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Abstract 

File caching is essential to good performance in a dis- 
tributed system, especially as processor speeds and 
memory sizes continue to improve rapidly while disk 
latencies do not. Stateless-server systems, such as NFS, 
cannot properly manage client file caches. Stateful sys- 
tems, such as Sprite, can use explicit cache consistency 
protocols to improve both cache consistency and overall 
performance. 

By modifying NFS to use the Sprite cache consistency 
protocols, we isolate the effects of the consistency 
mechanism from the other features of Sprite. We find 
dramatic improvements on some, although not all, 
benchmarks, suggesting that an explicit cache consis- 
tency protocol is necessary for both correctness and 
good performance. 

1. Introduction 
Cache management strategies are central to performance, 

reliability, and correctness of distributed file services. 
Caching improves performance by avoiding unnecessary 
disk traffic, network traffic, and server use, but caching 
implies the potential existence of multiple copies of the 
same data, and keeping these multiple copies consistent is a 
challenge. This is especially true when the caches are kept 
by the clients of a distributed file service, which might be 
attempting concurrent access to the same file. 

Several different cache-consistency strategies are used in 
existing systems. Two important examples are the 
NFS [ 131 and Sprite [7] file system protocols. (“Sprite” is 
the name of an entire distributed operating system; we are 
concerned only with the Sprite file protocols, which we 
refer to as “Sprite” in this paper.) 
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NFS adheres to a stateless-server model and uses a 
probabilistic, stateless consistency scheme’. Sprite main- 
tains server state, and uses an explicit consistency protocol. 
This protocol allows Sprite to guarantee the semantics of 
concurrent access by several clients to the same file; in 
addition, Sprite is alleged to provide better performance 
than NFS [7]. 

In NFS, cache consistency, performance, and crash vul- 
nerability are inextricably linked together. NFS requires 
clients to write blocks immediately to the server; this write- 
back policy is necessary to maintain consistency, but per- 
formance is reduced. Through its consistency protocol, 
Sprite is able to separate performance from consistency, 
and thus improve both. The NFS write-through policy also 
limits the amount of data lost in a crash: Sprite allows 
clients to select this policy only when they need it. Al- 
though stateless servers have certain well-known ad- 
vantages, they appear to be unable to simultaneously 
provide consistency and good performance. 

In the experiment described in this paper, we trans- 
planted the Sprite consistency protocol into the NFS file 
access protocol, hoping that some of Sprite’s benefits 
would be transferred to NFS. This experiment also helps to 
isolate the effects of the cache consistency protocols from 
other differences between NFS and Sprite (for example, the 
different approaches to file name translation). 

It proved to be relatively easy to modify the NFS im- 
plementation used in the UltrixTM operating system to use 
the Sprite consistency mechanism. We call this system 
“Spritely NFS*.” In section 3 we describe the specific 
changes to the NFS protocol, and in section 4 we describe 
our implementation. 

‘The official NFS protocol specification [ 161, while requiring a stateless 
server, says nothing about cache consistency. This specification provides 
insufficient guidance for producing a workable NFS implementation: the 
so-called “reference port” implementation is what actually defines correct 
behavior of NFS clients and servers. The reference port does imply a 
particular cache-consistency scheme. 

2 “spritedy UC/~. [obsolete .s~~i~~$t (sprite), alteration of sl~i/c]: marked 
by a gay lightness and vivacity: SPIRITED syn see LIVELY” [ 171. 
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Performance measurements, presented in section 5, are 
somewhat ambiguous. Depending on the benchmark, 
Spritely NFS either dramatically outperforms NFS.. or per- 
forms slightly worse. Our expectation is that in actual use, 
Spritely NFS should perform moderately better than un- 
modified NFS. In any event, Spritely NFS guarantees that 
no two clients will have inconsistent cached copies of a 
file. 

2. Approaches to cache consistency 
We hoped to answer two questions in our experiment: 
1. Are the performance advantages claimed for Sprite 

really the result of the cache-consistency mechanism, 
or are they attributable to differences in other features 
or to implementation quality? 

2. Would adding Sprite-like consistency protocols to NFS 
improve NFS performance, and could this be done 
without significantly complicating the NFS implemen- 
tation? 

Implicit in these questions is the idea that the central dif- 
ference between Sprite and NFS is their different alpproach 
to cache consistency. Indeed, the protocols are similar in 
many ways, particularly because both are meant to provide 
a nearly transparent emulation of the Unix@ file system, 
using servers accessed by remote procedure call (R.PC). In 
both Sprite and NFS, portions of a file may be cached in 
memory at the client (in contrast to the whole-file caching 
scheme used in Andrew [2] or Cedar [ 141). 

2.1. NFS consistency model 
NFS follows a stateless-server model: the servezr retains 

no information about its clients between RPC requests, and 
ail file data is written synchronously to disk. This 
simplifies the server implementation, avoids hard limits on 
the number of simultaneous clients, and makes server-crash 
recovery trivial. 

Since the server has no record of which clients are cur- 
rently using a file, it cannot itself guarantee cache consis- 
tency. An NFS client periodically checks with the server to 
see if a file has been modifiedj; if so, the client invalidates 
its cache for that file. The interval between checks is a 
compromise between performance (frequent checking loads 
the server and delays the client) and consistency 
(insufficiently frequent checking may mean that a client 
uses stale data from its cache). The check is also made 
each time the client opens a file. 

Since one NFS client has no way of identifying other 
clients that may be concurrently accessing a file, all of its 
consistency checks must be made with the file server. 
Therefore, whenever a client modifies a file, it must im- 
mediately communicate the change back to the server. This 
“write-through” policy limits the potential inconsistency 
between the server’s copy and the client’s cache to a short 

3The interval between probes in Ultrix varies between 3 and 150 seconds, 
depending on the recent history of the file. 

period. It also limits the amount of damage caused by a 
crash; since an NFS server is required to write data to st- 
able storage before returning from the remote procedure 
call, the amount of cached information that is vulnerable to 
loss during a crash is quite limited. 

The use in NFS of write-through combined with periodic 
checks provides consistency as long as no client writes a 
file while another client has the file open, Because the 
notion of “open” is not present in the NFS protocol but is 
simply the state of a client with respect to a file, this is not 
a true guarantee, since there is no way to enforce it. 

A write-through policy has two distinct performance dis- 
advantages. First, write-through limits the performance 
benefits of client-side caching, since a server disk access is 
done for every write. A surprising number of Unix files 
have short lifetimes and are never shared by multiple 
clients [IO], and thus need not be kept anywhere but in the 
cache of the client where they are created. NFS, unfor- 
tunately, cannot distinguish between shared and unshared 
files, and so must treat every file as if it were potentially 
shared. Both client and server waste effort performing un- 
necessary write-through operations. 

The second disadvantage of a strict write-through policy 
is that it forces applications to run synchronously with the 
disk. While an application is waiting for the data to make 
its way over the network, through the server queues, and 
onto the disk, it is blocked. The application therefore takes 
longer to complete than it would if disk writes were per- 
formed asynchronously, as they are in the local Unix file 
system. Especially on single-user workstations, this time is 
wasted. 

Actual NFS client implementations do not always write 
data synchronously. Instead, a block may be handed to a 
daemon process, which immediately writes it to the server; 
the original requesting process does not wait for the write 
to complete. This modification appears necessary for 
reasonable performance, but it does expose data to loss 
during a crash. In order to maintain consistency between 
opens of a file, an NFS client synchronously finishes all 
pending write-throughs when the file is closed. 

2.2. Sprite consistency model 
Sprite follows a stateful-server model. Unlike NFS, 

Sprite has explicit open and &se operations. Since the 
open operation (in Sprite as in Unix) specifies if the ap- 
plication intends to write to the file, by tracking open and 
close operations the Sprite file server knows not only which 
clients are currently using a file, but whether any of them 
are potentially writers. 

This is important because files are seldom “write- 
shared”: that is, seldom do two or more clients simul- 
taneously have a file open that one of them is writing. 
More typically, either all the clients are doing read-only 
operations, or a single client “owns” the file while it is 
being modified. (We refer to these as the “read-only” and 
“single-writer” cases, or together as “non-write-shared.“) 

46 



Because a non-write-shared file can be cached at the 
clients without any danger of inconsistency, the Sprite serv- 
er responds to each open request indicating if it is safe to 
cache the file. Clients can cache without the periodic con- 
sistency checks required in NFS. A single-writer client 
need not do write-throughs, and might never write to the 
server during the file’s entire lifetime. (If reliability is 
more important than performance, an application can use 
explicit file-flushing operations to cause write-through.) 

If a file is write-shared, none of the clients (writers 01 
readers) are allowed to cache it. For writers, this reverts to 
the write-through policy of NFS, and provides the same 
single-copy consistency between a writer and the server. 
For readers, this is stricter than the NFS mechanism; each 
read operation goes directly to the server. Readers are 
guaranteed consistency with writers, provided that some 
other mechanism (such as file locking) serializes the reads 
and writes. NFS cannot feasibly use such a strict non- 
caching policy, since NFS cannot distinguish between the 
infrequent write-sharing situation when it is beneficial, and 
the normal non-write-shared case when it is wasteful. 

Of course, when multiple clients open a file, they do not 
all issue their opens simultaneously. When a file that is 
open read-only is subsequently opened for write, the Sprite 
file server must notify not only the newly-arrived writer, 
but also the existing readers, that the file is no longer cach- 
able. (Similarly, when a file is opened first by a single 
writer and then by another client, the first writer must be 
told to stop caching its copy and to return all the dirty pages 
to the server.) To do this notification, the Sprite server 
makes asynchronous calls to the client, or “callbacks.” 
Callbacks are the other major difference between the NFS 
and Sprite protocols (in addition to the explicit O/XVI and 
close operations). 

There are other design differences between Sprite and 
NFS that are not further considered in this paper, although 
they do significantly effect performance. For example, 
Sprite servers can translate entire (multiple-component) file 
pathnames in one operation, whereas NFS servers translate 
pathnames one component at a time. Sprite and NFS also 
use different RPC protocols. 

2.3. Potential advantages of Sprite 
The Sprite consistency mechanism, unlike the periodic 

checks used in NFS, grrarar~tees consistency between 
clients accessing the same file. Thus, in some sense Sprite 
is more “correct” than NFS. We do not know how impor- 
tant this is in practice: since application writers know that 
NFS does not provide true consistency, and especially be- 
cause write-sharing is infrequent in any case, the lack of 
consistency in NFS may not be significant. (A more fre- 
quent case IS ’ ~ “sequential write-sharing,” where the writer 
closes a file before the reader opens it; NFS provides con- 
sistency in this case.) On the other hand, the weakness of 
NFS consistency may be responsible for the lack of shared- 
database applications. 

Sprite should also provide better performance. Most im- 
portant is its use of write-back instead of write-through. 
This improves performance in two cases: 

1. An application that alternates computation with disk 
output (such as the compilation of several modules) can 
do both in parallel, since Sprite allows the client’s 
writebacks to proceed asynchronously even across file 
closes. 

2. An application that generates short-lived files (such as 
a compiler with its intermediate files, or a sort 
program) need not ever pay the cost of writing them to 
disk. The client can delay write-back long enough that 
the file may be deleted before the file is ever written to 
the server. This becomes more significant as memory 
chip sizes, and consequently client file system cache . 
sizes, Increase. 

These two cases are quite common for typical Unix 
workloads, especially on diskless workstations, and the per- 
formance improvements can be dramatic. Reducing the 
number of server writes improves response time, since 
writes are always synchronous with the disk at the server, 
unlike reads which often hit in the server cache. Reducing 
server writes can also improve the read hit rate of the server 
cache, since “useful” cached data is less likely to be 
replaced by the data from “useless” writes. 

Sprite avoids the cost of periodic consistency probes, but 
instead must do explicit open and &se operations. In 
Sprite (but not Spritely NFS) the open operation is 
“piggybacked” on the file name translation, thus eliminat- 
ing one RPC call. Even so, in the case where a file is 
opened, read quickly, and then closed, Sprite would require 
one more RPC operation than NFS (because NFS would 
not need to do any consistency probes in such a brief 
interaction). 

If the application mix is right, use of the Sprite consis- 
tency mechanism should improve performance over NFS 
by reducing client-to-server traffic and server disk I/O. The 
latter is especially important because disk access times are 
not improving nearly as fast as processor and communica- 
tion speeds. This in turn should improve client response 
time, and also increase the number of clients that can ac- 
tively use a single server (and thus that can actively share a 
single file system). 

Because an NFS server keeps no per-client or per-open- 
file state, in theory it could handle an arbitrary number of 
clients or open files. A Sprite server cannot serve an un- 
bounded number of clients or files, since it keeps infor- 
mation about each recently-active file. That comparison 
may be illusory: while the NFS server may be able to 
“handle” an arbitrary number of clients, the Sprite server 
should be able to provide acceptable performance to a 
larger number of simultaneously active clients. 

2.4. Implications for crash recovery 
Because NFS servers are stateless, server crash recovery 

in NFS is trivial: the server simply restarts. Client crash 
recovery is also fairly simple, since all client data is written 
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immediately (as soon as possible) to disk, and 
synchronously on close4. Only crashes that occur between 
the creation of data by an application (for example, 
keystrokes to a text editor) and the completion of a file- 
write RPC cause data loss; this is actually better than the 
local file system reliability in Unix, where a disk write may 
be delayed for as much as 30 seconds. 

Sprite provides roughly the same protection against 
client crashes as does a local Unix file system. (An ap- 
plication can always do explicit file flushes to provide 
crash-resistance, but few existing Unix programs are writ- 
ten this carefully. As in Unix, the write-delay period may 
be adjusted to reduce the crash-vulnerability window.) 
Sprite server crash recovery is more complex than in NFS, 
since the server must reconstruct the state it maintains 
about which files are open by which clients (or else the 
clients could become inconsistent). A server-crash 
recovery mechanism has been implemented for Sprite [ 181; 
it relies on two of Sprite’s properties: 

1. The clients together “know” who is caching the file, 
and the server can reconstruct its state from the clients. 

2. The consistency state of the file cannot chalnge while 
the server is down, or until the server is willing to allow 
it to change. 

Most of the complexity in the recovery mechanism comes 
in detecting crashes and reboots, rather than in rebuilding 
state. This is done by tracking the passage of RPC packets, 
and using periodic “keepalive” packets, to detect when a 
client or server has crashed or rebooted: the same 
mechanism also suffices to detect network partitions. 
There is some cost to tracking RPC packets, but a reliable 
crash and reboot detection mechanism is of course useful 
for other purposes besides recovering file server state. 

2.5. Related work 
A cache-consistency mechanism roughly intermediate 

between that of NFS and Sprite has been implemented for 
the System V Remote File Sharing (RFS) system [ I]. As in 
NFS, clients write-through to the server, so the only pos- 
sible inconsistency is between the server and readers. RFS 
is not stateless; clients send o/>en and close mess.ages to the 
server, so the server is able to send “invalidate’” messages 
back to clients when their caches must be disabled. Unlike 
Sprite, RFS waits until writes actually occur before in- 
validating client caches. As in both Sprite and NFS, ver- 
sion numbers are used to maintain client cache consistency 
when a file is reopened after being closed. RFS provides 
the same consistency guarantees as Sprite, but because RFS 
uses the same write policy as NFS, its performalnce should 
be closer to that of NFS. 

Both Sprite and RFS use entire files as the unit for con- 
sistency. Kent 141 describes a system that maintains consis- 
tency on individual file blocks; before a client writes a 

“Actually, the reference port of NFS delays writes that do not extend to 
the end of a block, as a means of optimizing improperly-buffered sequen- 
tial writes. 

block, it must acquire ownership of that block. Other 
clients invalidate cached copies of that block, and only one 
client at a time can own a block. This system required 
special hardware to implement the consistency protocol 
with sufficient performance. 

The dogma of statelessness associated with NFS has 
been broached before. Juszczak [3] shows that because the 
individual NFS operations are not really idempotent, cer- 
tain kinds of communication failure can result in incorrect 
behavior. A similar observation is made in [2]. By adding 
a small amount of state to the NFS server, he managed to 
resolve this problem, and also to improve the performance 
of highly-loaded servers. 

Many other file system designs include explicit consis- 
tency protocols. These include Andrew [2], Cedar [ 141, 
Apollo [6], and Locus [ 1 I]. A comparison between Sprite 
and these systems may be found in [7]. 

3. Modifications to the NFS protocol 
In this section we sketch the modifications 

protocol necessary to support the Sprite 
protocols (see [ 151 for a detailed description). 

to the NFS 
consistency 
This is the 

“Spritely NFS” (SNFS) protocol most of the complexity 
in SNFS is in the irqtden~entution, described in section 4. 

3.1. New client-to-server calls 
In unmodified NFS [ 161, all RPC calls are initiated by 

the client. We added two new calls, open and close, to the 
client’s repertoire. 

The o/>etl RPC call takes a “file handle” (an identifier 
returned by the lookup operation) and a flag indicating if 
the client intends to write the file. The server returns a 
cacheEnabled flag to tell the client whether it is al- 
lowed to cache data for this file. The server keeps a ver- 
sion number for each file, which increases every time the 
file is opened for writing; the open call returns both the 
latest version number and the previous version number. A 
client’s cache is valid if the latest version number matches 
the version of the cached copy. If the client is opening the 
file for write, its cache is also valid if it matches the pre- 
vious version number; this is because the change in version 
number has resulted from the current open-for-write. The 
server also returns the same attributes record that 
would have been returned from a gefuttr (get file attributes) 
procedure, obviating the getam call that NFS must make 
when a file is opened. 

The close procedure tells the server that the client is no 
longer using the specified file handle. The client passes the 
same writeMode flag that it provided for the correspond- 
ing open operation; it must be supplied since open could 
have been called several times, with different modes, on a 
single file handle. 
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3.2. Server-to-client calls 
Whenever an SNFS server needs to notify a client that a 

file must no longer be cached, it issues a callback opera- 
tion. This RPC call goes from server to client, so the client 
must provide RPC service for this request. The callback 
operation identifies the file in question through several 
parameters that allow the client to locate its data structures 
for the file. Two flags specify what actions to take: one 
indicates that any dirty blocks in the client’s cache should 
be written back to the server, and the other that any cached 
blocks should be invalidated and further caching disabled. 

If the callback involves a write-back, the client should 
not return from the callback RPC until all the dirty blocks 
have been written back to the server. This has two implica- 
tions: 

I. Because the write operations generated by the client in 
response to the callback go to the server that is waiting 
for the termination of the callback, an SNFS server 
must be multi-threaded to avoid deadlock. If there are 
N threads, only N-I may be doing callbacks simul- 
taneously, so that at least one thread can service the 
write-backs. 

2. Since the server makes a callback while servicing an 
open operation from another client, it cannot wait 
forever for the callback (since the client doing the open 
will time out). Usually the callback, together with any 
required write-backs, should finish long before the RPC 
times out, but this is not guaranteed; the network might 
be slow, the server might be overloaded, or there might 
be many dirty blocks. We believe that this is not a 
serious problem; the callback operation can safely be 
retried, so when the client doing the open operation 
times out and retries, no harm is done. (Care must be 
taken to avoid delayed duplicate RPC packets.) 

If the client “serving” the callback is down, the SNFS can 
honor the new open operation, but it should inform the new 
client that the file may be in an inconsistent state. (This is 
hard to do in the Unix model.) If the “dead” client comes 
back to life after this point, it must be prevented from 
making further use of the file until it obtains a new file 
handle and reopens the file. 

4. Implementation 
We implemented a prototype of Spritely NFS by modify- 

ing the existing NFS implementation in Ultrix version 2.2. 
By changing the names of entry points and global variables, 
we made it possible to have both SNFS and unmodified 
NFS in the same kernel, which in turn made it easy to 
compare the performance of the two protocols. With the 
exception of a few utility programs, all the changes are 
confined to the kernel; for user code, there is no visible 
difference between NFS and SNFS. 

4.1. Layering 
In Ultrix, the “generic file system” (GFS) [ 121 (see 

also [5]) provides a level of indirection to separate the 
filesystem-generic code from the filesystem-specific code. 

GFS implements the Juno& abstract data type, which is 
similar to the traditional Unix in-memory inode data struc- 
ture, but which supports multiple file systems (such as NFS 
and local disks). GFS manages the file system block buffer 
cache, and expects the underlying file systems to export a 
set of methods for reading and writing file blocks. We 
needed only one minor modification to GFS to support 
SNFS (see [ 151 for implementation details not discussed 
here). 

On the server side, the NFS (and SNFS) service code 
simply translates RPC requests into GFS operations on the 
appropriate file system, normally the standard Unix local 
file system. 

4.2. Client changes 
The gnode data structure provides space for filesystem- 

specific data, some of which is already used by the NFS 
client code. We added several new fields, including flag 
bits such as “caching enabled”, the file version number, 
and authorization information used when doing a delayed 
write. No additional state tables are needed at the client. 

GFS invokes the O/XV and close entry points for all file 
system types, including NFS clients, when a file is opened 
or closed. The new RPC calls in SNFS are dispatched from 
these routines. (Many of the close calls could be avoided; 
see section 6.2.) 

4.2.1. Cache strategy 
Two kinds of information are cached on the client: file 

data blocks and file attributes. The file data blocks are 
cached in the GFS buffer pool; each block is marked with 
the appropriate file ID. The file attributes are stored in the 
gnode. 

Ultrix NFS refreshes the attributes cache based on its 
age; an adaptive mechanism is used which allows longer 
residence for files that have not been recently modified. In 
SNFS, the attributes cache needs no refreshing if the file is 
read-shared (cachable). If the file is write-shared (not 
cachable), SNFS guarantees consistency by always fetching 
attributes from the server, instead of caching them. 

NFS maintains consistency for cached data by checking 
the file modification timestamp, and invalidating the cache 
if the timestamp changes. In SNFS, the explicit consis- 
tency protocol maintains the cachability flag for the file; if 
the file is not cachable, its blocks are never entered into the 
cache. Also, the standard Unix read-ahead is disabled in 
SNFS for non-cachable files, since the extra blocks cannot 
be cached. 

4.2.2. Callback service 
In unmodified NFS, all RPC calls are initiated by the 

client. In SNFS, the server initiates callback RPCs, so the 
client must be able to service RPC requests. We simply use 
the existing NFS server code. 

The callback RPC is implemented as part of the SNFS 
server code, but conceptually it is part of the SNFS client. 
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The information in the callback is used to locate the ~norlr 
for the specified file, and the specific action is performed. 
Cache invalidation is done locally to the client; if the server 
requests write-back, the client uses the usual SNFS RPC 
calls to write blocks back to the server. 

4.2.3. Delayed write policy 
Traditional Unix policy is to delay file data writes to the 

local-disk file system, unless a user process explicitly 
flushes them. Blocks are written back to disk when the 
space is needed for other files. To bound the amount of 
damage caused by a crash, all delayed-write blocks are 
written to disk periodically (every 30 seconds, by the sync 
system call from /etc/update). In the Sprite file sys- 
tem, dirty blocks are written back to the server when they 
reach 30 seconds in age; this is somewhat less conservative 
than the traditional policy. 

The NFS consistency mechanism prevents the accumula- 
tion of delayed-writes. SNFS, on the other hand, uses the 
normal GFS delayed-write mechanism, so (mostly by 
default) it follows the traditional Unix policy. 

Since it is relatively common for Unix applications to 
create a temporary file and then delete it after a few 
seconds, Sprite and SNFS take advantage of this behavior 
by “cancelling” delayed writes when a file is deleted. 
NFS cannot do this, since it synchronously writes back on 
close. 

4.3. Server state design 

4.3.1. Server state table 
An SNFS server, unlike an NFS server, must retain state 

about files between RPC calls. In our implementation, the 
SNFS server maintains a state table, organized1 as a hash 
table, with entries for each open file and for each closed file 
whose last writer may still have cached blocks. 

To avoid running out of kernel memory, we limit the 
number of entries in this table. This limits the number of 
simultaneously open files per server, a limit that is not im- 
posed by unmodified NFS (but each entry requires only 68 
bytes, so the limit can be liberal). When entries run low, 
those recording closed files may be reclaimed by sending 
callbacks to the corresponding clients. 

Most of the code added to support SNFS is in the state 
table manager module. It has entry points to initialize the 
server state data structures, and to perform the state tran- 
sitions necessary on file open and close operations. 

Our only modification to the original NFS server code 
was to add the two new RPC services functions. The O/XI? 
operation is similar to the existing ‘qefaltr operation, but it 
calls the state table manager to record information about 
the new open, potentially resulting in a callback.. The close 
operation does nothing but notify the state table imanager. 

4.3.2. State table entries 
Each entry in the state table contains the file handle for 

the corresponding file; this is the lookup key. It also con- 
tains the file’s current version number, its current state 
(such as read-only or write-shared), and a list of “client” 
information blocks for each client host that has the file 
open, or that might have dirty blocks in its cache if the file 
is closed. 

A client information block contains the network address 
of the client host; this is used as an identifier and also to 
address the callback RPCs. A client block also contains 
counts of the number of readers and writers for this file at 
this client (more than one process there may have the file 
open) and additional information used in the callback RPC 
to help the client identify the file. 

4.3.3. Version number generation 
The server assigns a version number to each file; the 

version number must increase each time the file is opened 
for writing. This allows clients to determine if cached 
blocks are still valid when a file is reopened. Ideally, the 
version number would be associated with each file on st- 
able storage (as is done in Sprite), but since we did not 
want to modify the underlying Unix local file system to 
store additional information, we chose to use a global 
counter to generate version numbers. This solution is 
suitable only for experimental use, as it poses several ob- 
vious problems. 

4.3.4. State transitions 
Each file may be in one of several states. There is some 

freedom in the choice of state assignments; in retrospect, 
the one we chose would have to be changed to support 
“delayed close” (see section 6.2) without deadlocking. In 
our implementation of SNFS, the states are: 

CLOSED File not open by any client. 

CLOSED-DIRTY File not open, but the last writer may 
still have dirty blocks. 

ONE-READER File open read-only by one client. 

ONE-RDRDIRTY File open read-only by one client, 
which may have dirty blocks cached 
from a previous open. 

MULT-READERS File open read-only by two or more 
clients. 

ONE-WRITER File open read-write by one client. 

WRITE-SHARED File open by two or more clients, in- 
cluding at least one writer. 

Table 4-l shows the possible state transitions. Note that 
no transition occurs (and thus none is shown) if a client that 
already has a file open for read-only issues another read- 
only o/~/r for that file, or if a client that has a file open for 
read-write issues another open of any sort for that file. 
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ONE-RDRDIRTY 

ONE-WRITER 

ONE-WRITER 

CLOSED-DIRTY Final close Not affected None 

CLOSED-DIRTY Final close Not affected None, this client recorded 
as last writer 

ONE-RDRDIRTY Final close for write, client still reading Not affected None, this client recorded 
as last writer 

Table 4-1: SNFS server state transitions 

4.4. Crash Recovery 5. Performance 
We have not yet implemented a crash recovery protocol 

for Spritely NFS. Such a protocol would involve changes 
to both the client and server implementations, and would 
reduce performance to some extent. Note that the 
published measurements of Sprite [7] were also made with- 
out a recovery protocol. 

In this section, we Iook at the performance differences 
between NFS and SNFS. We focus on the most common 
case, where there is no concurrent sharing of a file between 
two or more client hosts. In the write-shared case, SNFS 
disables the client cache and so performs much worse than 
NFS - but much more correctly. 

4.5. Code size 
A crude measure of the complexity of the modifications 

we made is the change in source code size. The un- 
modified NFS code we started with consisted of 9200 lines 
of commented C source code in 15 files. The SNFS ver- 
sion consists of 1 1 150 lines in 16 files, most of the increase 
coming from the SNFS server state manager. We believe 
that an implementation supporting both NFS and SNFS 
protocols would be only a few hundred lines longer than 
our SNFS code, although crash recovery code would be 
substantially larger. 

5.1. Factors affecting performance 
The performance differences between NFS and SNFS are 

the result of variation in several factors, which depend on 
the application mix: 

l The parallelism available with delayed write instead 
of write-through. 

l The writes averted when temporary files are deleted 
before being written back. 

l The number of RPC calls required over the active 
lifetime of a file. 

Run-time data space requirements vary depending upon 
the limit imposed on the number of open files; for example, 
up to 1000 simultaneously open files can be accommodated 
with about 70 kbytes of data space. 

We believe that the computational costs of the SNFS im- 
plementation are not significantly different from those of 
NFS. 

For example, SNFS gains most from increased paral- 
lelism when only one job is running on the client host, and 
it can alternate computation with write I/O (such as a 
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compiler). File copying can also benefit as lon,g as the 
cache does not fill with dirty blocks, because the writes are 
often postponed so as to overlap with other tasks. Less 
such I/O parallelism is available if many applications are 
running in parallel on the client. 

Similarly, SNFS gains by avoiding writes if the applica- 
tion is generating a significant volume of temporary files 
(and if these files fit easily into the client cache). 

The relative number of RPC operations depends on the 
application. For example, a file that is read only once for a 
brief period (such as a source module) differs from a file 
that is read over the course of several seconds (some text 
editors do this, for example). In the “read-quickly” case, 
NFS will require one fewer RPC than SNFS, since SNFS 
requires the additional &se operation (the SNFS open 
operation is equivalent to the ,qef&tr operation done at file- 
open time by NFS). In the “read-slowly” case, SNFS may 
break even or better, since NFS must do consistency probes 
every few seconds. 

Frequently, the NFS model wins because most applica- 
tions follow the “read-quickly” pattern. As we point out 
in section 6.2, however, a minor modification to our im- 
plementation of SNFS could perform significantly better 
than NFS in the case where a file, such as a popular header 
file, is read repeatedly during the course of some seconds. 
This pattern is actually quite common. 

In addition to effects of the application mix, the relative 
performance of SNFS and NFS depends on system 
parameters including the file cache size, RPC speed, and 
disk access time. As the client’s file cache size increases, 
the relative benefit of clever cache-management protocols 
increases as well. Also, when the gap between lprocessor 
speeds and disk access time widens (as it appe.ars to be 
doing), cache-management efficiency becomes more im- 
portant. Finally, since NFS and SNFS differ somewhat in 
the number of RPC calls used, an increase in RPC speed 
(relative to processor speed) reduces the relative petfor- 
mance difference. 

5.2. Andrew benchmark measurements and analysis 
Our SNFS implementation was originally developed for 

Ultrix running on a MicroVAX-IITM with a relatively small 
memory. Because we were interested in the effects of large 
caches, we ported the code to the experimental Titan 
workstation. Titans are RISC processors running about 
12- 15 times as fast as a VAX-l l/780, and supporting up to 
128 Mbytes of main memory [8]. Identical machines were 
used for client and server, and the RA81 and RA82 disks 
used are moderately high performance drives. The operat- 
ing system running on the Titan is not exactly LJltrix, but 
the NFS and other file system code is taken directly from 
Ultrix, with only a few lines changed because of architec- 
tural differences. All our measurements were made on 
Titans. 

It is relatively easy to benchmark the individual cases 
where one might expect SNFS performance to differ from 
NFS performance. It is harder to measure an aggregate 

difference, since the weighting for the individual dif- 
ferences depends so much on the application mix. We 
chose to concentrate on the Andrew benchmark suite [2], 
since it covers many of the individual cases and does give 
some idea of the aggregate performance. The Andrew 
benchmark spends a significant amount of time doing com- 
pilation; since the cost of compilation depends upon the 
target architecture, it is not possible to compare our figures 
directly to previously published results from the Andrew 
benchmarks. We also benchmarked an external sort ap- 
plication, since this emphasizes the differential perfor- 
mance on temporary files; see section 5.3. 

The Andrew benchmark consists of 5 phases, applied to a 
tree of directories and files; the following description is 
taken from [2]: 

MakeDir Constructs a target subtree that is identical 
in structure to the source subtree. 

COPY 

ScanDir 

ReadAIl 

Copies every file from the source subtree 
to the target subtree. 

Recursively traverses the target subtree 
and examines the status of every file in it: 
does not actually read the contents of any 
non-directory file. 

Scans every byte of every file in the target 
subtree once. 

Make Compiles and links all the files in the tar- 
get subtree. 

Different phases highlight different differences between 
SNFS and NFS. The Copy phase favors SNFS, since the 
delayed-write policy allows more parallelism between the 
read and write I/O streams. The ScanDir and ReadAll 
phases favor NFS, since SNFS has about one additional 
RPC to do for each file. The Make phase favors SNFS 
because it allows parallelism between file writing and ei- 
ther file reading or computation. 

Because the delayed-write policy of SNFS postpones 
some operations until after the completion of the 
benchmark, we ran the SNFS benchmarks several times in 
a row (rather than interleaving them with NFS benchmark 
runs) so that NFS would not be charged for writes incurred 
by SNFS. 

We ran the benchmark in three configurations: one with 
all files on the local disk, one with just the data files 
remotely mounted but temporary files kept locally, and the 
last with both data and temporary files remotely mounted. 
The latter configuration should favor SNFS for the Make 
phase, since it allows the “delete-before-writeback” op- 
timization to take effect. In all configurations, the 

sWe used a slightly modified version of the original Andrew 
benchmark, due to John Ousterhout 191, that does produce comparable 
numbers. This is done by using a portable compiler and loader that 
produce code for a fixed target architecture, not for the architecture being 
tested. We hope that future benchmarking will be based on this portable 
version. 
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“compiler” programs were on the same file system as the 
data, and other Unix utility programs were on the local 
disk. 

The results are shown in table 5-1. Each number shown 
is an average over 10 trials. Measurement accuracy is no 
better than a second or two, so slight variations are mean- 
ingless. 

During our experiments, neither the client nor server 
machine were used for any other jobs (although some 
housekeeping tasks occasionally run in the background). 
Both machines had large file buffer caches (about 16M 
bytes on the client and 3.5M bytes on the server), large 
enough that no data was ever removed from the caches due 
to replacement. This simplifies analysis but does favor 
SNFS, which is better able to make use of a large cache 
than NFS. 

The results shown in table 5-1 confirm our expectations. 
SNFS performs about 25% better on the Copy phase, and 
20% to 30% better on the Make phase (depending on 
whether /tmp is local or remote). NFS performs about 5% 
better on the ScanDir and ReadAIl phases. SNFS com- 
pletes the entire benchmark 15% to 20% faster than NFS, 
because the complete benchmark places most weight on the 
Make phase. 

Elapsed time in seconds I 

Tabie 5-1: Results of Andrew benchmark 

Table 5-2 shows RPC operation counts for a typical trial 
with each of the NFS and SNFS configurations; there may 
be insignificant inaccuracies in the counts. With /tmp on 
a local disk, SNFS requires slightly (2%) more RPC opera- 
tions, but since SNFS substitutes open and close operations 
for the more expensive read and wife operations, it comes 
out ahead in total cost. With /tmp remotely mounted, 
SNFS requires 6% fewer total operations, and 42% fewer 
data transfer operations. 

Table 5-2: RPC calls for Andrew benchmark 

Several entries in table 5-2 deserve explanation. When 
/tmp is mounted locally, one might expect both protocols 
to issue the same number of write RPC calls. Because the 
Ultrix NFS implementation delays partial-block writes, it is 
more sensitive than SNFS to the “natural” file system 
block size used at the server. During our tests, we used a 
4k byte block; NFS might have performed slightly better 
had we used an Sk byte block size. 

We also found that NFS issues far more rvad RPC calls. 
In trying to explain why this is so, we discovered that it is 
not the fault of the NFS protocol. Rather, our version of 
the NFS code invalidates the client data cache when a file 
is closed. In many instances the client first writes a file, 
closes it, and then reopens and reads it, and this bug 
prevents the client from using its cached copy. Our NFS 
implementation is based on a version of the reference port 
that is several years old; more recent implementations of 
NFS have fixed this bug, but we were unable to measure- 
ment their performance on comparable hardware. 

Finally, we note that roughly half of the RPC calls are 
file name lookups (SNFS and NFS use the same protocol 
for this). Clearly, any mechanism that reduced the number 
of lookups would improve performance; we suspect that 
applying the Sprite consistency protocols to a cache of 
directory entries might be a good approache. 

hRecent versions of NFS also do more extensive caching of name 
translations. 
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Figure 5-1: Server utilization and call rates for NFS 

We were also interested in the effect of file system 
protocol on “server utilization,” the CPU load placed on 
the server for a given application. Measurements of the 
Sprite operating system suggest that the Sprite file system 
can support about four times as many clients as can a Unix 
system with NFS running on identical hardware [7]. We 
measured the server CPU load (roughly, the percentage of 
time not spent in the “idle” state) while running the 
Andrew benchmark for NFS and SNFS; in both cases, 
/tmp was remotely mounted, effectively simulating the 
load of a diskless workstation. We also measured the rate 
of RPC calls, as well as individual rates for rvad and t+rire 
calls. Graphs of the server load and call rates are shown in 
figure 5-1 for the NFS benchmark, and in figure 5-2 for the 
SNFS benchmark. All the graphs in one figure alre for the 
same run, so one can see how the rates are correlated in 
time. 

Figure 5-2: Server utilization and call rates for SNFS 

The load varied considerably over the course of the 
benchmark, and was strongly correlated with the aggregate 
rate of RPC calls; it was nor correlated with the rate of road 
or write calls. Since SNFS, even when /tmp is remotely 
mounted, requires only slightly fewer operations than NFS, 
the integral of CPU load over time was only slightly lower 
for SNFS. In fact, since the SNFS benchmark completes 
significantly faster, the average server load during the 
benchmark is slightly higher than for NFS; it also appears 
to be slightly burstier. 

We believe that the advantage, in server CPU utilization, 
of Sprite over NFS is probably the result of a more efficient 
RPC protocol and perhaps a more efficient file name trans- 
lation mechanism. We have no evidence to show that the 
SNFS cache consistency protocol itself, in isolation from 
the write policy, leads to significantly different server CPU 
utilization on the Andrew benchmark. On the other hand, 
the difference in Mvite operation rates (see table 5-2) im- 
plies that the server disk utilization with SNFS is 30% to 
35% lower. 
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5.3. Sort benchmark measurements and analysis 
The Andrew benchmark suggested that the most sig- 

nificant difference between NFS and SNFS was their per- 
formance on temporary files. (This is most important for 
diskless clients.) We explored this case by benchmarking 
the Unix sort program. which does an external sort and so 
makes heavy use of temporary files. (This benchmark also 
emphasizes the performance degradation caused by the in- 
ability of our NFS client implementation to retain cached 
data after closing a file.) 

We measured the performance of the sort program with 
its temporary files (kept on JusrI tmp) on local disk, 
remote-mounted via NFS, and via SNFS. Table 5-3 shows 
the resulting elapsed times for input files of three different 
sizes; the important parameter is the amount of temporary 
storage used, which grows faster than the input file. 

SNFS dramatically outperforms NFS on this benchmark, 
completing approximately twice as fast. In all three cases 
the client CPU utilization is higher for SNFS; in other 
words, I/O latency is the bottleneck. Table 5-4 shows that 
SNFS does far fewer read RPC calls than does NFS, in- 
dicating that some of the difference is attributable to the 
bug in our NFS implementation, rather than the NFS 
protocol itself. We believe that this accounts for less than a 
quarter of the performance difference, the rest attributable 
to the synchronous writeback-on-close required in NFS. 

File Temp local NFS SNFS 
size storage /usr/tmp /usr/tmp /usr/tmp 

281 k 304 k 4 set 8 set 4 set 

1408 k 2170 k 33 set 10.5 set 48 set 

2816 k 7764 k 74 set 234 set 127 set 

Table 5-3: Results of Sort benchmark 

I I I I 
Total 1611 953 3145 1920 

Table 5-4: RPC calls for Sort benchmark 

We ran a simple benchmark on a recent NFS implemen- 
tation (SunOS Release 4.0.3 running on a Sun-3) to high- 
light the penalty for invalidating the client cache when 
closing a temporary file. This benchmark writes a large 
file, closes it, and then opens and reads either the same file, 
or a different file of the same size. We caused the client 
cache to be invalidated between trials. There was no sig- 
nificant difference in elapsed times, indicating that the 
(elapsed-time) cost of a read missing the client cache is 
negligible compared to the cost of writing through. 

Unlike the Andrew benchmark, on the sort benchmark 
the total server CPU utilization is about 40% lower for 
SNFS. probably because SNFS does about 40% fewer RPC 
calls. This is a significant improvement, but might dis- 
appear with a more careful NFS client. 

5.4. Avoiding file writes for temporary tiles 
A delayed write policy means that data written to short- 

lived temporary files may never need to be sent to the serv- 
er. The sort benchmark runs long enough that the periodic 
write-back done by the Unix /etc/update process is 
likely to cause significant traffic even though few of the 
temporaries actually reach the age of 30 seconds. 

To emphasize the benefits of delaying writes of tem- 
porary files, we ran the sort benchmark with the 
/etc/update process disabled. The results, shown in 
table 5-5, show that for files whose lifetime is short 
enough, SNFS matches or beats local-disk performance 
(even though data blocks are not written, the local-disk file 
system still writes out structural information). NFS perfor- 
mance is unchanged, within the limits of measurement er- 
ror. Table 5-6 shows that SNFS, in this situation, is doing 
almost no MY;@ RPC operations. 

Table 5-5: Sort benchmark, infinite write-delay 

Remote Procedure Calls 

Version update? Reads Writes Others 

NFS Yes 1340 1452 353 

NFS No 1227 1451 368 

SNFS Yes 67 1441 412 

SNFS No 65 33 407 

Table 5-6: RPC calls for Sort benchmark, 
28 16 kbyte input file, with infinite write-delay 
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6. Future work 
In this section we touch on several issues we have not yet 

addressed in our implementation. (We have already 
touched on the issue of crash recovery in section 2.4.) 

6.1. Coexistence of NFS and SNFS 
SNFS coexists quite easily with unmodified NFS. A 

single client host can remote-mount file systems using ei- 
ther protocol, and a single server host can provide access to 
separate file systems using either protocol. A hybrid server 
could distinguish between SNFS and NFS clients because 
SNFS clients always perform open operations before other 
file operations. A hybrid client could distinguislh between 
SNFS and NFS servers, since the latter will reject an open 
operation. Thus, the SNFS clients and servers will discover 
each other, and other combinations will simply revert to the 
standard NFS protocol. 

It is trickier to support simultaneous access via both NFS 
and SNFS to the same file system, since the NFS clients 
cannot participate in the SNFS consistency protocol. One 
approach is to treat any NFS access to a file already open 
under SNFS as implying an SNFS open operation. The 
server also has to keep, for a period no less than the longest 
reasonable NFS attributes-probe interval, a record of all 
other files accessed via NFS. By using this information, 
the server can manage the caches of SNFS clients so as to 
guarantee their consistency, and still provide “normal” 
NFS consistency to the NFS clients. (See [ 151 for more 
details.) 

6.2. Delaying the SNFS close operation 
Our SNFS implementation sends an open operation to 

the server every time a process opens a file. This is not 
necessary; since most files are reopened soon after they are 
closed, we could avoid a lot of network traffic if the SNFS 
clients delayed close operations in anticipation of a sub- 
sequent open operation. The client would keep a flag in the 
gnnde structure indicating that a “closed” file has not yet 
been reported to the server; this would allow it to realize 
that a subsequent open operation can be performed locally. 

Delayed-close may create situations where the server 
perceives write-sharing to be taking place, when in fact it is 
not. If a client with a delayed-close file receives a callback 
for that file, the appropriate response is to close the file so 
that it can be cached by the new client host. Dellayed-close 
will also cause the server’s state table to fill up with ap- 
parently open files. It may be necessary to create a new 
callback mode that asks a client to relinquish a ‘closed file; 
the server would perform these as necessary to attempt to 
reclaim state table entries that have not been used recently. 
Clients could also spontaneously issue close operations for 
files that have not been re-opened after a few minutes. 

7. Summary and Conclusions 
Our experiments have convinced us that the Sprite ap- 

proach to consistency is superior to that used in NFS. NFS 
cannot provide complete consistency with acceptable per- 
formance. Even with the weak consistency provided by 
most NFS implementations, performance is probably worse 
than that provided by the Sprite consistency protocol. 
Sprite’s performance advantage over NFS comes mostly 
from its delayed write-back policy, not directly from the 
explicit cache consistency protocol, but without such a 
protocol, delayed write-back is too dangerous. 

We found that adding the Sprite consistency protocol to 
NFS was possible without major disruption of the NFS im- 
plementation, and required only a few programmer-months. 
In order to completely refute the dogma of statelessness, we 
would have to demonstrate that SNFS has the same fault- 
tolerance as NFS; this would require implementation of a 
recovery protocol. 

We did not find that SNFS outperformed NFS as much 
as Sprite itself outperformed NFS [7]. One reason may be 
that the NFS we used has been adjusted to place perfor- 
mance ahead of consistency; perhaps this is the right 
choice. A more intriguing question is whether the high rate 
of file lookup calls, as we detailed in table 5-2, swamps 
other file system performance differences. NFS and SNFS 
use the same lookup mechanism; Sprite uses an entirely 
different approach, which might account for its advantage, 
and might profitably be applied to the NFS protocols. 

Caching in file systems is becoming more crucial as 
processor speeds and memory sizes improve faster than 
disk access times. We cannot afford to use inadequate 
cache mechanisms simply because the good ones seem har- 
der to implement. 
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