily

The star central node serves in part as a form of
shared memory in which the global state of the parallel
computation can be maintained. We are experimenting
with the distributed shared memory provided between
nodes by the virtual memory system, as described in
the earlier section on Memory Management. Judging
by the experience reported by Li [26], we expect this
approach to be applicable to a significant class of dis-
tributed parallel programs, providing shared memory
similar to that available in a shared memory multipro-
cessor, differing primarily in the performance penalty
for contention.

We originally considered having a pool of dedicated
computation server machines to support remote and
distributed parallel computation-a so-called processor
pool. However, we found the utilization of the worksta-
tion resources with a workstation per person to be suffi-
ciently low that additional processors were not re-
quired. Moreover, we observe that each new generation
of workstations is so much faster than the previous
generation that a dedicated pool of previous generation

March 1988 Volume 31 Number 3 Communications of the ACM 329

Special Section

processors would likely get less use than a few idle
workstations of the current generation. In essence,
these observations point out the merit of software mak-
ing good use of the current generation of hardware so
that the administration of the computing cluster can
save its money for the next generation of hardware. To
allow for this evolution as well as accommodating het-
erogeneity within one generation, V handles program
execution with different processor types and machine
configurations. Currently, the two major types of archi-
tectures it handles are the VAX and the SUN. The VMP
machine [li’] represents a third type.

Distributed Real-time Control
A third class of applications for V is real-time control.
A distributed implementation of a real-time control
system has the well-known advantages of extensibility,
cost-effective performance, reliability and security.
However, it also has the advantage of allowing each
node to be physically co-located with the equipment it
is monitoring and controlling even though the equip-
ment may be physically distributed, such as in a fac-
tory or a battleship. This co-location minimizes com-
munication requirements, simplifies equipment
placement and configuration and improves reliability
and security in dangerous environments.

A distributed system also provides multiple proces-
sors so that there can be, in the extreme, one processor
for each sensor or actuator, eliminating the scheduling
contention and scheduling algorithm complexity re-
quired for real-time response in centralized single-pro-
cessor real-time systems. This configuration is illus-
trated in Figure 14. The primary problem for a distrib-
uted real-time system is that of maintaining the shared
state of the system across multiple nodes within the
real-time requirements of the system.

I I 1 I I

FIGURE 14. Distributed Real-time Control

Several extensions to the interprocess communica-
tion in V support efficient distributed state update.
First, V supports a datagram message as a degenerate
form of message transaction. Combining this facility
with multicast, a process can send out periodic updates
to the other controlling nodes in the system without
blocking for retransmission, timeout or waiting for a
response. A single multicast datagram thus updates all
other nodes with high probability at the cost of a single
transmission to the updater, as shown in Figure 15. The
recipients of these datagram updates can notice when
they fail to receive an update from a particular node for
some t:ime and explicitly request an update or take
other corrective action. However, receipt of a subse-

quent datagram update normally compensates for the
loss of a previous datagram. We have implemiented this
technique successfully using V in the context of a dis-
tributed multi-player game program [a] as well as in a
student project which implemented control of a (simu-
lated) robot arm. In addition, Tektronix has been using
V as the basis for distributed instrumentation.. We were
recently given a demonstration of a distributed oscillo-
scope with the display separated from the sensor by an
Ethernet, with the V IPC providing communication be-
tween the sensor program and the display program.

Ita amlication I

FIGURE 15. Distributed Real-time Updale

In addition to datagrams, V also provides prioritized
message transmission and delivery and conditional
message delivery.g Of course, V also has strict priority-
based scheduling, accurate time services and memory-
resident programs, the other key requirements for
supporting real-time applications.”

Although the basic techniques we have described are
not deep or even novel, the ability to run such applica-
tions on top of a general-purpose operating system ker-
nel is a departure from previous practice. We believe
the increasing power of processors and networks and
the improved understanding of the key operating sys-
tem services allows general-purpose distributed systems
such as V to serve as the base for a wide variety of
most, if not all, real-time applications. The benefits of
generality are great.

Although these three classes of applications have
been described separately, there is no reason that V
cannot support all three concurrently on the same
hardware configuration, provided that sufficient hard-
ware resources are available. For instance, st:rict prior-
ity scheduling and resident (non-paged) memory alloca-
tion allows real-time processes to run independent of
lower priority user and compute-bound processes. Even
network access and message delivery are prioritized.

This integration seems appropriate for the factory of
the future where real-time control of the factory floor,
office processing, and simulation of manufacturing
processes and schedules are all computerized. Sharing
the same hardware base for all activities reduces the

‘Conditional message delivery means that the message is delivered only if the
receiver is awaiting a message when the message arrives.

lo Deadline scheduling can be accomplished by dynamic manipulation of
process priorities.

330 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

hardware cost for the required performance and relia- and protoco1s.‘4 Besides allowing local protocol imple-
bility, guards again& artificial information and func- mentations to be optimized for local communication,
tionality barriers that can arise in less general systems this approach provides a firewall between a cluster and
and provides for greater extensibility and reconfigura- the rest of the world. V is serving as a real-time kernel
bility. We hope to explore this application area in the on which to implement this gateway as well as provid-
future. ing a local network protocol.

PRESENT STATUS AND FUTURE PLANS
The V software has reached a reasonable level of utility
and maturity.” It is being distributed under license by
Stanford” and is in use at several other universities,
research laboratories and companies. After several
years of intense experimentation and extensions, we
are engaged in a significant effort to revise and rebuild
the system to correct design mistakes, improve the
quality of the implementation and incorporate new
insights. This investment is justified because V is a
vehicle that allows us to explore research territory with
far less effort than starting afresh building a system
with each new project and research direction. The
scale and maturity of V also provides our research with
far greater credibility than work lacking experimental
evaluation. Moreover, it allows our ideas to be incorpo-
rated into a system in daily use, giving strong feedback
on the real utility, efficiency and resiliency of these
ideas in practice.13 We expect to have this reimplemen-
tation effort reflected in the distribution of V software
by this summer.

There are several major directions in which research
with V is progressing. First, we are interested in study-
ing the operating systems issues in supporting parallel
and real-time applications on shared memory multi-
processor machines. Operating systems of the future
should accommodate multiple processors with the
same ease with which they currently accommodate (for
example) multiple disk drives. To this end, we have
modified V to run on a shared memory multiprocessor
machine in a fully symmetric fashion. The target ma-
chines include the DEC experimental Firefly multipro-
cessor workstation [32] and VMP [17], a shared mem-
ory multiprocessor machine we have designed and
built.

Further, we are exploring a number of aspects in the
area of computer communication, most of which are
direct outgrowths of our experience with the V distrib-
uted system. We are designing a high-performance net-
work interface to improve the performance of inter-
process communication, with particular focus on the
lOO- to loo@megabit networks of the future. Another
project is developing a transport-level gateway that in-
sulates the local cluster from the performance, reliabil-
ity and security complexities of wide-area networks

I1 This paper was written and formatted in draft form entirely using the
V system.

‘*Contact: Office of Technology Licensing, Stanford University, Stanford, CA
94305 for licensing and distribution information.

‘3Readers with experience with large systems will recognize that there is a
significant cost to maintaining the approximately 200,000 lines of source
codes that constitute this system.

We are also attempting to export some of the V proto-
cols into the computing community. There is a project
to extend the DARPA Internet to support multicast [13].
In addition, we have been working to refine VMTP [12]
into a protocol suitable for use as a general-purpose
request-response (RPC) protocol.” We hope to offer a
naming and an I/O protocol to the community in a
similar fashion. More generally, we see the need for a
standard distributed systems network architecture with
a suite of protocols covering the functionality discussed
here. We believe the V system, its protocols and their
interrelation, have a significant contribution to make to
the development of this network architecture.

Finally, we are interested in the problem of distrib-
uted information management: how to provide trans-
parent access to structured and distributed information
in an efficient, reliable and secure fashion. This prob-
lem has many aspects. We have a project to understand
how to provide an efficient general-purpose logging
facility using the optical disk [20]. We are also experi-
menting with a distributed atomic transaction man-
agement protocol that attempts to make good use of
multicast for efficient transaction commit as well as
transaction logging. The UIO interface [lo] defines
some approaches to structured file access, replication
and locking to complete the picture. We are currently
extending the V file server software to support these
extended facilities, including atomic transactions and
replication. Finally, we have been investigating
approaches to caching structured information using the
file caching mechanism and virtual memory system in-
cluding the file server directories and database views
that fit into the UIO model.

These research directions are much easier to explore
given that our research group has V at its fingertips.

CONCLUSION
V has been a tremendous learning experience for our
research group as well as our students. From the basic
tenets given in the introduction, we have evolved a
working system and, in doing so, refined and extended
the design and our understanding of distributed sys-
tems. There are several points that other system design-
ers should consider key aspects of this research and the
V design.

First, we focused on the performance of interprocess
communication as a key issue. The performance level
we achieved with the V IPC is critical to the current
system’s utility. Moreover, every improvement in per-

” The basic design is described in an early paper [6].

” A VMTP protocol specification and Unix 4.3 BSD kernel implementation
are available from the Stanford Office of Technology Licensing.

March 1988 Volume 31 Number 3 Communications of the ACM 331

Special Section

formance extends the range of application of V (espe-
c:ially in the real-time control arena) as well as making
the current V applications, such as compilations, run
faster. The potential for significant improvements in
communication performance using faster networks,
high-performance intelligent network interfaces and
furthler protocol and kernel refinements makes the pos-
sibilities for distributed systems structured along the
lines of V exciting.

Another hypothesis was that the protocols and inter-
faces, not the software modules, define the system.
Thus, we have focused in our work, and in this article,
on thla design of protocols for data transport, naming,
I/O, atomic transactions, remote execution, migration,
time synchronization, etc. The implementation of these
protocols and their use by a diversity of applications
over a period of years (for the more mature protocols)
has lead to considerable refinement of the designs. The
result is a set of protocols which we believe provide a
basis for standardization, not just concepts worthy of
further exploration. While this focus on protocols and
interf,aces may appear obvious to those involved in
computer communication, it seems to be lost in many
distributed systems efforts in the push to develop soft-
ware. Ideally, the distributed systems research commu-
nity should focus on the design and understanding the
protocols and interfaces for distributed systems. The
commercial software world can then focus on the pro-
duction of high-quality software that implements these
protocols and interfaces, taking confidence from the re-
search work that the resulting modules and systems
will meet performance, reliability, security and func-
tionality requirements.

Third, we held the hypothesis that a distributed
kernel could provide a base for distributed systems,
analogous to that provided by a backplane/chassis for
hardware systems. Based on our experience with the V
kernel, this approach is extremely successful. Construc-
tion of a distributed system given such a base turned
out to be much easier than we had originally antici-
pated. In fact, some of our students are disappointed
that there are not more distributed systems issues in
the servers and the commands for V. For example, the
file server software design is far more affected by con-
siderations of large RAM buffer pools and provision for
parallelism than handling of remote clients. However,
the design of the kernel itself appears to be a difficult
challenge. We continue to have inspirations leading to
improvements that make some previous aspect of the
design look naive and flawed.

A underlying philosophy of our work was that per-
forma.nce was of paramount importance. No one will
use a slow system, independent of its elegance. In ex-
ploring this direction, we were surprised at the intellec-
tual challenge presented by performance. We were also
surprised at the ease with which we could take a very
fast design (once discovered) and package it in a form
that is acceptably “clean” for application programmers.
We nalw conjecture that, for every fast design, there

exists an acceptably elegant design with comparable
performance. That is, one need not significantly sacri-
fice elegance for performance. However, performance
has to be a driving consideration behind the design. In
this vein, an unfortunate amount of the work on proto-
cols today is dominated by standards efforts that place
performance as one of the last considerations to be ad-
dressed. While performance in the slow networks of
yesteryear may have been secondary, the multi-
hundred megabit, if not gigabit, networks of tomorrow
make protocol processing overhead the com:munication
bottleneck for years to come, in spite of increasing
speeds of processors. While some may argue that these
order of magnitude improvements in communication
capacity are not needed, there appears no precedent in
the history of computer systems of “unneeded capac-
ity.” In fact, these quantitative leaps in computing and
communication capacity have historically resulted in
qualitative advances in our computing environment.
We expect the next generation of computer communi-
cation systems and distributed systems to ha.ve a com-
parable effect.

In summary, we have invested considerable time,
money and effort in developing an experimental dis-
tributed operating system to the point that we can use
it for getting our work done, and we continue to pay
dearly to maintain this work environment ai. this level.
Nevertheless, the price is well worth it. The process of
convincing a cluster of 50 computers to implement a
design and subsequent stress testing of the design over
periods of months of use have done much to separate
the wheat from the chaff in our thinking. The feedback
we have received from using the system and from other
users of V has also been helpful and stimulating. We
plan to push V into new areas of research as long as we
have new ideas and the system continues to facilitate
their exploration.

Acknowledgements. The on-going support of the
Defense Advanced Research Projects Agency has been
central to the success of this project. Through their
continued support and that of Digital Equipment Corpo-
ration we have been able to furnish every member of
the project with a workstation and support tlhe signifi-
cant software development required for this research.
Further support has come from the National Science
Foundation, ATT Information Systems, Bell-INorthern
Research, Philips Research, NCR and IBM. We are ex-
tremely grateful to Bob Taylor of the Digital Equipment
Corporation Systems Research Center for providing
access to their experimental Firefly multiprocessor
workstations in support of our work in parallelism.

The authorship of the referenced research papers is
indicative of the large number of participants in this
effort and the contributions of many individuals. With-
out attempting to do justice to their individual contri-
butions, the participants in the Distributed System
Group include (in alphabetical order): Lance Bert, Eric
Berglund, Per Bothner, Pat Boyle, Kenneth Brooks,
Peter Brundrett, Tom Davis, Steve Deering, Ginger

332 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

Edighoffer, Gus Fernandez, Ross Finlayson, Linda Gass,
Steven Goldberg, Hendrik Goosen, Cary Gray, Kieran
Harty, Zygmunt Haas, Bruce Hitson, Jorge Juliao,
David Kaelbling, Hemant Kanakia, Keith Lantz, Chris
Lauwers, Will Lees, Tim Mann, Thomas Maslen, Tony
Mason, Rob Nagler, Neguine Navab, Bill Nowicki, Erik
Nordmark, Joe Pallas, Rocky Rhodes, Paul Roy, Jay
Schuster, Andy Shore, Gert Slavenburg, Michael
Slocum, Ed Sznyter, Michael Stumm, Omur Tasar,
Steve Tepper, Marvin Theimer, Carey Williamson,
Michael Wolf, Chris Zuleeg and Willy Zwaenepoel.

REFERENCES
1. Almes. G. The impact of language and system on remote procedure

call design. In Proceedings of the 6th International Conference on Dis-
tributed Computer Systems (Cambridge, Mass., May 19-23). IEEE
Computer Society, Los Angeles, Calif., 1986, pp. 414421.

2. Archibald, J., and Baer, J.L. Cache coherence protocols: Evaluation
using a multiprocessor simulation model. ACM Trans. Comput. Sys. 4,
4 (Nov. 1986), 273-298.

3. Baskett, F., Howard, J.H., and Montague, J.T. Task communication in
DEMOS. In Proceedings of the 6th Symposium on Operating System
Principles (Purdue University, W. Lafayette, Ind., Nov. 16-18, 1977).
ACM, New York, 1977, pp. 23-31.

4. Berglund, E., and Cheriton, D.R. Amaze: A multiplayer computer
game. IEEE Software 2, 3 (May 1985), 30-39.

5. Brinch Hansen, P. The nucleus of a multiprogramming system.
Commun. ACM 13,4 (Apr. 1970), 238-241, 250.

6. Cheriton, D.R. An experiment using registers for fast message-based
interprocess communication. Op. Sys. Rev. 18, 4 (Oct. 1984).

7. Cheriton, D.R. Local networking and intern&working in the
V-system. In Proceedings of the 8th Symposium on Data Communication
(North Falmouth. Mass., Oct. 3-6). IEEE/ACM, Los Angeles, Calif.,
1983, pp. 9-16.

8. Cheriton, D.R. Problem-oriented shared memory: A decentralized
approach to distributed system design. In Proceedings of the 6th Inter-
national Conference on Distributed Computer Systems (Cambridge,
Mass., May). IEEE Computer Society. Los Angeles, Calif., 1986,
190-197.

9. Cheriton, D.R. The Thoth System: Multi-process Structuring and Porta-
bility. Elsevier Science Publishers, New York, N.Y., 1982.

10. Cheriton, D.R. UIO: A uniform I/O interface for distributed systems.
ACM Trans. Comput. Sys. 5, 1 (Feb. 1987), 12-46.

11. Cheriton. D.R. Unified management of memory and file caching using
the V virtual memory system. Tech. Rep. STAN-CS-88-1192. Dept. of
Computer Science, Stanford University. 1988. Also submitted for
publication.

12. Cheriton, D.R. VMTP: A transport protocol for the next genera-
tion of communication systems. In Proceedings of SIGCOMM 86.
Stowe, Vt. (Aug. 5-7). ACM, New York, 1986.

13. Cheriton, D.R., and Deering, SE. Host groups: A multicast extension
for datagram internetworks. In Proceedings of the 9th Symposium on
Data Communication (Whistler Mountain, B.C., Sept.). IEEE Com-
puter Society and ACM SIGCOMM, Los Angeles, Calif., 1985.

14. Cheriton, D.R., Malcolm, M.A., Melen, L.S., and Sager, G.R. Thoth,
A portable real-time operating system. Commun. ACM 22, 1 (Feb.
1979), 105-115.

15. Cheriton, D.R., and Mann, T.P. Decentralizing: A global naming
service for efficient fault-tolerant access. ACM Trans. Comput. Syst.
(1988), to appear. An earlier version is available as Tech. Rep,
STAN-CS-86-1098, Computer Science Dept., Stanford University,
April 1986, and as Tech. Rep. CSL-TR-86-298.

16. Cheriton, D.R., and Roy, P. Performance of the V storage server: A
preliminary report. In Proceedings of the ACM Conference on Computer
Science (New Orleans, La., Mar.). ACM, Baltimore, Md., 1985.

17. Cheriton, D.R., Slavenburg, G., and Boyle, P. Software-controlled
caches in the VMP multiprocessor. In Proceedings of the 13th Interna-
tional Conference on Computer Architectures (Tokyo, Japan, June).
ACM SIGARCH and IEEE Computer Society, Los Angeles, Calif.,
sponsor, 1986.

18. Cheriton, D.R., and Stumm, M. Multi-satellite star: Structuring parallel
computations for a workstation cluster. In Distributed Computing, 1988.
To appear.

19. Cheriton, D.R., and Williamson, C. Network measurement of the
VMTP request-response protocol in the V distributed system. In
Proceedings of SIGMETRKS 87 (Banff, Canada). ACM, New York,
1987.

20. Finlayson, R.S., and Cheriton, D.R. Log files: An extended file ser-
vice exploiting write-once storage. In Proceedings of the 21th ACM
Symposium on Operating System Principles (Austin, Nov.). ACM, Balti-
more, Md., 1987, pp. 139-148.

21. Kernighan, B.W., and Ritchie, D.M. The C Programming Language. In
Prentice-Hall Software Series, Prentice-Hall, N.J., 1978.

22. Lampson, B. Designing a global name service. In Proceedings of the
5th Annual ACM Symposium on Principles of Distributed Computing
(Calgary, Canada, Aug. 11-13). ACM, New York, 1986, pp. l-10.

23. Lantz, K.A., and Nowicki, W.I. Structured graphics for distributed
systems. ACM Trans. Graph. 3, 1 Uan. 1984), 23-51.

24. Lantz, K.A., Nowicki, W.I., and Theimer, M.M. An empirical study
of distributed application performance. IEEE Trans Softw. Eng. SE-II,
10 (Oct. 1985),1162-1174.

25. Lazowska, E., Zahorjan, J., Cheriton, D., and Zwaenepoel, W. File
access performance of diskless workstations. ACM Trans. Compuf.
Syst. 4, 3 (Aug. 1986), 238-268.

26. Li, K., and Hudak, P. Memory coherence in shared virtual memory
systems. In Proceedings of the 5th Annual ACM Symposium on Princi-
ples of Distributed Computing, (Calgary, Aug.). ACM, New York, 1986,
pp. 229-239.

27. Pastel, J.B. Internetwork protocol approaches. IEEE Trans. Commun.
(Apr. 1980).

28. Rashid, R., and Roberston, G. Accent: A communication oriented
network operating system kernel. In Proceedings of the 8th Symposium
on Operating Systems Principles (Asilomar, Calif., Dec. 10-12). ACM,
New York, 1981, pp. 64-75. ACM, Baltimore, Md.

23. Ritchie. D.M., and Thompson, K. The UNIX timesharing system.
Commun. ACM 17, 7 (July 1974). 365-375.

30. SUN Microsystems. Network File System Specification. SUN Microsys-
tems, Mountain View, Calif., 1985.

31. Swinehart, D., McDaniel, G., and Boggs, D. WFS: a simple file system
for a distributed environment. In Proceedings of the 7th Symposium on
Operating Systems Principles. 1979.

33. Theimer, M.M.. Lantz. K.A., and Cheriton. D.R. Preemptable remote
execution facilities in the V-System. In Proceedings of the 10th Sym-
posium on Operating System Principles. ACM SIGOPS, 1985.

34. Zwaenepoel, W. Implementation and performance of pipes in the V-
System. IEEE Trans. Comput. C-34, 12 (Dec. 1985), 1174-1178.

32. Thacker, C. The Firefly multiprocessor workstation. In Proceedings
of the Symposium on Architectural Support for Programming Languages
and Operating Systems (Palo Alto, Calif., Oct.). ACM, New York, pp.
164-172.

CR Categories and Subject Descriptors: D.4.7 [Operating Systems:
Organization and Design-distributed systems; real-time systems; interac-
tive systems; D.4.4 [Operating Systems]: Communications Management:
C.2.2 [Computer Systems Organization]: Network Protocols-profocol
architecture; C.2.4 [Computer Systems Organization]: Distributed Sys-
tems-distributed applications

General Terms: Design, Experimental, Performance
Additional Key Words and Phrases: operating system kernel, net-

work transparency, distributed kernel, workstations, interprocess com-
munication, light-weight processes

Received 3/87; revised 10/87; accepted l/88

Author’s Present Address: David Cheriton, Stanford University, Com-
puter Science, Bldg. 460, Room 422, Stanford, CA 94305-6110.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

March 1988 Volume 31 Number 3 Communications of the ACM 333

