
Exterminate All Operating System AbstractionsDawson R. Engler M. Frans Kaashoekfengler, kaashoekg@lcs.mit.eduMIT Laboratory for Computer Science545 Technology SquareCambridge, MA 02139AbstractThe de�ning tragedy of the operating systemscommunity has been the de�nition of an operating sys-tem as software that both multiplexes and abstractsphysical resources. The view that the OS should ab-stract the hardware is based on the assumption that itis possible both to de�ne abstractions that are appro-priate for all areas and to implement them to performe�ciently in all situations. We believe that the fallacyof this quixotic goal is self-evident, and that the op-erating system problems of the last two decades (poorperformance, poor reliability, poor adaptability, andinexibility) can be traced back to it. The solution wepropose is simple: complete elimination of operatingsystem abstractions by lowering the operating systeminterface to the hardware level.1 IntroductionThroughout the history of computer science therehas been a fairly constant opinion that \current" oper-ating systems are inadequate [4, 7, 9, 11, 15, 18]. Theliterature is rife with speci�c examples that describethe cost of the inappropriate, ine�cient abstractionspeddled by operating systems [2, 4, 12, 13, 18, 23, 24].This situation has persisted for the last three decades,and has survived numerous assaults (object-orientedoperating systems and micro-kernels are two of themore popular movements). As a general rule, a con-cept that cannot be realized after such a long periodof time should be reexamined.The standard de�nition of an operating system issoftware that securely multiplexes and abstracts phys-ical resources. We believe that this de�nition, speci�-cally its view of the OS as an abstractor of hardware,is crippling and wrong. The basic intuition behindour arguments is that no OS abstraction can �t allapplications. This is not a characteristic that is just

a release away: it is fundamentally impossible to ab-stract resources in a way that is useful to all appli-cations and to implement these abstractions in a waythat is e�cient across disparate needs. For some rea-son, OS implementors have decided that this simplelaw does not apply to them and that, indeed, theyare compelled to indulge in the wholesale abstractionof hardware resources. In this position paper we con-centrate on the following characteristics of operatingsystems that have been built in this manner: they arecomplex and large, which decreases system reliabilityand aggressively discourages change; they are overlygeneral, which makes their use expensive and makestheir implementation consume signi�cant fractions ofmachine resources; and they enforce a high-level inter-face, which precludes the e�cient implementation ofnew abstractions outside of the OS.We believe, therefore, that the attempt to pro-vide OS abstractions is the root of all operating sys-tem problems. We contend that these problems canbe solved directly by the systematic elimination of OSabstractions, lowering the interface enforced by the OSto a level close to the raw hardware. It is importantto note that we favor abstractions, but they shouldbe implemented outside the operating system so thatapplications can select among a myriad of implemen-tations or, if necessary, \roll their own".The structure of this paper is as follows: Sec-tion 2 expounds our ideology; Section 3 outlines spe-ci�c features of our target operating system structure;and Section 4 explores some of the advantages of thisnew OS structure and some commonmisconceptions insuch a structure. We discuss related work in Section 5and conclude in Section 6.This work was supported in part by the Advanced ResearchProjects Agency under contracts N00014-94-1-0985 and by aNSF National Young Investigator Award.



2 The JeremiadFor this paper, we de�ne the operating system asany piece of software that the application cannot eitherchange or avoid. User-level device drivers, privilegedservers, and kernels are all included by this de�nition.The goal of the OS designer should be to push the in-terface this de�nes to the level of the raw hardware.We de�ne application-level software as software thatcan be changed and/or avoided by any application;this is in contrast to software at user-level (or in user-space), which may require very high privileges to adaptor replace (e.g., replacing a device driver often requires\root" privileges). Much of the �xation micro-kernelshave with putting pieces of the kernel into user-spacecomes from a confusion between user and applicationlevel.The thesis of this position paper is that the op-erating system should not abstract physical resources.What the OS should do is what no other piece of soft-ware can do: safely multiplex physical resources. Themotivation for this decision can be placed in the con-text of the \end-to-end" argument [21]: OS abstrac-tions are reduntant or of little value when comparedto the cost of providing them. We explore these issuesmore thoroughly below:Poor reliability Abstracting resources (e.g., pro-viding a full-featured virtual memory system withcopy-on-write, memory-mapped I/O and other treats)requires a large amount of complex, multi-threadedcode. These characteristics, along with dynamic stor-age allocation and management and the paging of ker-nel data structures and code, greatly decrease the re-liability the system.Poor adaptability The OS is large and compli-cated. Changing large, complicated pieces of softwareis hard. This creates a disincentive to incorporate newfeatures or tune existing ones. Furthermore, since allapplications \depend on" the OS, change is not local-ized. This provides an additional discouragement toadapting the OS implementation. Finally, only thekernel architect can incorporate new changes, whichfurther restricts adaptability. The e�ects of this canbe seen directly: how many of the good ideas in thelast 10 SOSP conferences have been incorporated (orallowed at application-level) by any operating systemother than the one they were developed on? For exam-ple, what operating systems support multiple protec-tion domains within a single-address space, e�cientIPC, or e�cient and exible virtual memory primi-tives?

Poor performance OS abstractions are oftenoverly general, as they provide any feature needed byany reasonable application and all applications mustuse a given OS abstraction. Applications that do notneed this feature pay unnecessary overhead [1, 18]. Inthe case of garbage collectors or database systems thiscost can amount to an order of magnitude. Addition-ally, simply using a given feature is costly, since timemust be spent selecting from a myriad of options [18].Furthermore, the mere existence of OS abstractionsconsumes signi�cant amounts of main memory, cachespace, TLB space, and cycles, which could be used byapplications to perform useful work.Finally, any OS implementation makes trade-o�s:whether to use a hierarchical or inverted page-table,whether to optimize for frequent reads or randomwrites, whether to have copy-on-write or a large pagesize, etc. Unfortunately, any trade-o� penalizes appli-cations that were not anticipated or neglected by theOS designer. However, this situation is easily avoid-able: if the OS does not abstract resources, it does nothave to such make trade-o�s.Poor exibility The poor reliability, poor adapt-ability, and poor performance of operating systemswould be acceptable if applications could just ignorethe operating system and implement their own ab-stractions. Unfortunately, the high-level nature of cur-rent operating system interfaces makes this approachinfeasible. The best that applications can do is em-ulate the desired feature on top of existing OS ab-stractions; unfortunately, such emulation is typicallyclumsy, complicated, and prohibitively expensive. Forexample, once the application has no access to the rawdisk interface, database records must be emulated ontop of �les. The list of such examples is painfully longand continues to grow [2, 4, 13, 18, 23, 24].In short, operating systems are complex, frag-ile, inexible, and slow, because they have dabbledin the practice of providing a general purpose vir-tual machine. The operating system is basically hard-ware masquerading as software: it cannot be changed,all applications must use it, and the information ithides cannot be recovered. Operating system design-ers should learn what hardware designers learned adecade ago during the transition from CISC to RISC:hardware should provide primitives, not high-level ab-stractions.



3 The Solution: Eliminate OS Ab-stractionsWe contend that the solution to all of these di�-culties is straightforward: eliminate operating systemabstractions. The OS should only export physical re-sources in a secure manner; it should not be in thebusiness of presenting a pretty, machine-independentinterface to applications.In this section we give a general sketch of an OSstructure that embodies a \abstraction-free", low-levelinterface. We call such a structure an exokernel. Thesole function of an exokernel is to allocate, deallocate,and multiplex physical resources in a secure way. Theresources exported by this kernel are those provided bythe underlying hardware: physical memory (dividedinto pages), the CPU (divided into time-slices), diskmemory (divided into blocks), DMA channels, I/O de-vices, translation look-aside bu�er, addressing contextidenti�ers, and interrupt/trap events.Security is enforced by associating every resourceusage or binding point with a guard that checks accessprivileges. For example, as one of the steps in pre-serving memory integrity, the kernel guards the TLBby checking any virtual-to-physical mappings given byapplications before they are inserted into the TLB.The kernel can optimize global performance by itscontrol over the allocation and revocation of physi-cal resources. With this control it can enforce pro-portional sharing, or what resources are allocated towhich domains.To make these examples concrete, we detail whataddress spaces, time-slices, and IPC might look likeunder the regime we have described. The details wepresent are highly machine-speci�c, but the generaloutline should be similar across machines; the maingoal in each is to answer the question: what is theminimum functionality that the kernel needs to pro-vide in order for this primitive to be implemented inapplication space?Address space To allow application-implementedvirtual memory, the OS must support bootstrappingof page-tables, allocation of physical memory, modi�-cation of mapping hardware (e.g., TLB), and excep-tion propagation. The simplest bootstrapping mech-anism is to provide a small number of \guaranteedmappings" that can be used to map the page-table andexception handling code. Physical memory allocationshould support requests for a given page number (en-abling such techniques as \page-coloring" for improvedcaching [5]). Privileged instructions (e.g., ush, probe,and modify instructions) can be wrapped in systems

calls, and those that write to privileged state (e.g.,TLB write instructions) are associated with accesschecks. Exception propagation is done in a direct man-ner by (perhaps) saving a few scratch registers in someagreed-upon location in application-space and thenjumping to an application-speci�ed PC-address [24].Of course, all of these operations can be sped upby downloading application code into the kernel [4, 9]or using a \software TLB" [14, 3] to cache translations.These implementation techniques aside, the full func-tionality provided by the underlying hardware shouldbe exposed (e.g., reference bits, the ability to disablecaching on a page-basis, the ability to use di�erentpagesizes, etc.).Process The only state that the operating systemneeds to de�ne a process is a set of exception programcounters that the operating system will jump to on anexception, an associated address space, and both pro-logue and epilogue code to be called when a time-sliceis initiated and expires. Placing context-switchingunder application control (through the application-de�ned prologue and epilogue code) enables techniquessuch as moving the program counter out of critical sec-tions at context-switch time [6].IPC The basic functionality required by IPC is sim-ply the transfer of a PC from one protection domainto an agreed-upon value in another, with the donationof the current time-slice, installation of the called do-main's exception context, and an indication of whichprocess initiated the call. This extremely lightweight,synchronous, cross-domain calling mechanism imple-ments the bare-minimum required by any IPC mecha-nism, allowing the application to pay for just the func-tionality that it requires. For example, a client thattrusts a server may allow the server to save and re-store the registers it needs, instead of saving the entireregister �le on every IPC. Since the machine state ofcurrent RISC machines is growing larger [19], this canbe crucial for good performance.This is far from a complete enumeration of all systemobjects (for example, we neglect disks and devices),but should give a feel for what level of functionalitythe OS is required to provide. The bare minimum ismuch removed from the policy-laden, overly general,and restrictive implementations surrounding us today.(A more complete discussion and evaluation of the ex-okernel methodology and a prototype exokernel can befound in Engler [10]; our prototype exokernel performs10-100 times faster than a mature monolithic system



in operations such as as IPC, exception forwarding,and virtual memory manipulations.)4 DiscussionWe discuss how our proposed structure solves thetraditional problems of reliability, e�ciency, and ex-tensibility; these points have at their core the simpleprinciple that the most e�cient, reliable, and extensi-ble OS abstraction is the one that is not there.Reliability Exposing hardware resources safely ande�ciently requires neither sophisticated algorithms ormany lines of code. As a result, the operating systemcan be small and readily understood: both of theseproperties aid correctness.Additionally, the application-level implementationof operating system services is likely to be much sim-pler in structure and smaller in realization than a tra-ditional, general-purpose OS. For example, it does nothave to multithread among multiple malicious enti-ties, or worry about peculiar characteristics of supervi-sor mode (e.g., the particular locking constraints thatarise within the kernel to guard against loss of inter-rupts and deadlock). Finally, since this applicationOS \trusts" the application, it can use applicationstate directly and simply; a general-purpose OS is con-stantly in the business of copying user data, guardingagainst illegal addresses, and checking for validity. Allof these concerns can be ignored in an application-levelOS since, if the application does something wrong, thedamage is to itself only.Adaptability The kernel's simplicity enables easymodi�cation. Furthermore, since most of the operat-ing system code is used simply to track ownership andaccess rights, there is not much that needs to be tuned.By allowing application-level implementations, wehave removed the dependence of the entire system onthe implementation. In other words, by localizing ex-periments within a single operating system subsystem(library or server), applications that wish to use thenew feature can link it in. Those that do not, do notneed to. Traditional operating systems occupy the un-fortunate position of having every application dependon their correct and appropriate implementation. This\depends on" relationship drastically limits the degreeto which experimentation can be carried out and theresults used.A more prosaic example of improved adaptabilityis that the implementation can now occur in applica-tion space, with access to user-development environ-ments (e.g., debuggers and pro�lers).

E�ciency Resource management has been put intoapplication space, allowing implementations to ex-ploit application-speci�c knowledge in making trade-o�s (e.g., optimizing for reads or randomwrites, sparseaddress spaces, etc.); furthermore, since implementa-tions can be highly specialized, they can eliminatethe cost of generality present in most OS abstrac-tions. From an engineering standpoint, this struc-ture allows a broad pool of non-kernel architects toimplement alternative implementations. Since the en-tire system does not depend on these implementations,application-level operating systems can be readily ex-perimented with and altered by non-privileged imple-mentors; furthermore, these operating systems will bereadily used, since they do not have to be used bythe entire system (and hence trusted in a very realsense). Finally, since all operations can occur in thesame address space, the current contortions to mini-mize the cross-domain costs of TLB pollution/misses,system call traps, and context-switches are completelyobviated.Flexibility Applications can now implement systemobjects in ways that are fundamentally impossibleon traditional operating systems. Radical page-tablestructures, process abstractions, address spaces, and�lesystems can be constructed safely and e�ciently ontop of this structure. We expect that this freedomwill enable a broad class of applications that are notfeasible under current operating systems.The ability of application-level operating systemsto support powerful, e�cient, and unusual abstrac-tions cannot be overemphasized. By allowing any ap-plication writer to implement fundamental system ob-jects, the degree, ease, and pervasiveness of experi-mentation and utilization of the results of this experi-mentation can dramatically increase.We discuss some frequently asked questions aboutthe methodology we have proposed.Won't executables become large? As a prac-tical matter, libraries that implement traditional ab-stractions can be sizable. However, shared librariescan be used to combat this problem. They have beenused successfully in equivalent situations. For exam-ple, the X-window libraries are typically dynamicallylinked. In the worst case, servers can be used to mul-tiplex code, data and threads of control.Doesn't this cause portability problems?There are two levels of portability that must be pro-vided, machine portability and OS interface porta-bility. The �rst may be achieved in the standard



manner: namely, a low-level layer that hides machinedependence. The second can be achieved throughapplication-level implementations of industry stan-dards (e.g., POSIX). The important di�erence is thatthe implementation of these layers are now in appli-cation space and, therefore, can be replaced withoutspecial privileges, simplifying the addition and devel-opment of new standards and features not anticipatedby kernel architects.What happens to the system structurewhen any application can de�ne its own inter-faces? As language, GUI and standard library imple-mentors can attest, preventing a Babel of incompatibleinterfaces is simple: de�ne standards and conventions.As we argue in this position paper, the e�ects of hard-wiring high-level interfaces into the system structureare a convincing demonstration that such an approachis not the right way to de�ne a standard. In closing,while an exokernel allows the possibility of a chaoticsystem it also allows the creation of a harmonious, el-egant one as well: a system whose structure does nothave to be anticipated by kernel architects.How can system state be shared? Trusted(or at least highly accountable) servers can be usedto manage shared, fault-isolated caches of system ob-jects such as �le-bu�ers. This methodology is has beenexplored in the context of microkernels; many of thelessons learned are directly applicable to exokernels.5 Related WorkMicro-kernels were originally intended to solvemany of the problems we have listed. Unfortunately,they have oundered for a number of reasons. First,while they allow replacing of device drivers and high-level servers, such operations typically can only bedone by trusted applications. Second, they are still inthe business of providing a virtual machine to applica-tions. The high-level interface that they enforce pre-cludes much of the experimentation that we desire (thereader is invited to compare the primitives described inSection 3 to current micro-kernels). Third, their rigidinterface tends to be rudimentary when compared totheir monolithic counterparts; they often achieve sim-plicity by implementing only a small set of high-levelOS abstractions. For example, a micro-kernel mayhave achieved simplicity by dropping support for mmap,memory-mapped I/O, and full-featured virtual mem-ory, but not given alternative mechanisms to imple-ment the functionality these features provided: micro-kernels can give applications even less control overhardware resources than a monolithic system does.Microkernel architects have realized that an op-erating system should be small; the crucial mistake

they have made is in determining how an OS shouldget this way. It should become small not by enforc-ing a limited set of high-level operations, but instead,through the systematic elimination of all operatingsystem abstractions in order to expose the hardware toapplication-level software; from this primal mud, ap-plications can craft their own abstractions, chosen forappropriateness and e�ciency, rather than make dowith abstractions force-fed under duress. With micro-kernels, applications can have even fewer options thanwith monolithic ones.Two current OS research e�orts, the Cache Ker-nel [7] and Aegis [9, 10], adhere closely to our preceptsfor a model operating system. Further experience isneeded to see if a low-level kernel interface is indeedthe panacea that can cure current operating systemtroubles.The open operating system for a single-user ma-chine is motived by similar observations as the onesthat motivate the exokernel [16]. However, the ap-proach taken to extensibility taken is di�erent. Theexokernel's main task is secure multiplexing, while inthe open operating system protection is not an issue atall, since it relies on the fact it is designed for a single-user machine. In addition, the exokernel attempts tode�ne no OS abstractions, while in the open operat-ing systems the �le system and communications arestandardized. Despite these di�erences, one can viewthe exokernel architecture as an instance of an openoperating system.The interface provided by the VM/370 OS [8] isvery similar to what would be provided by our idealOS: namely, the raw hardware. However, the impor-tant di�erence is that VM/370 provides this interfaceby virtualizing the entire base-machine. Since this ma-chine can be quite complicated and expensive to em-ulate faithfully, virtualization can result in a complexand ine�cient OS. In contrast, our approach exportshardware resources rather than emulates them, allow-ing an e�cient and fast implementation.OS extensibility has a long history [15, 20]. Cur-rent attempts include SPIN [4], Bridge [17], andVino [22]. Some of the techniques used in these sys-tems, such as type-safe languages and software fault-isolation [25], are also applicable to exokernels. Thecommercial world has long looked at this issue in theform of unsafe dynamically loaded device drivers.6 ConclusionsTwo decades ago, Lampson summarized the stateof the art; unfortunately, his characterization is stillapt:



A considerable amount of bitter experiencein the design of operating systems has beenaccumulated in the last few years, both bythe designers of the systems which are cur-rently in use and by those who have beenforced to use them. As a result, many peo-ple have been led to the conclusion thatsome radical changes must be made, bothin the way we think about the functions ofoperating systems and in the way they areimplemented [15].We believe that these problems can be solved by low-ering the interface to the hardware that is enforced bythe kernel: namely, by exporting physical resources toapplications directly. Management and abstraction ofthese resources can then be specialized for simplicity,e�ciency, and appropriateness.The low-level interface of our proposed OS struc-ture would have allowed the bulk of operating systemresearch in the last two decades to have been done eas-ily and safely in application space. Furthermore, theimpact of this research could have been much greater,since the implementation of its ideas could have beenlocalized to speci�c applications.References[1] T.E. Anderson, B.N. Bershad, E.D. Lazowska, andH.M. Levy. Scheduler activations: E�ective kernelsupport for the user-level management of parallelism.In Proc. Thirteenth Symposium on Operating SystemPrinciples, pages 95{109, October 1991.[2] A.W. Appel and K. Li. Virtual memory primitives foruser programs. In Proceedings of the Fourth Interna-tional Conference on ASPLOS, pages 96{107, SantaClara, CA, April 1991.[3] K. Bala, M.F. Kaashoek, and W.E. Weihl. Soft-ware prefetching and caching for translation lookasidebu�ers. In Proceedings of the First Symposium onOSDI, pages 243{253, June 1994.[4] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda,D. McNamee, P. Pardyak, S. Savage, and E. Sirer.SPIN - an extensible microkernel for application-speci�c operating system services. TR 94-03-03, Univ.of Washington, February 1994.[5] B.N. Bershad, D. Lee, T.H. Romer, and J.B. Chen.Avoiding conict misses dynamically in large direct-mapped caches. In ASPLOS-VI, 1994.[6] B.N. Bershad, D.D. Redell, and J.R. Ellis. Fast mu-tual exclusion for uniprocessors. In Proc. of the Conf.on Architectural Support for Programming Languagesand Operating Systems, pages 223{237, October 1992.[7] D. Cheriton and K. Duda. A caching model of operat-ing system kernel functionality. In Proceedings of theSixth SIGOPS European Workshop, September 1994.[8] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM J. Research and Development,25(5):483{490, September 1981.

[9] D. R. Engler, M. F. Kaashoek, and J. O'Toole. Theoperating system kernel as a secure programmablemachine. In Proceedings of the Sixth SIGOPS Euro-pean Workshop, September 1994.[10] Dawson R. Engler. The design and implementation ofa prototype exokernel operating system. Master's the-sis, MIT, 545 Technology Square, Boston MA 02139,February 1995.[11] Per Brinch Hansen. The nucleus of a multipro-gramming system. Communications of the ACM,13(4):238{241, April 1970.[12] J.H. Hartman, A.B. Montz, David Mosberger, S.W.O'Malley, L.L. Peterson, and T.A. Proebsting. Scout:A communication-oriented operating system. Techni-cal Report TR 94-20, University of Arizona, Tucson,AZ, June 1994.[13] K. Harty and D.R. Cheriton. Application-controlledphysical memory using external page-cache manage-ment. In Proceedings of the Fifth International Con-ference on ASPLOS, pages 187{199, October 1992.[14] J. Huck and J. Hays. Architectural support for trans-lation table management in large address space ma-chines. In Proceedings of the 19th International Sym-posium on Computer Architecture, 1992.[15] B.W. Lampson. On reliable and extendable operatingsystems. State of the Art Report, 1, 1971.[16] B.W. Lampson and R.F. Sproull. An open operat-ing system for a single-user machine. Proceedings ofthe Seventh ACM Symposium on Operating SystemsPrinciples, pages 98{105, 1979.[17] Steven Lucco. High-performance microkernel systems(abstract). In Proc. of the �rst Symp. on OSDI,November 1994.[18] H. Massalin. Synthesis: an e�cient implementationof fundamental operating system services. PhD thesis,Columbia University, 1992.[19] J. K. Ousterhout. Why aren't operating systems get-ting faster as fast as hardware? In Proc. SummerUsenix, pages 247{256, June 1990.[20] D.D. Redell, Y.K. Dalal, T.R. Horsley, H.C. Lauer,W.C. Lynch, P.R. McJones, H.G. Murray, and S.C.Purcell. Pilot: An operating system for a personalcomputer. Communications of the ACM, 23(2):81{92,February 1980.[21] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-endarguments in system design. Proc. of the Fifth SOSP,pages 509{512, 1981.[22] Margo Seltzer et al. An introduction to the architec-ture of the VINO kernel, November 1994.[23] M. Stonebraker. Operating system support fordatabase management. CACM, 24(7):412{418, July1981.[24] C. A. Thekkath and Henry M. Levy. Hardware andsoftware support for e�cient exception handling. InSixth Conf. on ASPLOS, 1994.[25] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.E�cient software-based fault isolation. In Proc. ofFourteenth SOSP, pages 203{216, 1993.


