
Fast Log Writes using Disk Mimic

Ashok Anand & Sayandeep Sen

Computer Sciences Department
University of Wisconsin, Madison

Abstract

We investigate a suite of algorithms for reducing the
Small synchronous disk writesoverhead, which are an
important & frequently occurring workload in journal-
lling filesystems and transactional database systems. The
studied algorithms try to optimize the performance by try-
ing to predict the disk head position. We find the cur-
rent state-of-art algorithms/systems either memory ineffi-
cient or bad at predicting the actual disk head position.
We carry out an emulation based performance study to
understand the trade-offs between memory overhead and
accuracy. We then design algorithms with configurable
memory and accuracy parameters (interdependent). Fi-
nally we design and implement a pseudo driver for Linux
based systems, which can be integrated with the existing
Linux based journalling filesystems.

1 Introduction

The disk and storage systems have become the main speed
bottleneck of computer systems, and hence optimizing
their performance, has been an important area of research.
A multitude of techniques and optimizations have been
developed to optimize the performance of file-systems.
For example, the Berkeley Fast File System (FFS) [4]
mandates the placement of files belonging to same direc-
tory on same cylinder groups, in disk to reduce reads with
spatial locality. The Log-structured File System (LFS) [7]
organizes all file system data and metadata in a log, and
writes it asynchronously to disk in large segments, im-
proving the small write performance over FFS.

However, one important workload that still incurs a per-

formance penalty is the: small, synchronous disk writes.
These workloads are typically generated by transactional
applications such as databases and messaging systems,
where a synchronous write is used to ensure data persis-
tence. Synchronous writes are also occur in journalling
filesystems, such as ext3 [8, 1] etc. The journalling file
systems utilize synchronous writes to ensure, a proper or-
dering of operations on disk, so as to ensure data recovery
in case of a crash.

Synchronous writes are hard to optimize as, unlike
other disk operations, their cost cannot be reduced by
caching. The cost of a synchronous write is generally
dominated by the time it takes to position the disk head,
especially for the small writes that are common in trans-
actional applications.

To motivate the need for designing efficient optimiza-
tions for small write operations, we first present the prob-
lem in context of data logging in file systems. To un-
derstand the problem of small writes in case of transac-
tional filesystems, we first briefly describe how transac-
tional filesystems work. The key idea behind a journalling
filesystem is to write information pertaining to pending
updates (ie, updates not actually written on disks) to the
log, or journal, on disk. The log can either be stored at a
fixed disk location, or it may be stored within a file. The
file system meta-data and data are also written to fixed
locations on the disk. Forcing journal updates to disk be-
fore updating the actual disk locations (which is a time
consuming process) leads to efficient crash recovery, as
the system can be brought to a consistent state by simply
scanning the journal and redoing the incomplete updates.

The relative performance of the journalling mostly de-
pends on the workload. In case a large amount of data
is being written back to the disk, journalling filesystems

1

perform poorly as the data blocks are written twice to the
disk. However, data journalling performs relatively well
when small, random writes are performed. In this case,
journalling filesystems, write the data sequentially to the
log (which it does efficiently), while the actual updates
to disk locations are done in background and hence do
not affect the performance of the system. While, the sys-
tem saves the penalty of carrying out small random writes
to the disk, it still incurs a rotational penalty while per-
forming the sequential writes to the log. The reason be-
hind the aforementioned penalty is the way the journalling
filesystems actually carry out the write operation. While
updating log, the journalling system divides a write into
three parts, a) a descriptor block, b) the actual data and
c) the commit block. The filesystem first writes the de-
scriptor block, which has metadata information about the
corresponding log entry. Once this block is persistently
written to the disk the system then writes the data block
synchronously to the disk and finally it writes the commit
block to the disk. The performance penalty is incurred be-
cause of the fact, that the filesystem mandates that these
blocks be placed consecutive to each other on the log and
as the disk head moves out by some extent before the
filesystem can issue the consequent write request. This
causes the disk head to take a full rotation before it can
write the next block.

Higher-end systems attempt to overcome the syn-
chronous write problem by using expensive hardware
such as NVRAM to buffer the synchronous writes [3].
Unfortunately, low-cost computer systems cannot utilize
such modifications because of their excessive costs. An-
other line of research [6, 2] tries to reduce the cost of small
writes by directing the actual writes to those regions of the
disk which are about to be written out. These, schemes
rely on a predictor of the disk head to direct the writes
and incur minimum response delays.

In this paper we concentrate on making the small syn-
chronous disk write operations efficient for log writing.
Our solution approach is along the the lines of [6, 2].
However, existing solutions either do not predict the disk
head position well or predict disk head position well with
high memory overhead. Our contribution is that, we pre-
dict the disk head positionreasonablywell with reduced
memory overhead. Another contribution arises from the
level of actual implementation of the work. We have im-
plemented the entire predictor as a kernel device driver,

which gives us a better interface to integrate it with a
filesystem.

The rest of the paper is organized as follows, In the Sec-
tion 2 we briefly present the background work that has
been done in the area of such disk head prediction. In
Section 3 we give an overview of the algorithms for disk
head prediction designed by us. In Section 5 we give an
overview of the device driver architecture that we put in
place to leverage the efficient disk head prediction algo-
rithms. We finally conclude in Section 6, after pointing
the future research questions to be answered. we present
two such approaches in the next section.

2 Background

2.1 Key Terms

Before describing the algorithms, we define a few terms.
The first term is theresponse timeof a disk which is de-
fined as the time between issuance of a disk write request
and its completion. Theskip distance is defined as the
number of sectors to be skipped by the disk head, the main
intent of all the algorithms to predict the skip distance as
accurately (below current disk head position) as possible
so as to ensure minimal response time. The third defini-
tion is ofwrite sizewhich is defined as the amount of data
to be written on the disk. Lastly we definethink time as
the time interval between issuance of consecutive write
requests.

Next we present theDisk Mimic Algorithm.

2.2 Disk Mimic Algorithm

The Disk Mimic Algorithm [5], tries to predict the ex-
act position of the disk head by first modeling the disk’s
behavior (in terms of various parameters to be described
next), and then referring to decide the exact skips for fu-
ture references. We briefly describe the Disk Mimic algo-
rithm next.

The Disk Mimic algorithm works in two phases, in the
first phase it creates an exhaustive profile of the disk be-
havior, it does so by issuing write requests of varying
sizes, the requests are sent with varying the think times
between them and by varying the skip distances. Also, the
size of the requests themselves are varied. The algorithm

2

records those skip sizes which give the minimal response
time for a given think time and write size. In order to
gain confidence of the measured value each experiment is
repeated and the average response time is calculated.

In the second phase, the algorithm uses the previously
constructed table to predict the disk head position, by re-
turning a skip size based on the size of the write and
the duration after which it is issued (think time). This
data is stored in a table format. The table is indexed by
the current think time and the request size and returns
the skip distance. Storing the necessary information in
table format leads to efficient lookups that can be per-
formed at runtime. However, the table can have high
memory footprint. Another data structure maintained by
the disk mimic is a free list of memory blocks. This list is
consulted to check whether the blocks requested by the
diskmimic predictor are actually free, in case they are
not, the diskmimic algorithm mandates that the write take
place at blocks which are further down the track, where
sufficient free memory is available.

We show the characteristic behavior of a disk in Fig 1, it
shows that the skip distance necessary to achieve minimal
response time increases monotonically with think time.
Which essentially points to the rotation of the disk head
in during the think time. Also after approximately 8 msec
the pattern repeats itself this happens due to the fact that
the disk has completes a full rotation in 8 msec. We de-
scribe the Weblogic Disk Prediction mechanism [2] next.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

op
tim

al
 s

ee
k

si
ze

 (
K

B
)

thinktime (ms)

Optimal skip size

Figure 1: Optimal skip versus think time

2.3 Weblogic Disk Head Prediction Algo-
rithm

The Disk Head predictor algorithm described in [2], pre-
dicts the disk head using a simple formula,

δB = (C + δT) ∗ L

Where, δB is the amount of skip,δT is the think time.
and, C and L are factors in the linear model. The values
of C and L are assigned according to the following logic.
C is the elapsed time since the issuance of a write and the
start of actual transfer to the disk. C also accounts for
the command overhead of the disk. Hence, the duration
(C + δT) represents the amount of time that elapses be-
tween the end of one data transfer and the beginning of the
next. L is the block speed of the disk, i.e., the number of
blocks that pass under the disk head per unit of time. The
product of these quantities gives the incremental position
of the disk head at the start of the data transfer of the next
write. The quantityδT is directly measurable after each
write, and the authors approximate the quantity C, by the
minimum observed response time. The block speed of the
disk is affected by the track being used: tracks towards the
outside of the platter have more blocks and thus a higher
speed. So, this algorithm periodically adjusts the value of
L after each write to the disk.

2.4 Comparison

The two approaches to measure the disk performance de-
scribed above are inherently different from one another.
While diskmimic keeps a big table, which completely
characterizes the disk performance, the Weblogic predic-
tor keeps a simple equation to represent the disk head ro-
tational position. The apparent benefits of the Weblogic
model over the diskmimic model is its small memory
overhead.

To compare the performance characteristics of the two
predictor algorithms, we took the following approach. We
characterized the complete performance of a disk by run-
ning the first phase of disk mimic algorithm. Then, we
initialize the C parameter of Weblogic predictor with the
smallest response time observed. The authors haven’t
clearly specified how they measure and update L periodi-
cally in [2]. Hence, we calculated the parameter L based
on the skip distances and think times in Figure 1. We
tested the performance by querying the Weblogic predic-

3

tor algorithm for various values of think times and a fixed
write size of 4 KB. We compared its response time with
the response time observed using skip size recommended
by the disk mimic algorithm.

We have plotted these results in Figure 2. As can be
seen from the figure the diskmimic algorithm gives better
performance (smaller response time) than the Weblogic
predictor in all the cases. These results can be attributed,
to the oversimplifying assumptions of the Weblogic Al-
gorithm. The Weblogic predictor takes the minimum ob-
served response time to be a good estimator of the pa-
rameter C. While, this assumption in itself is a plausible
conservative estimate, for a given write instruction the as-
sociated overhead due to the software paths are quite vari-
able and in case they are actually higher than C and min-
imum response time (its estimator), the disk head wold
actually have moved out of range, and hence would suf-
fer the penalty of an extra write. Similarly as pointed out
in [2] itself estimating the value of L is extremely hard and
in case of miscalculation, the disk head may persistently
be forced to suffer the overhead of an extra rotation. As
the diskmimic algorithm stores the information pertaining
to the disk’s response time behavior at a desired granu-
larity it is resistant to this kind of errors. However, disk
mimic algorithm requires offline characterization of each
disk, but the characterization is done once only.

To summarize, the diskmimic algorithm predicts the
disk head much more accurately than the Weblogic algo-
rithm but occupies a far more amount of space. In the
next section we would describe our algorithm which tries
to achieve the performance characteristics similar to the
diskmimic algorithm algorithm but occupies a far lesser
amount of memory.

3 Configurable Compact
DiskMimic Algorithms

We design a compact algorithm with aim of not only re-
ducing kernel memory footprint but also keeping the re-
sponse time with in a particular limit(tolerance) of opti-
mal response time. This tolerance is configurable, and
also determines the reduction of memory foot print that
we can achieve by the algorithm.

The key idea behind our approach is that we rely on the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

av
er

ag
e

re
sp

on
se

 ti
m

e(
m

s)

thinktime (ms)

Performance Comparison of Disk Mimic and Sigmod Paper

Disk Mimic
Sigmod

Figure 2: Performance comparison of diskmimic and Weblogic
disk head predictors

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

re
sp

on
se

 ti
m

e(
m

s)

skip size (KB)

x=32 x=48

skip size Vs response

Figure 3: Response time variation with skip size, for 0 ms think
time

non-optimal skip data points in skip size-response time
plane, rather than approximating the optimal skip size by
line interpolation. For a think time, we consider all those
skip sizes, whose response times are in the tolerance limit
of the minimum response times. For example, as shown
in the Figure: 3 , 32KB gives the minimum response time.
But for tolerance limit of 0.5 ms, we consider the skip
sizes in the range of 32-48 KB. Such set of skip sizes is
called ascandidate-setof a think time. Next we present
our compact algorithms based on this idea.

• Basic CompactWe select a skip size for a range
of think times, such that the skip size is present
in the candidate-set of each think time in the
range(inclusive). By enforcing the condition that the
selected size should be in each think time’s candi-
date set, we are ensuring that the response time is

4

in the limit; while, we are also reducing memory
footprint by storing just ¡begin-think-time,end-think-
time,skip-size¿ for a range of think times. For a
small tolerance, the range of think times would be
small, and hence, the compression benefit is going to
be small. Similarly, we expect more compression for
slightly larger tolerance.

• Line Compact We make further improvements on
this approach. Instead of selecting a skip-size for
a range of think times, we choose one line equa-
tion to represent set of skip sizes for range of think
times. We ensure that, the skip size represent by the
line equation is in the candidate set of think time.
Thus, this algorithm further improves the compres-
sion, while having response time with in tolerance
limit. The selection of line equation is non trivial.
We apply following greedy approach for the set of
think times.

algorithmLine Selection
Lcandidate ← φ

Init← 0,

For all data points i : (think time Ti, Skip(Ti))
ifLcandidate = φ,

Lcandidate ← allPairOfLines(Init, i)
else,

LnewCandidate ← extendLines(i)
ifLnewCandidate = φ

equation((Tinit, Ti−1))← L

whereL ∈ Lcandidate

Init← i, Lcandidate ← φ

else

Lcandidate ← LnewCandidate

end− For

end-algorithm

Figure 4: Line Selection Algorithm

The basic idea behind the greedy approach is to be-
gin with candidate set of lines, and extend the line-
equations to new data points as long as there is at
least one extensible line equation in the candidate
line set. A line equation is said to be extensible for
a data point, if it gives a skip size for correspond-
ing think time, that belongs to its candidate set. So

the algorithm tries to greedily extend the lines as
long as they can be extended. When there is no
extensible line equation for new data point, we se-
lect line equation for previous data point, and use
it to describe the range of think times up to previ-
ous data point. The candidate set of lines is initial-
ized as set of all possible pair of lines between two
consecutive data points, i.e. for think timeTi and
Ti+1, the lines are initialized as all possible pair of
lines between setSkip(Ti) abdSkip(Ti+1) , where
Skip(Tj) denotes the candidate-set corresponding
to think time Ti. In the pseudo code for the al-
gorithm, the functionextendLines(i) correspond
to extending lines forith data point and the func-
tion allPairofLines(Init, i) initializes the candi-
date set with all possible line equations between data
pointsInit andi.By this approach, we end up parti-
tioning data points to different sets, where each set of
data points is represented by one line equation. The
amount of compression benefit is determined by the
size of each of these sets.

• Plane Compact So far, we have considered only
skip sizes and think times for compression. We ex-
tend this to further include request size. So in this
approach, we will consider plane equations to rep-
resent skip sizes, for set of request sizes and think
times. This approach should improve the compres-
sion further.

3.1 Configuration Policies

So far we have described the policy of configuration as
to keep the average response time with in the tolerance
limit of optimal response time. However, there could be
policies as follows :-

• Aggressive Servicing: In this policy, we consider
those skip sizes who have the minimal service time,
but don’t necessarily have minimum average re-
sponse time. With such skip sizes, the disk head
could be right on the edge of writing and small dif-
ference in the workload can cause the disk to have
an extra rotation. This policy has a configurable pa-
rametermajority which is the probability of service
time being very close to minimal service time. With

5

(1−majority) probability, the disk may have extra
rotation.

• Defensive Servicing: In this policy, those skip sizes
are considered whose maximum service times are
bounded by a configurable parameter.

• Average-limit Servicing: In this policy, we consider
those skip sizes whose average response times are in
the tolerance limit of average response time. It has a
configurable parametertolerance, as described ear-
lier. This is different from defensive servicing pol-
icy, as it considers average response time instead of
maximal response time.

In this paper, we discuss about the average-limit servic-
ing policy only.

4 Evaluation

In this section, we study the characteristics of compact
disk-mimic algorithms. First, we compare our approach
with other approaches.Then we study the variation of
compression benefits with tolerance.

4.1 Experimental Setup

In this section we present a thorough evaluation of our
algorithm. We first experiment with log skipping in emu-
lated environment. The emulator is a user level program
that issues synchronous write requests to a raw disk par-
tition after the recommended skip distances by predictor
algorithms. We measure the service time (response time)
for the synchronous write requests.

For these sets of experiments, we vary the request size
from 4 KB to 200 KB in 4KB increments and think time
from 0 to 9 ms in100µs increments. We calculate the av-
erage service time over 25 different samples for each com-
bination of request size and think time. Our experiments
are run using a 80 GB SATA disk (HDS728080PLA380
PF2O). The system had a 1 GHz AMD Opteron proces-
sor, and a Linux 2.6.9 kernel installed. We had set the size
of the log to 500 MB.

4.2 Performance Comparison

First, we compare the our algorithm with two naive ap-
proaches,Line fittingandCoarse Segments, as follows.

• Line Fitting: In this approach, we use line equa-
tions to fit the plot of optimal skip size versus think
time. For example, Fig 1shows the variation of opti-
mal skip distance versus think time for 4KB request
size writes. The curve is piecewise linear, and re-
peats itself after every 8.3 ms, which is the disk rota-
tion period. We use distinct line equations to predict
the disk behavior while the think times lie in each
linear segment. For the above disk behavioral pat-
tern, we use two line equations, one line equation for
think times in range from 0 ms to 7.4 ms and the
other one from 7.5 ms to 8 ms.

• Coarse Segments: In this approach we select a
coarse set of points, in the plot of optimal skip size
versus think time. We find skip size for intermedi-
ate points, as a line interpolation of two immediate
neighbor points. The number of such data points is a
configurable parameter, which determines its mem-
ory footprint.

We have studied the performance of the above men-
tioned two algorithms by comparing their perfor-
mance with diskmimic algorithm. We present our
results and observations below. We find that both the
approaches have lesser memory footprint compared
to diskmimic. In the experiment setting for coarse
segments, the memory footprint was 1/3 of the to-
tal memory footprint due to disk mimic. But these
naive approaches do not perform well for some think
times, as shown in the Figure 5. The request size for
this set of experiments was 4 KB. We observed that
in some cases, their average response time is quite
high as compared to optimal response time. In order
to quantify the effectiveness of these algorithms, we
define a parameter called asoutlier fraction for a
tolerance, which is the fraction of data points whose
response time is not with in a specific bound of opti-
mal response time. We find that the outlier fraction in
Line Fitting is 0.48 for tolerance of 0.5 ms, which is
quite high. The outlier fraction for Coarse Segments
is relatively less and around 0.20 . Another metrics,

6

to quantify is themean lossfrom optimal response
time. We present the results in Table 6.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

thinktime (ms)

Coarse
Disk mimic

Line fit

Figure 5: Performance comparison of Naive Algorithms

Next, we present the performance characteristics of
compact disk mimic. Our compact disk mimic pre-
dictor ensures that response time due to skip distance
is always with in the limit of tolerance of minimum
average response time. So, we expected that there
won’t be any outliers.

Figure 6: Table of comparison metrics

Our expectation matched with our observation that
our predictor performed very close to disk mimic’s
performance. The graph shown in Figure 7 repre-
sents the performance of disk mimic and our com-
pact disk mimic algorithm for 4KB request size
writes. Compact disk mimic had memory footprint
benefit of factor of 3 over disk mimic.

4.3 Effect of Tolerance variation on
amount of compression

We also studied the effect of variation of tolerance on
the amount of compression. We present the results

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

thinktime (ms)

Disk Mimic
Basic-Compact

Figure 7: Performance Comparison of Disk Mimic and Compact
Disk Mimic

for the same in Figure 8 . We find that as tolerance
is increased, a skip distance is expected to be accept-
able for greater range of think times, which further
implies that there will be further reduction in foot-
print. As can be seen fro Figure 8 for a tolerance
limit of 1.5 ms, we could get footprint reduction by
factor of 6.

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2

m
em

or
y

fo
ot

pr
in

t r
ed

uc
tio

n
fa

ct
or

tolerance (ms)

toleranceVsFootPrint

Figure 8: Variation of footprint reduction with tolerance

We further study the performance loss due to in-
crease in tolerance. We measure this as mean loss
from optimal response time. The graph shown in
Figure 9 depicts this loss. We found that even for
tolerance limit of 1.5 ms, the mean loss was 0.4 ms.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2m
ea

n
lo

ss
 fr

om
 o

pt
im

al
 r

es
po

ns
e

tim
e

(m
s)

tolerance (ms)

tolerance Vs mean loss

Figure 9: Variation of mean performance loss with tolerance

5 Implementation

We have implemented the pseudo device driver for a
Linux 2.6.9 kernel. The pseudo device driver sits be-
tween the generic I/O layer of the kernel. It receives
I/O requests to the disk, performs some mapping on
them and then passes it on to another lower level de-
vice driver to carry out the actual I/O over the disk.
The mapping operation mentioned above involves,
querying the disk head prediction algorithm to obtain
the skip size, and updating a mapping data structure,
that keeps track of the actual logical to physical map-
ping of the block. The functionality of the Pseudo
Device driver is shown in Figure 10. The major com-
ponents of the device driver are the following

– Mapper The mapper consists of an mapping
from logical file specified disk blocks to physi-
cal disk blocks.

– Predictor This component when queries with
a given write request returns the predicted
physical address which would result in fast re-
sponse time

– Encapsulator This module takes a given
chunk of data and writes out a header to it, the
header contains information pertaining to the
actual logical identity of the block, along with
a version field. This header is written to assist
in crash recovery.

– Free List This list maintains the ids of all free
blocks on the disk, and is implemented as a
bitmap

heightheight

Figure 10: Pseudo Device Driver Architecture

The Pseudo device driver, sits on a disk drive with
size much greater than what it exposes to the filesys-
tem sitting on top of it. This give the device driver the
flexibility to write anywhere inside the disk, and not
worry about efficient space utilization. On receiving
a write request, the mapper, predictor and free list are
consulted to determine a suitable physical disk block
where the write could be done. After this the Encap-
sulator adds an appropriate header to the data block
and then the data block is passed on to the underly-
ing low level device driver, with a request to write to
to the predictor selected location.

6 Conclusion and Future Work

In this work we have investigated various methods to
make small synchronous writes to disk faster. Small
synchronous disk writes are an important workload,
a significant amount of journalling workload falls
under this category. The performance penalty of
small synchronous writes occurs due the extra disk
latency involved in writing data reliably in parts on
consecutive blocks, which incurs the added cost of
extra disk head rotation.

8

In this work we have tried to solve the problem by
developing disk head predictors, and use its output
to save the write penalties associated with ordinary
writes. The work involved two major parts a) devel-
opment of a disk head predictor algorithm, and b)
design and implementation of a pseudo device driver
architecture which can take benefit of the predictor
algorithm and make log writing fast.

The key lessons learned from the study is the real-
ization that disk head prediction is possible with rea-
sonable amount of accuracy. We have also realized
that the degree of desired accuracy is essentially a
trade-off with the size of memory that one wants to
devote for the predictor. We have also designed and
implemented a device driver architecture to integrate
the disk head predictor with an actual filesystem.

Our immediate future work involves, understanding
and characterizing the interdependency between disk
head prediction accuracy and storage requirement
thoroughly. We want to understand the maximum
reduction of memory footprint that can be achieved
without compromising the performance within tol-
erance limit. Also, we need to solve the glitches
present in our device driver implementation, inte-
grate it with a real journalling system and check its
performance. Over a longer duration we would like
to investigate the performance of the designed sys-
tem with a transactional database system.

7 Acknowledgments

We would like to thank Florentina Popovici, Lak-
shmi Bairavasundaram, Haryadi Gunawi, Nitin
Agrawal and Vijayan Prabhakran for their help and
suggestions for problems faced in pseudo device
driver implementation. We would like to thank Prof.
Remzi for his various suggestions and ideas during
the project.

References
[1] S. Best. Jfs log: how the journaled file system performs log-

ging. In ALS’00: Proceedings of the 4th conference on 4th
Annual Linux Showcase & Conference, Atlanta, pages 9–9,
Berkeley, CA, USA, 2000. USENIX Association.

[2] B. Gallagher, D. Jacobs, and A. Langen. A High-
Performance, Transactional Filestore for Application Servers.
In (SIGMOD ’05), Baltimore,MaryLand, June 2005.

[3] D. Hitz, J. Lau, and M. Malcolm. File system design for
an nfs file server appliance. InWTEC’94: Proceedings of
the USENIX Winter 1994 Technical Conference on USENIX
Winter 1994 Technical Conference, pages 19–19, Berkeley,
CA, USA, 1994. USENIX Association.

[4] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for unix. volume 2, pages 181–197, New
York, NY, USA, 1984. ACM.

[5] F. I. Popovici. Data-Driven Models in Storage System De-
sign. PhD thesis, UW- Madison, 2007.

[6] F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Robust, Portable I/O Scheduling with the Disk
Mimic. In Proceedings of the USENIX 2003 Annual Tech-
nical Conference (USENIX ’03), San Antonio,Texas, June
2003.

[7] M. Rosenblum and J. Ousterhout. The design and implemen-
tation of a log-structured file system. InACM Transactions
on Computer Systems, pages 26–52. ACM, 1992.

[8] S. C. Tweedie. Journaling the linux ext2fs file system. InIn
The Fourth Annual Linux Expo,, Durham, N. Carolina, 1998.

9

