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Abstract

A major obstacle to finding program errors in a real system
is knowing what correctness rules the system must obey.
These rules are often undocumented or specified in an ad
hoc manner. This paper demonstrates techniques that auto-
matically extract such checking information from the source
code itself, rather than the programmer, thereby avoiding
the need for a priori knowledge of system rules.

The cornerstone of our approach is inferring programmer
“beliefs” that we then cross-check for contradictions. Beliefs
are facts implied by code: a dereference of a pointer, p, im-
plies a belief that p is non-null, a call to “unlock(l)” implies
that l was locked, etc. For beliefs we know the programmer
must hold, such as the pointer dereference above, we im-
mediately flag contradictions as errors. For beliefs that the
programmer may hold, we can assume these beliefs hold and
use a statistical analysis to rank the resulting errors from
most to least likely. For example, a call to “spin lock”
followed once by a call to “spin unlock” implies that the
programmer may have paired these calls by coincidence. If
the pairing happens 999 out of 1000 times, though, then it
is probably a valid belief and the sole deviation a probable
error. The key feature of this approach is that it requires
no a priori knowledge of truth: if two beliefs contradict, we
know that one is an error without knowing what the correct
belief is.

Conceptually, our checkers extract beliefs by tailoring
rule “templates” to a system – for example, finding all func-
tions that fit the rule template “<a> must be paired with
<b>.” We have developed six checkers that follow this con-
ceptual framework. They find hundreds of bugs in real sys-
tems such as Linux and OpenBSD. From our experience,
they give a dramatic reduction in the manual effort needed
to check a large system. Compared to our previous work [9],
these template checkers find ten to one hundred times more
rule instances and derive properties we found impractical to
specify manually.

1 Introduction

We want to find as many serious bugs as possible. In our ex-
perience, the biggest obstacle to finding bugs is not the need
for sophisticated techniques nor the lack of either bugs or
correctness constraints. Simple techniques find many bugs
and systems are filled with both rules and errors. Instead,

the biggest obstacle to finding many bugs is simply knowing
what rules to check. Manually discovering any significant
number of rules a system must obey is a dispiriting adven-
ture, especially when it must be repeated for each new re-
lease of the system. In a large open source project such as
Linux, most rules evolve from the uncoordinated effort of
hundreds or thousands of developers. The end result is an
ad hoc collection of conventions encoded in millions of lines
of code with almost no documentation.

Since manually finding rules is difficult, we instead fo-
cus on techniques to automatically extract rules from source
code without a priori knowledge of the system. We want to
find what is incorrect without knowing what is correct. This
problem has two well-known solutions: contradictions and
common behavior. How can we detect a lie? We can cross-
check statements from many witnesses. If two contradict, we
know at least one is wrong without knowing the truth. Sim-
ilarly, how can we divine accepted behavior? We can look
at examples. If one person acts in a given way, it may be
correct behavior or it may be a coincidence. If thousands of
people all do the same action, we know the majority is prob-
ably right, and any contradictory action is probably wrong
without knowing the correct behavior.

Our approach collects sets of programmer beliefs, which
are then checked for contradictions. Beliefs are facts about
the system implied by the code. We examine two types of
beliefs: MUST beliefs and MAY beliefs. MUST beliefs are
directly implied by the code, and there is no doubt that the
programmer has that belief. A pointer dereference implies
that a programmer must believe the pointer is non-null (as-
suming they want safe code). MAY beliefs are cases where
we observe code features that suggest a belief but may in-
stead be a coincidence. A call to “a” followed by a call to “b”
implies the programmer may believe they must be paired,
but it could be a coincidence.

Once we have a set of beliefs, we do two things. For a
set of MUST beliefs, we look for contradictions. Any con-
tradiction implies the existence of an error in the code. For
a set including MAY beliefs, we must separate valid beliefs
from coincidences. We start by assuming all MAY beliefs
are MUST beliefs and look for violations (errors) of these
beliefs. We then use a statistical analysis to rank each er-
ror by the probability of its beliefs. If a particular belief
is observed in 999 out of 1000 cases, then it is probably a
valid belief. If the belief happens only once, it is probably a
coincidence.

We apply the above approach by combining it with our
prior work [9]. That work used system-specific static analy-
ses to find errors with a fixed set of manually found and spec-
ified rules (e.g.,“spin lock(l) must be paired with spin unlock(l)”).
It leveraged the fact that abstract rules commonly map to
fairly simple source code sequences. For example, one can
check the rule above by inspecting each path after a call



to “spin lock(l)” to ensure that the path contains a call
to “spin unlock(l).” While effective, this previous work
was limited by the need to find rules manually. This paper
describes how to derive rule instances automatically: our
system infers the pairing rule above directly from the source
code.

Experience indicates that this approach is far better than
the alternative of manual, text-based search to find relevant
rule instances. The analyses in this paper automatically
derive all the rule instances previously hand-specified in [9],
as well as an additional factor of ten to one hundred more.
Further, we now check properties that we formerly gave up
on (see Section 7). We demonstrate that the approach works
well on complex, real code by using it to find hundreds of
errors in the Linux and OpenBSD operating systems. Many
of our bugs have resulted in kernel patches.

Section 2 discusses related work. Sections 3–5 give an
overview of the approach, and Sections 6–9 apply it to find
errors. Section 10 concludes.

2 Related Work

There are many methods for finding errors. The most widely
used, testing and manual inspection, suffer from the expo-
nential number of code paths in real systems and the erratic
nature of human judgment. Below, we compare our ap-
proach to other methods of finding errors in software: type
systems, specification-based checking, and high-level compi-
lation. We close by comparing our work with two systems
that dynamically infer invariants.

Type systems. Language type systems probably find
more bugs on a daily basis than any other approach. How-
ever, many program restrictions—especially temporal or context-
dependent restrictions—are too rich for an underlying type
system or are simply not expressed in it. While there has
been some work on richer frameworks such as TypeState [23],
Vault [6], and aspect-oriented programming [17], these still
miss many systems relations and require programmer par-
ticipation. Further, from a tool perspective, all language
approaches require invasive, strenuous rewrites to get re-
sults. In contrast, our approach transparently infers richer,
system-specific invariants without requiring the use of a spe-
cific language or ideology for code construction.

Traditional type systems require programmers to lace a
fixed type system throughout their code. We take the op-
posite approach of inferring an ad hoc type system implicit
in programs and then putting this into the compiler. As
a side-effect, we show that code features believed to require
specification can be pulled from the source directly (see Sec-
tion 7).

Specifications. Another approach is to specify code
and then check this specification for errors. An extreme ex-
ample of this approach is formal verification. It gains rich-
ness by allowing the programmer to express invariants in a
general specification, which is then checked using a model
checker [19, 22], theorem provers, or checkers [13, 20]. While
formal verification can find deep errors, it is so difficult and
costly that it is rarely used for software. Further, speci-
fications do not necessarily mirror the code they abstract
and suffer from missing features and over-simplifications in
practice. While recent work has begun attacking these prob-
lems [5, 15, 18], verifying software is still extremely rare. The
SLAM project [2] is a promising variation on this approach.
It extracts and then model checks a Boolean variable pro-
gram skeleton from C code. However, it requires consider-
ably more effort than our approach, and appears to check a

more limited set of properties.
Recent work has developed less heavyweight checkers,

notably the extended static type checking (ESC) project [7],
which checks interface-level specifications and LCLint [11],
which statically checks programmer source annotations. How-
ever, these approaches still require more effort than those in
this paper. The specifications required by these approaches
scale with code size. In contrast, our analyses cost a fixed
amount to construct but then repay this cost by automati-
cally extracting checking information from large input codes.
In a sense, our work is complementary to these other ap-
proaches, since the information extracted by our analyses
can be used to check that specifications correctly describe
code.

The Houdini assistant to ESC [12] is one effort to de-
crease the manual labor of annotation-based approaches.
Houdini uses annotation templates to automatically derive
ESC annotations, then uses those annotations to statically
find runtime errors in Java programs. One difference be-
tween our approach and theirs is that we allow for much
noisier samples when deriving our rule templates, then we
use statistical analysis to rank the derived rules.

High-level Compilation. Many projects have embed-
ded hard-wired application-level information in compilers to
find errors [1, 3, 4, 8, 21, 24]. These projects find a fixed
set of errors, whereas we derive new checks from the source
itself, allowing detection of a broader range of errors. The
checking information we extract could serve as inputs to
suitably modified versions of these other checkers.

Dynamic invariant inference. The two most signif-
icant projects in this area are Daikon and Eraser. Daikon
is the most similar project to ours in terms of deriving pro-
gram rules [10]. Daikon dynamically monitors program ex-
ecution to reconstruct simple algebraic invariants. It starts
with a set of mostly linear building block hypotheses (that
a variable is a constant, that it is always less than or greater
than another variable) and validates each hypothesis against
each execution trace. If a trace violates a hypothesis, the hy-
pothesis is discarded. Compared to static analysis, dynamic
monitoring has the advantage that noise and undecidability
is less of a concern: by definition, an executed path is possi-
ble, and at runtime, all values can be determined. However,
the accuracy of dynamic monitoring has a cost. Daikon
is primarily intended to help understand programs. It has
found very few errors and would have several significant dif-
ficulties in doing so: it can only see executed paths, requires
test cases that adequately exercise the code it monitors, and
can only observe how code works in the tested environment.
Static analysis does not have any of these problems.

In terms of desire to find bugs, the Eraser system is most
similar to our work [21]. Eraser dynamically detects data
races by monitoring which locks protect which variables. In-
consistent locking is flagged as an error. Eraser has been
effective at finding real bugs [21]. However, because it is
dynamic it has similar limitations to Daikon: it only sees
a limited number of paths, requires the ability to monitor
code, and can only flag an error when a path is executed.

Of course, dynamic information can be quite useful. In
future work we intend to explore how static analysis can
be augmented with dynamic monitoring. One possibility is
using profile data to rank bugs.

3 Methodology

This section introduces our approach and terminology for
finding bugs. The goal of our approach is to extract beliefs



from code and to check for violated beliefs.
We restrict our attention to beliefs that fit generic rule

templates. An example template is “<a> must be paired
with <b>.” In this example, the bracketed letters <a> and
<b> represent positions in our template that the extraction
process should fill with concrete elements from the code.
We call these positions slots and code elements that fill slots
slot instances. Possible slot instances for slots <a> and <b>
could be the function calls lock and unlock respectively.

The remainder of this section explains how we apply
a template to a new, unknown system and end up with
hundreds of automatically-detected bugs. We begin with
a detailed example of a null-pointer-use checker. This ex-
ample introduces a general approach that we call internal
consistency. We then present a detailed description of a
locking-discipline checker, which introduces an approach we
call statistical analysis. We conclude by describing the sys-
tem we use to implement our checkers and the systems that
we check.

3.1 Example: null pointer consistency

This subsection illustrates how internal consistency can find
errors by applying it to one of the simplest possible prob-
lems: detecting null-pointer uses statically. Consider the
following code fragment, which compares the pointer card
against null and then dereferences it:

/* 2.4.1:drivers/isdn/avmb1/capidrv.c: */
1: if (card == NULL) {
2: printk(KERN_ERR "capidrv-%d: ... %d!\n",
3: card->contrnr, id);
4: }

At line 1, the check card == NULL implies the belief that
card is null on the true path of the conditional. However,
at line 3 the dereference card→contrnr implies the belief
that card is not null: a contradiction. A consistency checker
can find such errors by associating every pointer, p, with a
belief set and flagging cases where beliefs contradict. For
our example, p’s belief set could contain nothing (nothing is
known about p), “null” (p is definitely null), “not null” (p is
definitely not null), or both “null” and “not null” (p could
be either). Any code element, or action, implying a belief
that contradicts p’s current belief set is an error.

Note that, while not relevant for the error above, the
comparison action at line 1 also implies that p’s belief set
should contain both “null” and “not null” before line 1.
Otherwise, this check is pointless. This implied belief set
is useful in a different piece of code:

/* 2.4.7:drivers/char/mxser.c */
1:int mxser_write(struct tty_struct *tty, ...) {
2: struct mxser_struct *info = tty->driver_data;
3: unsigned long flags;
4:
5: if (!tty || !info->xmit_buf)
6: return (0);
7: ...

At line 2, tty→driver data dereferences tty, but at line 5
the check !tty implies tty could be null. Either the check is
impossible and should be deleted, or the code has a potential
error and should be fixed. The following beliefs are inferred
on each line:

Line 1: entry to mxser write. Assuming we do not have
inter-procedural information, the checker sets tty’s be-
lief set to “unknown,” otherwise we set it to its value
at the caller.

Line 2: the checker sets tty’s belief set to “not null.”

Lines 3 and 4 have no impact on the belief set. We say a
belief set is propagated when it moves from one action
to another. In this case, the belief set after line 2 is
propagated forward through lines 3 and 4 to line 5.

Line 5: implies a belief set for tty containing both “null”
and “not null.” However, the only path to this con-
dition has a belief set of “not null,” which contradicts
the implied belief set.

We formalize the framework for internal consistency check-
ers below.

3.2 General internal consistency

Consistency checkers are defined by five things:

1. The rule template T .

2. The valid slot instances for T .

3. The code actions that imply beliefs.

4. The rules for how beliefs combine, including the rules
for contradictions.

5. The rules for belief propagation.

The rule template T determines what property the checker
tests. The checker’s job is to find and check valid slot in-
stances for the template, T . For example, the null-pointer
checker’s template is “do not dereference null pointer <p>,”
and all pointers are potentially valid slot instances for <p>.
Each slot instance has an associated belief set. At each ac-
tion, we consider how that action effects the belief sets for
each slot instance. For the checker above, if an action is a
dereference of a pointer p, the action can either (1) signal
an error if p’s belief set contains the belief “null,” or (2) add
the belief “not null” to p’s belief set. If an action implies
a belief, we must also consider how that belief propagates
to other actions. A comparison, p == NULL, propagates the
belief that p is “null” to all subsequent actions on its true
branch, the belief that p is “not null” to all subsequent ac-
tions on its false branch, and the belief that p could be either
“null” or “not null” when these paths join. In general, be-
liefs can propagate forward, backward, from caller to callee,
between functions that implement the same abstract inter-
face either within the same program or across programs, or
to any other piece of related code. We give a more complete
discussion of related code in Section 4.2.

More formally, for any slot instance v, we denote its belief
set as Bv. The null checker associates each pointer p with
a belief set Bp that can take on the values Bp = {null} (p
is definitely null), Bp = {notnull} (p is definitely not null),
or Bp = {null, notnull} (p could be either null or not null).
By convention an empty belief set, Bp = ∅, means nothing
is known about p.

Most actions have no impact on the current belief sets
other than propagating them forward unaltered to the next
statement. The null checker above had two actions that
imply beliefs: dereferences and comparisons. These actions
affect the belief set of one valid slot instance, i.e. the pointer,
p, that is dereferenced or compared to null. A dereference
of pointer p implies the belief notnull (Bp = {notnull}) and
gives an error if p’s belief set contains null (null ∈ Bp).
Comparison implies two things. First, p’s belief set prior
to the comparison contains both null and notnull (Bp =



1: lock l; // Lock
2: int a, b; // Variables potentially

// protected by l
3: void foo() {
4: lock(l); // Enter critical section
5: a = a + b; // MAY: a,b protected by l
6: unlock(l); // Exit critical section
7: b = b + 1; // MUST: b not protected by l
8: }
9: void bar() {

10: lock(l);
11: a = a + 1; // MAY: a protected by l
12: unlock(l);
13: }
14: void baz() {
15: a = a + 1; // MAY: a protected by l
16: unlock(l);
17: b = b - 1; // MUST: b not protected by l
18: a = a / 5; // MUST: a not protected by l
19: }

Figure 1: A contrived, useful-only-for-illustration example
of locks and variables

{null, notnull}). An error is given if the beliefs are known
more precisely (error if Bp = {null} or Bp = {notnull})).
Second, after the conditional, p is null on the true path
(Bp = {null}), and not null on the false (Bp = {notnull}).

One complication when propagating beliefs is what hap-
pens when different paths join. The null checker takes the
union of all beliefs on the joining paths. For the first exam-
ple, card’s belief set is Bp = {null} on the true path after
the comparison card == NULL, Bp = {notnull} on the false
path, but becomes Bp = {null, notnull} when the paths join
after line 4.

3.3 Example: statistical lock inference

This subsection illustrates how statistical analysis can find
errors in sets of MAY beliefs. We use statistical analysis to
rank MAY belief errors from most to least probable.

Consider the problem of detecting when a shared variable
v is accessed without its associated lock l held. If we know
which locks protect which variables, we can readily check
this rule using static analysis. Unfortunately, most systems
do not specify “lock <l> protects variable <v>.” However,
we can derive this specification from the code by seeing what
variables are “usually” protected by locks. If v is almost
always protected by l, it may be worth flagging cases where
it is not.

Consider the contrived code example in Figure 1 with two
shared variables, a and b, that may or may not be protected
by a lock l. Here, a is used four times, three times with l
held, and once without l held. In contrast, b is indifferently
protected with l: not protected twice, and protected once
in a plausibly-coincidental situation. Intuitively, a is much
more plausibly protected by l than b. This belief is further
strengthened by the fact that a is the only variable accessed
in the critical section at line 11 – either the acquisition of
l is spurious (locks must protect something) and should be
fixed, or the programmer believes l protects a.

Our checking problem reduces to inferring if code believes
l protects v. If a use of variable v protected by lock l im-
plied the MUST belief that l protects v, then we could check
the rule above using internal consistency. However, the pro-
tected access could simply be a coincidence, since accessing
unprotected variables in critical sections is harmless. Thus,

we can only infer that code may believe l protects v. We
call this type of belief a MAY belief.

How can we check MAY beliefs? In all cases we consider
in this paper, the MAY belief reduces to whether or not can-
didate slot instances should be checked with a rule T . For
the example above, should a given variable a and lock l be
checked with the template “variable a must be protected by
lock l?” An effective way to determine if such a MAY belief
is plausible is simply to act on it: check the belief using in-
ternal consistency and record how often the belief satisfied
its rule versus gave an error. We can use these counts to
rank errors from most to least credible (essentially ranking
the belief by how often it was true versus its negation). The
more checks a belief passes, the more credible the (few) vio-
lations of it are, and the higher these errors are ranked. The
highest ranked errors will be those with the most examples
and fewest counter-examples, the middle will be beliefs vio-
lated much more often, and the bottom errors will be from
almost-always violated beliefs. When inspecting results, we
can start at the top of this list and work our way down un-
til the noise from coincidental beliefs is too high, at which
point we can stop.

For the code above, we would treat both MAY beliefs,
“l protects a” and “l protects b,” as MUST beliefs. Before
checking whether a lock protects a variable, though, we must
first determine whether the lock is held at all. Beliefs about
locks propagate both forward and backward from lock and
unlock actions: lock(l) implies a belief that l was not
locked before, but locked afterwards, and unlock(l) implies
a belief that l was locked before, but unlocked afterwards.
(As a side-effect, this checker could catch double-lock and
double-unlock errors.)

Using the lock belief sets, we can then record for each
variable (1) how it was checked with the rule (once for each
access: four times for a, three for b) and (2) how many times
the variable failed the check. I.e., the number of times it was
accessed where Bl = {unlocked} (one for a, two for b). Since
a is usually protected by l, the unprotected access at line
18 is probably a valid error. Since b has more errors than
correct uses, we would usually discard it. (Programmers are
usually right. If they are not, then we have much bigger
concerns than a few concurrency bugs.) More generally, we
use the “hypothesis test statistic” to rank errors based on
the ratio of successful checks to errors. This statistic favors
samples with more evidence, and a higher ratio of examples
to counter-examples. We discuss this statistic further in
Section 5.

3.4 General statistical analysis

For this paper, the only MAY beliefs that concern us are
whether a particular set of slot instances can be checked with
a rule template T . Thus, conceptually, a statistical checker
is an internal consistency checker with three modifications:

1. It applies the check to all potential slot instance com-
binations. I.e., it assumes that all combinations are
MUST beliefs.

2. It indicates how often a specific slot instance combi-
nation was checked and how often it failed the check
(errors).

3. It is augmented with a function, rank, that uses the
count information above to rank the errors from all
slot combinations from most to least plausible.



For the lock checker above, this would mean that the checker
would consider all variable-lock pairs (v, l) as valid instances.
For each pair (v, l), it emits an error message at each location
where v was used without lock l held, and a “check” message
each time v was accessed. For the code above, there are
two possible slot combinations, (a, l) and (b, l). The
instance (a, l) has four check messages (lines 5, 11, 15,
18) and one error (line 18). The instance (b, l) has three
check messages (lines 5, 7, 17) and two errors (lines 7 and
17).

There are two practical differences between internal con-
sistency and statistical checkers. First, for good results,
statistical analysis needs a large enough set of cases. In
contrast, an internal consistency checker can give definitive
errors with only two contradictory cases. Second, to make
the universe of slot instances more manageable, a statistical
checker may use an optional pre-processing pass that filters
the universe of possible slot instances down to those that
are at least moderately plausible.

This technique applies to many types of system rules.
While internal consistency flags all cases where there are
conflicting beliefs as errors, statistical analysis can be used
even when the set of checks and errors is noisy.

3.5 How we implement checkers

We write our analyses in metal (see Figure 2), a high-level
state machine (SM) language for writing system-specific com-
piler extensions [9]. These extensions are dynamically linked
into xgcc, an extended version of the GNU gcc compiler.
After xgcc translates each input function into its internal
representation, the extensions are applied down each execu-
tion path in that function. The system memoizes extension
results, making the analyses usually roughly linear in code
length.

Metal can be viewed as syntactically similar to a “yacc”
specification. Typically, SMs use patterns to search for inter-
esting source code features, which cause transitions between
states when matched. Patterns are written in an extended
version of the base language (GNU C), and can match al-
most arbitrary language constructs such as declarations, ex-
pressions, and statements. Expressing patterns in the base
language makes them both flexible and easy to use, since
they closely mirror the source constructs they describe.

The system is described in more detail elsewhere [9].
For our purposes, the main features of extensions are that
they are small and simple — most range between 50 and
200 lines of code, and are easily written by system imple-
menters rather than compiler writers. Many of the errors we
find leverage the fact that our analyses can be aggressively
system-specific.

A key feature of how we inspect errors is that we first
rank them (roughly) by ease-of-diagnosis as well as likeli-
hood of false positives. Our ranking criteria places local
errors over global ones, errors that span few source lines or
conditionals over ones with many, serious errors over minor
ones, etc. We then inspect errors starting at the top of this
list and work our way down. When the false positive rate is
“too high,” we stop. Thus, while our checkers report many
errors, we rarely inspect all of them.

Static analysis is scalable, precise, and immediate. Once
the fixed cost of writing an analysis pass is paid, the anal-
ysis is automatic (scalability), it can say exactly what file
and line led to an error and why (precision), and it does not
require executing code (immediacy). Further, static analy-
sis finds bugs in code that cannot be run. This feature is

sm internal_null_checker {
state decl any_pointer v;

/* Initial start state: match any pointer
compared to NULL in code, put it in a ’null’
state on true path, ignore it on false path. */

start:
{ (v == NULL) } ==> true=v.null, false=v.stop

| { (v != NULL) } ==> true=v.stop, false=v.null
;
/* Give an error if a pointer in the null state

is dereferenced in code. */
v.null:

{ *v } ==> { err("Dereferencing NULL ptr!"); }
;

}

Figure 2: A simple metal extension that flags when pointers
compared to null are dereferenced.

important for OS code, the bulk of which resides in device
drivers. A typical site will have have less than ten (rather
than hundreds) of the required devices.

3.6 What systems we check

We have applied our extensions to OpenBSD and Linux.
The bulk of our work focuses on two Linux snapshots: “2.4.1”
and “2.4.7.” Version 2.4.1 was released roughly when the
first draft of this paper was written; 2.4.7 roughly when the
final draft was completed. Which version we check is de-
termined by which was current when the checker being de-
scribed was written. Thus, both represent a hard test: live
errors, unknown until we found them. We occasionally se-
lect example errors from other more intermediate snapshots,
but we mainly report results from released versions for re-
producibility. Finally, we also apply several of our checkers
to OpenBSD 2.8 to check generality.

The main caveat with all of our results is that we are not
Linux or OpenBSD implementers, and could get fooled by
spurious couplings or non-obvious ways that apparent errors
were correct. We have countered this by releasing almost all
of our bugs to the main kernel implementers. Many have
resulted in immediate kernel patches.

The next two sections continue the discussion of method-
ology, describing MAY and MUST beliefs in more detail.
The rest of the paper evaluates the methodology with case
studies.

4 Internal Consistency

Internal consistency finds errors by propagating MUST be-
liefs inferred at one code location to related locations. Any
belief conflict is an error. We introduced internal consis-
tency by describing a null pointer checker in Section 3. In
this section we describe other applications of the same gen-
eral technique and provide a more detailed description of
the technique itself. Section 6 and Section 7 then present
two case studies of using it to find errors.

Table 1 gives a set of example questions that can be
answered using MUST beliefs. For example, as discussed in
Section 7, we can use code beliefs to determine if a pointer, p,
is a kernel pointer or a dangerous user pointer. If p is deref-
erenced, the kernel must believe it is a safe kernel pointer. If
it passes p to a special “paranoid” routine, it must believe p
is an unsafe user pointer. It is an error if p has both beliefs.



Template Action Belief
“Is <P> a null pointer?” *p Is not null.
Section 6 p == null? null on true, not-null on false.
“Is <P> a dangerous user pointer?” p passed to copyout or copyin Is a dangerous user pointer.
Section 7 *p Is a safe system pointer.
“Must IS ERR be used to check Checked with IS ERR Must always use IS ERR.
routine <F>’s returned result?”
Section 8.3

Not checked with IS ERR Must never use IS ERR.

Table 1: Questions that can be inferred using internal consistency. Ranking the results is not necessary because a single
contradicted belief must be an error. A nice feature: contradictions let us check code without knowing its context or state.

Consistency within a single function is the simplest form
of these checkers: if a function f treats pointer p as an unsafe
pointer once, it must always treat p as unsafe. Consistency
checkers can go beyond self-consistency, though. Code can
be grouped into equivalence classes of related code that must
share the same belief set. We can then propagate beliefs
held in one member to all members in the equivalence class.
This gives us a powerful lever: a single location that holds
a valid MUST belief lets us find errors in any code we can
propagate that belief to. Therefore, we have two primary
objectives: (1) finding MUST beliefs, and (2) relating code.
The more beliefs found, the more applicable the checker.
The more code we can relate, the further we can propagate
beliefs, and thus the more likely it is we will find at least one
location that holds a valid MUST belief. We discuss each of
these two objectives briefly below.

4.1 Inferring MUST beliefs

We infer MUST beliefs in two ways: (1) direct observation
and (2) implied pre- and post-conditions. Direct observa-
tion uses standard compiler analyses to compute what code
must believe by tracking actions that reveal code state. The
null-pointer checker described in Section 3, for example, can
use two direct observations: setting a pointer p to null, and
checking if p is null. The first is an explicit state change,
while the second is an observation of state. After changing
state, the programmer must believe the changes took effect.
Similarly, after observing state, the programmer must be-
lieve the observation is true. Note that beliefs inferred from
direct observation are validated in that we can compute their
truth ourselves.

The second method of inferring beliefs is based on the
fact that many actions in code have pre- and post-conditions.
For example, division by z implies a belief that z is non-zero,
and deallocation of a pointer, p, implies a belief that it was
dynamically allocated (pre-condition) and will not be used
after the deallocation (post-condition). If we further assume
that code intends to do useful work, we can infer that code
believes that actions are not redundant. In Section 3 we ob-
served that a check of p against null implies a belief that the
check was not spurious. Similarly, a mutation such as setting
p to q implies a belief that p could have been different from
q. As Section 6 and Section 8 demonstrate, flagging such re-
dundancies points out where programmers are confused and
hence have made errors.

4.2 Relating code

Code can be related both at an implementation level, when
there is an execution path from action a to action b, or at
an abstraction level, when a and b are related by a com-
mon interface abstraction or other semantic boundary. We

consider each below.
Code related by implementation. An execution path

from a to b allows us to cross-check a’s beliefs with b’s, typ-
ically using standard compiler analysis. In addition to obvi-
ous beliefs about shared data, we can also cross-check their
assumed execution context and fault models. For example,
if a calls b, b usually inherits a’s fault model: if a checks foo
for failure, b must as well (b must be at least as careful as
a). Conversely, a inherits the faults of b: if b can fail, a can
as well.

Code related abstractly. If a and b are implemen-
tations of the same abstract routine, interface, or abstract
data type, we can cross-check any beliefs that this relation-
ship implies.

If a and b implement the same interface, they must as-
sume the same execution context and fault model. In ad-
dition, they must also have the same argument restrictions,
produce the same error behavior, etc. Example contradic-
tions in these categories include: a exits with interrupts
disabled, b with them enabled; a checks its first argument
p against null, b dereferences p directly; a returns positive
integers to signal errors, b returns negative integers. We can
even perform checks across programs, such as checking that
different Unix implementations of POSIX system calls have
the same argument checks and return the same error codes.
Finally, if a and b are equivalent, this implies we can also
(symmetrically) cross-check the different pieces of code that
use a against those that use b.

How can we tell when we can relate code at an abstract
level? One way, of course, is by divine intervention: if we
know a and b are the same, we can cross-check them. Lack-
ing this knowledge, we must find these relationships auto-
matically. One simple technique is to relate the same routine
to itself through time across different versions. Once the im-
plementation becomes stable, we can check that any modi-
fications do not violate invariants implied by the old code.
Another way to relate code is to exploit common idioms that
imply that two implementations provide the same abstract
interface. A common idiom is that routines whose addresses
are assigned to the same function pointer or passed as ar-
guments to the same function tend to implement the same
abstract interface. Our most important use of this trick is to
cross-check the many implementations of the same interface
within a single OS, such as different file systems that export
the same virtual file interface to the host OS and different
device drivers that all implement an interrupt handler (see
Section 7).

5 Statistical analysis

Statistical checkers find errors in MAY beliefs. They use sta-
tistical analysis to filter out coincidences from MAY beliefs



by observing typical behavior over many examples.
We sort the errors from statistical analysis by their rank-

ing according to the z statistic for proportions [14]:
z(n, e) = (e/n − p0)/

p

(p0 ∗ (1 − p0)/n

where n is the population size (the number of checks), c
the number of counter examples (errors), e the number of
examples (successful checks: n − c), p0 the probability of
the examples and (1 − p0) the probability of the counter-
examples. This statistic measures the number of standard
errors away the observed ratio is from an expected ratio.
We typically assume a random distribution with probability
p0 = 0.9. The ranking, z, increases as n grows and the num-
ber of counter-examples decreases. Intuitively, the probabil-
ity of an observed result also increases with the number of
samples. For the purposes of bug finding, perfect fits are
relatively uninteresting. Error cases reside where there are
at least some number of counter-examples. Given enough
samples, derivation can infer a wide range of rule instances.
Table 2 gives a set of example questions that can be an-
swered using statistical checkers.

There are a couple of things to note about this rank-
ing approach. First, it can be augmented with additional
features. One useful addition is code trustworthiness: code
with few errors is more reliable for examples of correct prac-
tice than code with many.

Second, it has an interesting inversion property. If z(N, E)
ranks instances that satisfy a template T , then it is com-
monly useful to also rank z(N, N −E), which computes ¬T .
Often, if template T is useful, its negation ¬T is useful as
well. We call this the inverse principle.

Third, statistical analysis, like internal consistency, can
exploit the non-spurious principle. Many properties must
be true for at least one element: a lock must protect some
variable or routine; a security check must protect some sen-
sitive action. For such cases, an empty template slot signals
a derivation error. For example, if the lock checker in Sec-
tion 3.3 finds that a lock l has no variable v such that the
ratio of checks to errors for (l, v) gives an acceptable rank
(z(checks, checks− errors)), then we know there is a prob-
lem: either our analysis does not understand lock bindings,
or the program has a serious set of errors. In general, this
idea can be trivially applied to the statistical analysis of
any property that must have at least one member. In some
cases, we can also use it to immediately promote a MAY be-
lief to a MUST belief without any statistical analysis. For
example, a critical section that only accesses a single shared
variable implies that the code must believe that the variable
is protected by the critical section’s lock.

5.1 Handling noise

One concern when deciding if MAY beliefs are true is noise
from both coincidences and imperfect analysis. There are
three key features we use to counter such noise: large sam-
ples, ranking error messages, and human-level operations.

First, we can easily gather large representative sets of
behavioral samples by basing our approach on static analy-
sis, which allows us to examine all paths. While these paths
are inherently noisy, there are so many that we can derive
many patterns and only use the most promising candidates.

Second, we can counter noise in our error messages by
using the z statistic value to rank errors from most to least
credible. We can then inspect these errors and stop our
search once the false positive rate is deemed too high. This
step is in some sense the most crucial. A naive use of the z
statistic would be to use it to rank beliefs rather than errors.

Our initial approach did just that: we selected a threshold t,
calculated z for each belief, and treated those beliefs above
the threshold as MUST beliefs. We then checked rules using
these beliefs and threw all of the resultant errors in the same
pool. The problem with this approach is its sensitivity to t’s
value. If t is too low, we drown in false positives. If it is too
high, we do not find anything interesting. However, ranking
error messages rather than beliefs completely avoids these
problems: we can start inspecting at the top where the most
extreme cases are (and thus the false positive rate is lowest).
Noise will increase steadily as we go down the list. When
it is too high, we stop. Switching to this approach made a
notable difference in building effective checkers.

Finally, our analyses are also aided by the fact that code
must be understood by humans. Important operations are
usually gifted with a special function call, set of data types,
and even specific naming conventions. In fact, we can com-
monly use these latent specifications to cull out the most
easily understood results (e.g., when deriving paired func-
tions to give priority to pairs with the substrings “lock,”
“unlock”, “acquire,” “release”, etc.) We discuss this fur-
ther below.

5.2 Latent specifications

Latent specifications are features designed to communicate
intent to other programmers and idioms that implicitly de-
note restrictions and context. Because they are encoded
directly in program text, extensions can easily access them
to determine where and what to check, as well as what con-
ditions hold at various points in the code. Leveraging these
encodings makes our approach more robust than if it re-
quired that programmers write specifications or annotate
their code, since in practice, it is an event worth remarking
when they do. Statistical analysis checks (and in some cases
internal consistency checks) leverage latent specifications to
filter results and to suppress false positives.

The most primitive latent specifications are naming con-
ventions. Familiar substrings include “lock,” “unlock,” “al-
loc,” “free,” “release,” “assert,” “fatal,” “panic,” “spl” (to
manipulate interrupt levels), “sys ” (to signal system calls),
“ intr” (to flag interrupt handlers), “brelse” (to release buffer
cache blocks), and “ioctl” (as an annotation for buggy code).
Our statistical analysis passes use these as auxiliary infor-
mation when flagging potentially interesting functions.

At a slightly higher-level, most code has cross-cutting
idioms that encode meaning. For example, error paths are
commonly signaled with the return of a null pointer or a neg-
ative (or positive) integer. These annotations allow check-
ers to detect failure paths at callers, and error paths within
callees.

Code is also interlaced with executable specifications.
For example, debugging assertions precisely state what con-
ditions must hold when a routine runs. Another example is
routines such as BUG in Linux and panic in BSD. These calls
serve as precise annotations marking which paths cannot be
executed (since the machine will have rebooted after either
call). Our checkers use them to suppress error messages on
such paths.

Finally, specifications can be completely transparent but
shared across all code in a given domain. Examples include
the popular rules that null pointers should not be derefer-
enced and that circular locking is bad. A compiler extension
can directly encode this information.



Template (T) Examples (E) Population (N)
“Does lock <L> protect <V>?” Uses of v protected by l Uses of v
“Must <A> be paired with <B>?” paths with a and b paired paths with a

“Can routine <F> fail?” Result of f checked before use Result of f used
“Does security check <Y> protect <X>?” y checked before x x

“Does <A> reverse <B>?” Error paths with a and b paired Error paths with a
“Must <A> be called with interrupts
disabled?”

a called with interrupts disabled a called

Table 2: Templates derivable with statistical analysis; the statistical methods are necessary to counter coincidental couplings.
These were ranked using z(N, E). A commonly useful trick is to use z(N, N − E) to derive ¬T .

6 Internal Null Consistency

The next four sections are case studies evaluating our ap-
proach: this section and the next focus on internal con-
sistency, while Section 8 and Section 9 focus on statistical
analysis.

This section implements a generalized version of the in-
ternal consistency checker in Section 3. It finds pointer er-
rors by flagging three types of contradictory or redundant
beliefs:

1. Check-then-use: a pointer p believed to be null is sub-
sequently dereferenced.

2. Use-then-check: a pointer p is dereferenced but sub-
sequently checked against null. Note that this is only
an error if no other path leading to the check has the
opposite belief that p is null.

3. Redundant checks: a pointer known to be null or known
to be not null is subsequently checked against null (or
not null). As above, all paths leading to the check
must have the same known value of p.

Check-then-use and use-then-check violate the rule “do not
dereference a null pointer <p>.” They tend to be hard
errors that cause system crashes. Redundant checks violate
the rule “do not test a pointer <p> whose value is known.”
While violations do not cause crashes directly, they can flag
places where programmers are confused.

Conceptually, as described earlier in the paper, the checker
associates a belief set with each pointer p. The beliefs in
the list can be one or more of: (1) null, (2) not-null, or (3)
unknown (the empty list). The checker rules are straight-
forward:

1. A dereference of pointer p adds the belief not-null to
p’s belief set. It is an error if the belief set contained
null.

2. A pointer checked against null (or non-null) implies
two beliefs. First, it propagates backwards the belief
that the pointer’s value is unknown (i.e., it could be
either null or not null). The checker flags an error if
p is known to have a more precise belief. Second, the
check propagates forward the belief that p is null on
the true path and non-null on the false path.

For simplicity, we implemented each error type using a dif-
ferent extension. The implementation is straightforward.
For example, the full check-then-use checker is written in
less than 50 lines (Figure 2 gives a stripped down version).
It puts every pointer p compared to null in a “null” state
and flags subsequent dereferences as errors. The others fol-
low a similar pattern except that they make sure that the
error would occur on all paths before reporting it.

Unlike most checkers, the most interesting challenge for
these is limiting their scope rather than broadening it: pre-
venting beliefs from violating abstraction boundaries, sup-
pressing impossible paths, and deciding on the boundary
between “good” programming and spurious checks.

Our checkers must ensure that some beliefs do not flow
across black-box abstraction barriers. For example, macros
can perform context-insensitive checks, which add the null
belief to a pointer’s belief set. However, this belief is not
one we can assume for the macro’s user. Thus, we do not
want it to propagate outside the macro since otherwise we
will falsely report dereferences of the pointer as an error. Al-
most all false positives we observed were due to such macros.
To reduce these, we modified the C pre-processor to anno-
tate macro-produced code so we could truncate belief prop-
agation. One counter-intuitive result is that unlike almost
all other checkers, both use-then-check and redundant-check
generally work best when purely local so as to prevent vio-
lations of potential abstraction boundaries.

A second problem is that the check-then-use checker is
predisposed to flag cases caused by the common idiom of
checking for an “impossible” condition and then calling “panic”
(or its equivalent) to crash the machine if the condition was
true:

if (!idle)
panic("No idle process for CPU %d", cpu);

idle->processor = cpu;

Here, panic causes a machine reboot, so the dereference
of a null idle is impossible. These calls are essentially la-
tent specifications for impossible paths. To eliminate such
problems, all checkers, including those in this section, pre-
process the code with a 16-line extension that eliminates
crash paths, thereby removing hundreds of false positives.

Finally, we must decide on a threshold for redundancy
and contradiction errors. Checks separated by a few lines
are likely errors, but separated by 100 could be considered
robust programming practice. We arbitrarily set this thresh-
old to be roughly 10 executable lines of code.

6.1 Results

Table 3 shows the errors found in Linux. Some of the more
amusing bugs were highlighted in Section 3.1. In the check-
then-use example bug, the desire to print out a helpful error
message causes a kernel segmentation fault. The second
example in Section 3.1 demonstrates the most common use-
then-check error idiom: a dereference of a pointer in an ini-
tializer followed by a subsequent null check. This example
code was cut-and-paste into twenty locations.

While the redundant-checks checker found far fewer er-
rors, it did provide evidence for our hypothesis that redun-
dancy and contradiction is correlated with general confusion.



Checker Bug False

check-then-use 79 26
use-then-check 102 4
redundant-checks 24 10

Table 3: Results of running the internal null checker on
Linux 2.4.7.

Two such redundant cases follow the example below where,
after an allocation, the wrong pointer value is checked for
success.

/* 2.4.7/drivers/video/tdfxfb.c */
fb_info.regbase_virt = ioremap_nocache(...);
if(!fb_info.regbase_virt)

return -ENXIO;
fb_info.bufbase_virt = ioremap_nocache(...);
/* [META: meant fb_info.bufbase_virt!] */
if(!fb_info.regbase_virt) {

iounmap(fb_info.regbase_virt);

Contradiction also flagged 10 suspicious locations where
a contradictory pointer check of tmp buf pointed out an er-
ror:

/* 2.4.7/drivers/char/cyclades.c */
if (!tmp_buf) {

page = get_free_page(GFP_KERNEL);
/* [META: missing read barrier] */
if (tmp_buf)

free_page(page);

Here, a missing cache “read barrier” will potentially allow
an access to a stale pointer value held in tmp buf; the other
similar locations had spurious synchronization code.

6.2 Discussion

The main results of this section are: (1) the ideas that re-
dundant and contradictory observations can be used to find
errors and (2) demonstrating that even contradiction check-
ing for simple beliefs can find many errors in real code.

The checkers in this section can be generalized to find
other redundancies and contradictions. There are many op-
portunities for such checks since essentially every action in
source code implies a set of beliefs. Example checks include
warning when: (1) a critical section does not access some
shared state; (2) a structure field is never read or its pre-
cision is under-utilized; (3) a write mutation is never read;
(4) functions that cannot fail are checked; (5) general expres-
sions in conditionals are impossible or redundant; (6) paths
violate assertion conditions. One contribution of our work is
the realization that traditional compiler optimization passes,
such as dead code elimination and constant propagation, can
become error checkers with only minor re-tooling.

7 A Security Checker

This section describes a checker that finds security errors. It
uses internal consistency to check slot instances for the rule
template “do not dereference user pointer <p>,” and latent
specifications to automatically suppress false positives from
kernel “backdoors.” Without these techniques, we could
only check a fraction of kernel code because we could not de-
termine which pointers were dangerous. With it, we readily
found 35 security holes in Linux and OpenBSD.

7.1 The problem

Operating systems cannot safely dereference user pointers.
Instead they must access the pointed-to data using special
“paranoid” routines (e.g. copyin and copyout on BSD de-
rived systems). A single unsafe dereference can crash the
system or, worse, give a malicious party control of it. With
a list of pointers passed from user-level, static analysis can
readily find such errors. Unfortunately, from experience, the
manual classification of pointers is mystifying. The worst
offenders, device drivers, make up the bulk of operating sys-
tems, interact extensively with user code, but follow no dis-
cernible convention for denoting user pointers. Those rou-
tines that do follow some vague naming convention tend to
have a mixture of safe pointers passed in by the kernel and
unsafe pointers passed raw from the user or fabricated from
input integers. Thus, if we cannot classify these dangerous
pointers we will miss all security holes in the largest source
of such errors.

We solve this problem by using internal consistency to
derive which pointers are believed to be user pointers and
then checking that they are never treated as kernel pointers
(dereferenced). The rules for this checker are as follows:

1. Any pointer that is dereferenced is believed to be a
safe kernel pointer.

2. Any pointer that is sent to a “paranoid” routine is
believed to be a “tainted” user pointer.

3. Any pointer that is believed to be both a user pointer
and a kernel pointer is an error.

The checker refines this process by also considering argu-
ments to functions abstractly related through function point-
ers. If two functions f and f ′ are assigned to function
pointer fp and f treats its ith parameter p as a user pointer,
then f ′ must also treat its ith parameter p′ as a user pointer.
As with our other consistency checkers, if one use is correct,
this technique can check all other related uses.

7.2 Implementation

Below, we discuss the checker implementation, false posi-
tive suppression, and the manual effort needed to retarget
the checker to a new system. We use a security hole from
Linux 2.3.99 (shown in Figure 3) as a running example to
clarify our description of the implementation. The checker
finds this hole as follows. First, the call to to the paranoid
routine copy from user (line 6) implies the belief that buff
is tainted. Second, buff is passed to parse qos (line 10),
which then passes it to strncpy (line 14), which will in turn
dereference it, implying buff is a safe kernel pointer. Since
these beliefs conflict, the checker emits an error.

The checker works in two passes: a global derivation
pass, which computes summaries and checks function-pointer
assignment, and a local checking pass, which checks func-
tion calls and pointer dereferences using the summaries com-
puted by the first pass.

The global pass first computes three summaries: (1) a
transitive closure of all functions that taint their parame-
ters, (2) a transitive closure of all functions that dereference
their parameters, and (3) every function pointer assignment
(including assignments from static structure initialization).
The results of this pass are passed to the next step through
three text files.

The two transitive closure operations use essentially the
same technique. For the tainted list, we would like to know



/* net/atm/mpoa_proc.c */
1: ssize_t proc_mpc_write(struct file *file,
2: const char *buff) {
3: page = (char *)__get_free_page(GFP_KERNEL);
4: if (page == NULL) return -ENOMEM;
5: /* [Copy user data from buff into page] */
6: retval = copy_from_user(page, buff, ...);
7: if (retval != 0)
8: ...
9: /* [Should pass page instead of buff!] */
10: retval = parse_qos(buff, incoming);
11: }
12: int parse_qos(const char *buff, int len) {
13: /* [Unchecked use of buff] */
14: strncpy(cmd, buff, 3);

Figure 3: 2.3.99 Security error: the driver carefully copies
the user memory to a safe location (in page) but then im-
mediately passes the unsafe user pointer buff to parse qos,
which reads from it using strncpy. A striking feature is
that this error is amidst a fair amount of safety-conscious
boilerplate, down to the programmer using a const qualifier
on buff to ensure that buff is not accidentally mutated.

all functions whose parameters are eventually (through some
execution path) passed to a paranoid routine. This can hap-
pen directly, as in line 6 of the above example or indirectly,
as in line 2 of the following made-up function foo:

1: void foo(struct file *f, char *buff) {
2: ssize_t sz = proc_mpc_write (f, buff);

The dereferencing list is computed in exactly the same man-
ner. The function parse qos dereferences its parameter
buff directly through the call to strncpy at line 14. Any
functions that call parse qos passing one of their own pa-
rameters as the first argument to parse qos are also marked.
The result of these two passes are emitted as two lists (a
tainting list and a dereference list) of the form (fn, i), which
indicates function fn taints or dereferences its ith parameter.

After the summaries are completed, we use the three
summaries to check for conflicts in function pointer assign-
ment: it is an error for a function pointer to be assigned
one function that dereferences its ith parameter and an-
other that taints its ith parameter. I.e., we flag an error if
function pointer fp is assigned f and f ′ and (f, i) is on the
tainted list and (f ′, i) is on the dereference list.

We then run the local checking pass, which uses these
three lists similarly to warn when a tainted pointer is deref-
erenced or passed to a routine that would dereference it.
It goes over each function twice. The first pass examines
all call sites, marking any pointer passed as a parameter to
a tainting routine as tainted. In our example, the pointer
buff is marked as tainted because it is passed to the tainting
routine copy from user at line 6. The second pass checks
all uses of tainted pointers and flags all raw dereferences of
them or any call to a routine that could do a dereference. In
the example, the call to parse qos at line 10 is flagged be-
cause the tainted pointer buff is passed to the dereferencing
routine parse qos.

Note that this is a good example of how our inference
approach can meld gracefully with programmer annotations.
Since we use text files for summaries, annotations for which
pointers are user pointers can easily be added to the file man-
ually, or extracted from source annotations and inserted.

False positives. The largest source of false positives
are kernel backdoors that check if they were called from
user code or kernel code. In the latter case, they can safely

OS Errors False Applied

OpenBSD 2.8 18 3 1645
Linux 2.4.1 12 (3) 16 (1) 4905
Linux 2.3.99 5 n/a n/a

Table 4: The user-pointer checker found 35 bugs in total. It
had 19 false positives and was applied roughly 6500 times
in Linux 2.4.1 and OpenBSD 2.8. The numbers for Linux
2.3.99 are not available since we used an earlier version of
the system. The numbers in parentheses for the 2.4.1 ker-
nel were the errors and false positives from cross-checking
functions assigned to the same function pointer.

dereference pointers, but such uses would be flagged by a
naive checker. Fortunately, this is such a dangerous activity
that kernel programmers used stylized naming conventions
for the Boolean flags used to determine what context they
are operating in. Both OpenBSD and Linux use variables
named from user or to user. Our extension treats these
variables as implicit specifications and tells xgcc’s dataflow
framework that they always evaluate to true so that the
backdoor path is pruned away.

While not obvious, our other main technique for sup-
pressing false positives is the list of dereferencing functions.
The most natural checker would simply warn when a tainted
value was passed as a function parameter, rather than check-
ing if the call actually dereferenced the value. Unfortunately,
the prevalence of type coercion would cause too many false
positives. Device code commonly uses a value as a pointer
value on one path, but as an integer on the other. In a naive
checker, the first path would cause the value to be tainted,
and then the second path would cause an error message if it
called a function with the tainted value, even if that function
used the value as an integer.

Manual labor. The checker is mostly system indepen-
dent. There are three system-specific parts:

1. A text file listing the paranoid routines. There are four
of these routines for BSD, 28 for Linux.

2. A text file listing tainting or dereferencing routines
that should be ignored. These suppress false posi-
tives caused by the limitations of the system we use
for static analysis and are independent of our deriving
approach. There are 15 of these functions for BSD, 19
for Linux.

3. A list of variables names (these can be substrings) that
indicate kernel backdoors. Some form of annotation
would be needed by any system; we expect that lever-
aging the source as we do reduces this effort to be
roughly as small as it can reasonably be.

Applying the checker on a new system typically follows three
stages. First, the tainting routines are specified and the
checker is run over the system. Second, the results are
ranked and inspected. If a given function causes too many
false positives, it is added to the list of ignored routines and
all related errors are skipped. Similarly, false positives from
kernel backdoors cause us to add the flag to the extension’s
list and skip related errors. Finally, we rerun the checker;
the system will re-mark errors that were already inspected.

7.3 The results

Table 4 lists how many bugs we found, the number of false
positives, and how often the check was applied. All bugs



have led to subsequent kernel patches. The false positive
ratio is fairly low. However, given the seriousness of these
bugs, a much higher rate would still have been acceptable.

In Linux, device drivers account for all but one error.
The bulk of these errors were concentrated in “ioctl” calls.
Bugs also tend to cluster, where assumptions that led to
one mistake avalanche into several. The worst example of
this was code in the “appletalk” ioctl routine which had four
errors all with the same pattern of calling copy to user to
safely copy out a user pointer rt while simultaneously calling
another function, that would promptly dereference it. A
representative example is:
/* drivers/net/appletalk/ipddp.c:ipddp_ioctl */
case SIOCFINDIPDDPRT:

if(copy_to_user(rt, ipddp_find_route(rt),
sizeof(struct ipddp_route)))

return -EFAULT;

Here, our analysis would taint rt because it is passed to a
copy to user call and then warn about the call ipddp find route(rt),
which dereferences it.

In OpenBSD the bulk of the errors were in the “System
4” compatibility layer. Most of these were due to simply
reversing the arguments to the paranoid functions copyin
and copyout. This error was faithfully replicated into sev-
eral different places. Interestingly, in each of these places,
code immediately above the errors handles the parameter
passing correctly! Similar argument reversal bugs had been
caught in Linux 2.3.99.

Cross-checking functions assigned to the same function
pointer found three errors in 2.4.1 and one false positive.
(We did not do this analysis on the other systems). Two
errors came from improper implementations of routines as-
signed to the “write” method field in the file operations
structure; 55 of the routines assigned to this pointer treated
their second parameter as tainted, but two buggy routines,
fop write and mdc800 device write dereferenced this pointer
directly. For example:
/* 2.4.1:fop_write:sbc60xxwdt.c: buf is tainted. */
size_t
fop_write(struct file *file, const char *buf...)

...
/* now scan */
for(ofs = 0; ofs != count; ofs++)

if(buf[ofs] == ’V’)
wdt_expect_close = 1;

Amusingly, as in Section 7.2, the author uses the const qual-
ifier for type safety while busily compromising system se-
curity. Although we expected to find more bugs by using
function pointer equivalence, the small bug counts are reas-
suring: they imply most call chains treat a pointer correctly
in at least one place, allowing us to check the entire call
chain.

8 Inferring Failure

This section finds errors where routines are not checked or
are incorrectly checked for failure. It uses statistical analy-
sis to derive and check slot instances for the rule template
“function <f> must be checked for failure.” As we demon-
strate, basing this analysis on client beliefs allows us to find
restrictions indirectly represented in source code. As a re-
sult, we can find completely unanticipated errors that tra-
ditional analysis would miss.

8.1 The problem

Kernel code must check for failure at every resource exhaus-
tion or access control point. The enormous number of such
cases makes missing checks common. For example, our pre-
vious static analysis found 79 cases where Linux kernel code
did not check the result of four memory allocation proce-
dures; a similar analysis of one allocator in OpenBSD found
49 cases [9]. Any of these could lead to segmentation faults
when allocation failed under high load.

Non-memory allocation functions can also fail. Such fail-
ures are frequently silent, making them worse in some ways
than kernel crashes. As an example, a colleague recently
wasted several days tracking a bug hidden by a single miss-
ing check in a graphics device driver that should have sig-
naled that the driver could not allocate a range of device
memory [16]. The effect (failure to display graphics) is what
one would assume happens when a new card was miscon-
figured not, as in this case, a bug in a dauntingly opaque
driver.

A traditional approach to finding all routines that could
fail would be to compute the transitive closure of all routines
that could return null pointers or error codes. In practice,
this has two limitations. First, while easy when such val-
ues are returned directly, it becomes undecidably difficult
when variables are returned. For example, in the C code
“return foo→bar;” the field bar in structure foo may or
may not have a null value because it was never explicitly set
or cleared. From the program text we cannot tell. Second,
this type of analysis can give a uselessly high number of false
positives, since many routines cannot fail if pre-conditions
are met (e.g., searching a list) or their failure may be outside
of a program’s fault model.

We use a more robust approach by deriving what rou-
tines programmers believe can plausibly fail. Missing checks
on almost-always checked routines are good candidates for
errors. Similarly, checks on almost-never checked routines
frequently signal misunderstood interfaces.

8.2 The checkers

We wrote two checkers based on this model. The first en-
sures that routines returning null pointers are checked before
use. The second ensures that routines that return integer
error codes are checked. Both work as follows:

1. They assume that all functions can fail.

2. If the result of a function f is ignored or used without
checks, the checker emits an error message.

3. If the result of a function f is checked before use the
checker emits a “checked” message. If f has a high
ratio of check to error messages, this implies that the
client believes such checks are necessary.

After going over the entire system, the checker counts for
each function f both the total number of errors messages
(f.err) and the total number of checked uses (f.chk). It uses
these counts to rank error messages via z(f.err+f.chk, f.chk):
errors for functions that have a high value for z are put
above those with lower values. Thus, the highest ranked er-
rors will be those for almost-always checked functions, and
hence have the most probability of being real errors. Table 5
lists the number of null errors our checker found.

Note that we use statistical ranking because the beliefs
we can infer above are actually MAY beliefs. We cannot tell
if a unchecked call to f means (1) the programmer believes



Version Bug False

2.4.1 52 + 102 16
OpenBSD 27 + 14 21
Total 195 37

Table 5: Errors and false positives of running the derived
null checker on Linux 2.4.1 and OpenBSD 2.8. The bugs
are in a+b format where a are errors from derived functions
previously known to return NULL (e.g., kmalloc), and b are
errors from functions we did not know about. The OpenBSD
results are for an older version of our checking system; the
newer version gives 5-10 times lower false positive rates for
this checker. Note that we already checked earlier versions
of these OSes [9] and submitted bug reports. As a result,
developers had fixed many of the easy cases.

f does not need to be checked or (2) they believe f does
not need to be checked at this particular callsite. In this
case, examining many callsites allows us to (probablistically)
generalize beliefs.

8.3 The worst error

We have hand-examined in excess of a thousand errors of
various types. The following error in Linux version “2.4.0-
test9” was one of the worst we have seen. It would be missed
by traditional null pointer analysis but, interestingly, the
checker automatically found it, even though it was not a
type of error we had thought of. The error started with the
following confusing false positive, where the checker emitted
a message stating that the unchecked pointer shp was being
used:

/* ipc/shm.c:map_zero_setup */
if (IS_ERR(shp = seg_alloc(...)))

return PTR_ERR(shp);

The false positive is caused by a very sleazy error return
convention. The routine seg alloc returns a valid pointer
on success, but on failure, rather than return a null pointer,
casts one of several integer error codes to a pointer and re-
turns that (e.g., essentially doing “return (void *)-ENOMEM;”).
Callers must then check the returned pointer for errors using
the special call, IS ERR (as this caller does), which reverses
the cast and compares the value to a negative integer. The
key point is that on failure seg alloc returns a non-null,
bogus pointer. So, if this is true, why is our null checker
looking for it at all? Somewhere at least one of seg alloc’s
callers must have (understandably) forgotten about this id-
iom and checked the function’s return against null! Indeed,
searching the deriver log turned up the following routine:

/* 2.4.0-test9:ipc/shm.c:newseg
NOTE: checking ’seg_alloc’ */

if (!(shp = seg_alloc(...)))
return -ENOMEM;

id = shm_addid(shp);

So what happens when seg alloc fails? In this case, the
null pointer check on shp will fail, and newseg will call the
routine shm addid with the mangled pointer shp as its ar-
gument. This pointer is then passed to another routine,
ipc addid, as the parameter “new”, where two catastrophic
things happen:

int ipc_addid(..., struct kern_ipc_perm* new)
new->cuid = new->uid = current->euid;
new->gid = new->cgid = current->egid;
ids->entries[id].p = new;

First, the routine writes to the bogus memory location pointed
to by new. Since the error bits will likely form a valid physi-
cal address, the writes to new will corrupt physical memory.
Second, the entry is placed on an array of structures (later
to be used) almost guaranteeing that this corruption will
re-occur on a sporadic but continuous basis. Traditional
null-pointer error checking would be completely oblivious to
cases such as this, while it can be detected fairly easily by
just examining inconsistencies in how callers handle function
returns.

IS ERR consistency checking. Not uncommonly, one
type of error leads us to another. For the error above, an
obvious secondary check is to verify that all routines that use
a similar error-pointer “trick” are correctly handled by all
callers. We use a two-pass consistency checker that enforced
the restriction: If a function f ’s return value is ever checked
using IS ERR, then all callers of f must check its result this
way. There were 78 such functions in the 2.4.1 kernel. While
we did not find any bugs like the seg alloc case above, we
did find the opposite problem, where the code did an IS ERR
check on a function that actually returned NULL. This check
will always fail, causing the client to think there was no
error and that they can dereference the null pointer. Out
of 295 checked call sites, there were five such errors and six
false positives (caused by unusual coding styles). All caught
errors were fixed.

8.4 Discussion

A nice feature of this analysis style is that it finds additional,
unforeseen types of errors. The IS ERR checking idiom is
one such example — we never imagined such a bizarre error
type, did not know to look for it, and when shown, did not
initially understand what was going on. It seems unlikely
to have been picked up with traditional, generic null-pointer
analysis. We only find it because of the way we derive failing
routines.

Misunderstood interface uses are another unanticipated
error type that the approach found. For the checkers in this
section, this manifests as routines that cannot fail but are
spuriously checked by callers. We have found examples of
this in all systems we have looked at. In one commercial
system, there was a routine, GetFrame, that showed up as a
mixed function in our analysis. When examined, it turned
out to never return and so could not fail. Despite this there
were four places that checked for failure. These checks im-
plicitly showed the callers did not realize the routine would
not return and thus assumed the code after these calls would
be run. What had happened was that: (1) an initial version
of the routine could fail, (2) code had been written that
way, (3) the interface had changed, but the code had not
been updated, and so (4) subsequent code used the initial
failure checks as the correct way to treat it. A similar case
shows up in OpenBSD with the getblk function, which can-
not fail but is treated that way by clients. These checks are
a nice way of flagging code written by programmers that
(most likely) have a poor grasp of internal interfaces and
whose code should be audited. The basic approach of find-
ing deviant interfaces could be extended to richer examples.

In summary, this type of analysis serves as a good sup-
plement to a more traditional compiler analysis approach.
In a sense, it checks at the level of an abstract interface
by viewing how clients treat a routine rather than by only
examining its implementation. A possible future direction
would be to use this approach to catch when an implementa-
tion violates its specification by checking for implementation



actions that contradict client assumptions (e.g., a return of
null when clients do not check).

9 Deriving Temporal Rules

Another type of error our approach can find are violations of
temporal rules, where sequences of actions need to be consid-
ered. Some examples of temporal rules are “no <a> after
<b>” (freed memory cannot be used), “<b> must follow
<a>” (unlock must follow lock), and contextual rules such
as “in context <x>, do <b> after <a>” (on error paths, re-
verse side-effects). While there are a small number of such
templates, there are many different specific operations that
can fit in them.

In this section, we look at two temporal-rule templates.
The first checks the “no <a> after <b>” rule above by flag-
ging cases where memory is used after being passed to a
potential deallocation function. The second analysis checks
the rule “<b> must follow <a>” by pre-processing the code
to build up traces of related function calls on local program
paths, which are then examined to find sequences of opera-
tions that fit this rule. Good fits are kept, bad fits discarded.

9.1 “No <a> after <b>”: deallocation

This rule checks that freed memory is not used. However,
finding all rule violations is difficult because many systems
have a large set of deallocation functions, ranging from general-
purpose routines, to wrappers around these routines, to a
variety of ad hoc routines that manage their own internal
free lists. This section describes a checker that can infer all
such routine types.

The checker exploits a single, simple implication: if a
function’s argument is not used after the call, we can infer
that the programmer may believe that this is a deallocation
function. Since this is a MAY belief, we use the following
three-step statistical process to find likely violations:

1. Blindly assume that every function frees all of its ar-
guments.

2. For every function-argument pair, count: (1) n, the
number of times we check the pair, and (2) err, the
number of times the pair failed the check.

3. Segregate errors by pair, and use the z statistic to
rank each pair by how often the pair was checked (n)
versus how often it failed (err) (i.e., z(n, n − err)).
This pushes the errors from the most likely pairs to
the top of the list.

Unsurprisingly, checking all argument pairs is too computa-
tionally expensive in practice. We reduce this overhead by
using latent specification to automatically filter the popula-
tion of candidate functions to contain only those that have
names suggestive of deallocation (containing the substring
“free,” “dealloc,” etc.).

We applied this process to the 2.4.1 Linux kernel and
inspected the top 14 ranked functions. There were 23 free
errors, 14 of which would have been missed by our previ-
ous work. There were 11 false positives in total. Figure 4
shows one interesting example of a double-free that would
not be caught by the old system. Here, if the second call
to copy to user fails, the code carefully frees both c and
buff and then (possibly because of a missing return) frees
both variables again. This bug is particularly bad because
it opens a security hole for users: they can trigger this path

/* drivers/block/cciss.c:cciss_ioctl */
if (copy_to_user(...)) {

cmd_free(NULL, c);
if (buff != NULL) kfree(buff);
return( -EFAULT);

}
if (iocommand.Direction == XFER_READ)

if (copy_to_user(...)) {
cmd_free(NULL, c);
kfree(buff);

}
cmd_free(NULL, c);
if (buff != NULL) kfree(buff);

Figure 4: Double-free security hole: the first copy to user
correctly deallocates its storage and returns with an error.
The second appears to have omitted a return statement,
thus allowing the code to fall through and hit a duplicate
free of both c and buff.

deterministically by calling the code with invalid pointers
(which will cause copy to user to fail).

A second disastrous bug that frees memory but then al-
lows it to escape occurs in this routine from the “proc” file
system code:

/* fs/proc/generic.c:proc_symlink */
ent->data = kmalloc(...);
if (!ent->data) {

kfree(ent);
goto out;

}
out:
return ent;

If the allocation fails, then the routine will free the data
pointed to by ent, but, instead of returning null, return
ent. Callers checking for failure will get a non-null pointer,
assume the routine succeeded, and then use this pointer. Of
the remaining errors, the most exuberant was a single use-
after-free error that an implementer carefully cut and paste
to seven different locations.

9.2 “<b> must follow <a>”

In this subsection, we find errors with the temporal tem-
plate “<b> must follow <a>.” A function, a, followed by
b implies the MAY belief that a must always be followed b.
This belief is not a MUST belief because such pairings can
also be coincidental. Intuitively, we can determine if this
pairing is real or spurious by comparing the number of code
paths with a call to a to the number of paths with the pair
of calls a, b. Non-spurious couplings will have near-equal
counts (errors make them slightly different).

Conceptually, the checker for this rule is almost identical
to the deallocation checker in the previous subsection. We
blindly assume that all possible function pairs must obey the
rule. Then, for each a-b pair we count (1) n, the number of
times we check the pair, and (2) err, the number of times
the pair failed the check. We can then rank the pairs using
the z statistic (i.e., z(n, n − err)).

In practice, we need to make two modifications. First, to
control the overwhelming number of pairwise combinations,
we first pre-process all possible paths to get plausible a-
b pairs. Second, to reduce the inspected number of false
positives, we use the z statistic to rank error messages both
by pair plausibility as well as by individual error message.
We discuss each modification below.



Selecting plausible a-b pairs. We reduce the number
of possible pairwise combinations by automatically extract-
ing “traces” from the source code, culling out plausible a-b
pairs, and then feeding these to the checker. We only con-
sider three idiomatic types of function traces:

/* type 1 */ /* type 2 */ /* type 3 */
p = foo(...); foo(p, ...); foo();
bar(p); bar(p, ...); bar();
baz(p); baz(p, ...); baz();

Type 1 traces begin when the result of a function is as-
signed to a variable that is then passed as the first argu-
ment to more than one subsequent call. This can happen
when a handle is returned, used in some number of calls and
then (possibly) released. The trace for this example would
be “foo:bar:baz.” Type 2 traces begin with the variable
passed without an initial assignment. In Figure 5, the call to
“spin lock irqsave” followed “spin unlock irqrestore”
would lead to a type 2 trace. The third is a series of no-
argument function calls. In Figure 5, the paired calls “lock kernel
and “unlock kernel” would generate a type 3 trace. Using
these idioms to filter the pairs makes the analysis manage-
able yet effective because they cover a wide set of uses.

We generate (a, b) pairs in three steps. First, we run the
trace extractor over the kernel. The result is a file con-
taining each unique trace; as an order-of-magnitude, the
2.4.1 kernel generates roughly 130K such traces. Second, we
post-process the traces using the z statistic to select plau-
sible a-b pairs, using latent specifications to increase the
weight of functions that have names suggestive of paired
functions (the substrings “lock,” “unlock,” “acquire,” “re-
lease,” “brelse,” “spl,” etc.). Finally, we feed the selected
functions to an implementation of the checker sketched above.

Hierarchical ranking. The classic error for this rule is
many paths with a correctly followed by b, and only one or
two paths without it. The classic false positive is a single use
of a and no use of b. Such false positives typically happen
when the local analysis we use to check a-b pairs encounters
a wrapper routines that never pair a and b. For example, a
locking wrapper function will acquire a lock, but not release
it. We want to rank error messages that fit the first idiom
over errors that fit the second. We do this by computing
an additional z statistic to rank the errors within a single
checked function based on (1) the number of paths within
that function that contain a given a-b pair versus (2) the
number of paths that only contain a. Using this additional
ranking for a given a-b pair pushes the most likely errors
to the top. Importantly, the functions at the top of the
list not only are most likely to contain errors, but are also
likely to contain the best examples of where the programmer
conscientiously attempted to pair them; these examples can
help us determine if a given a-b pair is valid.

Thus, errors are binned according to their a-b pair, with
the bins sorted by the pair’s plausibility. Within each bin,
errors are then sorted by their individual error plausibility.
We inspect errors by starting at the top of this list. For
each a-b pair, we test the validity of the first error. If it
is valid, we continue inspecting errors in that bin until the
false positive rate is “too high.” We then skip to the next
a-b pair. We continue this process until the number of bogus
a-b pairs is also deemed “too high,” at which point we stop.

Results. When we applied this checker to the Linux
2.4.1 kernel, we found 23 errors, 14 of which involved func-
tions we had not checked in prior work, and 11 false posi-
tives.

The simplest error (and one of the most insidious errors
we have seen) was in the “trident” sound driver where the

/* drivers/sound/esssolo1.c:solo1_midi_release */
static int solo1_midi_release(...) {

...
lock_kernel();
if (file->f_mode & FMODE_WRITE) {

add_wait_queue(&s->midi.owait, &wait);
for (;;) {

__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->midi.ocnt;
spin_unlock_irqrestore(&s->lock, flags);
...
if (file->f_flags & O_NONBLOCK) {

remove_wait_queue(...);
set_current_state(TASK_RUNNING);
/* did not release lock! */
return -EBUSY;

}
...
unlock_kernel();
return 0;

Figure 5: Code that acquires the global kernel lock, but does
not release it on its error path, though it does properly roll
back a number of other operations. This identical error was
cut and paste into a total of five device drivers.

global kernel lock was acquired by the call to “lock kernel,”
but not released on an error path contained within a subse-
quent macro (“VALIDATE STATE”):

drivers/sound/trident.c:trident_release:
lock_kernel();
card = state->card;
dmabuf = &state->dmabuf;
VALIDATE_STATE(state);

All errors were similar cases where functions were not re-
versed on error paths. Unusually, many of these errors were
in core file system code rather than in drivers. One exam-
ple happened in the ufs file system code that acquired a
lock on the file system super block (sb) using the function
lock super, but did not release it on an error path. (This
error survived until we sent a bug report two days before
this paper was originally submitted.)

Figure 5 gives one of the more complex errors, which
acquires the master kernel lock using lock kernel, but while
it rolls back a number of other operations on its error path,
forgets to release this lock. This error was faithfully copied
into four other device drivers.

9.3 Future Work

We are currently using machine learning techniques to au-
tomatically generate temporal rules and rule templates di-
rectly from source code. Instead of performing statistical
analysis on traces, we form a general model of actions and
control flow using probabilistic automata (hidden Markov
models and stochastic context-free grammars) with proba-
bilities initialized from static branch prediction. Initial re-
sults lead us to believe that this will be a profitable ap-
proach.

10 Conclusion

This paper shows how to automatically find bugs in a system
without having a priori knowledge of the correctness rules
the system must obey. We use simple static analyses to
automatically extract programmer beliefs from the source



code, and we flag belief contradictions as errors. The key
benefit of this approach is that it eliminates the need to
understand the system in any deep way — we know that a
contradicted belief must be an error, without having to know
what the actual belief should be.

This approach is a significant improvement over our prior
work that manually specified rules to check. We now specify
a general template for a rule, and allow the automatic anal-
ysis to specialize the template to the checked system. This
technique drastically decreases the manual labor required to
re-target our analyses to a new system, and it enables us to
check rules that we had formerly found impractical.

We present two general techniques for implementing these
deriving analyses, and we discuss a framework and terminol-
ogy for describing them. Our first technique, internal consis-
tency, finds errors where programmers have violated beliefs
that we know they must hold. Our second technique, sta-
tistical analysis, extracts beliefs from a much noisier sample
where the extracted beliefs can be either valid or coinciden-
tal.

Finally, we have shown that this approach works well on
real systems code. We presented six template checkers that
found hundreds of errors in recent snapshots of the Linux
and OpenBSD operating systems. Many of these errors re-
sulted in kernel patches.
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