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Abstract
Unchecked errors are problematic in general, but are especially
pernicious in operating system file management code. Transient or
permanent hardware failures are inevitable, and error-management
bugs at the file system layer can cause silent data corruption from
which recovery is difficult or impossible. We propose an interpro-
cedural static analysis that tracks errors as they propagate through
file system code. Our implementation detects overwritten, out-of-
scope, and unsaved errors. Analysis of numerous Linux file system
implementations uncovers numerous error propagation bugs. Our
flow- and context-sensitive approach produces more precise results
than related techniques while providing the programmer with bet-
ter diagnostic information, including possible execution paths that
demonstrate each bug found.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—formal methods, reli-
ability, validation; D.2.5 [Software Engineering]: Testing and
Debugging—error handling and recovery; D.4.3 [Operating Sys-
tems]: File Systems Management

General Terms Algorithms, Languages, Reliability, Verification

Keywords static program analysis, interprocedural dataflow anal-
ysis, copy constant propagation, weighted pushdown systems, bi-
nary decision diagrams

1. Introduction
Run-time errors are unavoidable whenever software interacts with
the physical world. Incorrect handling of errors is a longstanding
problem in many application domains, but is especially troubling
when it affects the file-management code of operating systems.
File systems occupy a delicate middle layer in operating systems.
They sit above generic block storage drivers, such as those that
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implement SCSI, IDE, or software RAID; or above network drivers
in the case of network file systems. These lower layers ultimately
interact with the physical world, and as such, may produce both
transient and persistent errors. (Even the most skilled programmer
cannot prevent low-level errors from occurring when hot coffee
is spilled onto a laptop, or when an adventurous gopher chews
through a fiber-optic cable.)

At the same time, implementations of specific file systems sit
below generic file management layers of the operating system,
which in turn relay information through system calls into user ap-
plications. No application can possibly manage errors that the file
system fails to report. The trustworthiness of the file system in han-
dling or propagating errors is an upper bound on the trustworthiness
of all storage-dependent user applications.

Furthermore, file systems are not so exotic that this problem
can simply be fixed and forgotten. Because file systems play such
a critical supporting role, there is strong motivation to specialize
them for different purposes or with different assumed priorities.
Thus, implementations proliferate. Well-known Unix file systems
include ext2 [6], ext3 [36] (commonly the default Linux file sys-
tem), ReiserFS [27], IBM’s JFS [2], SGI’s XFS [35], Sun’s ZFS
[33], Apple’s HFS [1], AFS [16], NFS [30], and others, with more
constantly appearing. Approaches vary in terms of performance;
scalability; reliability; consistency models; and special features
such as reconfigurability, networked operation, or search function-
ality. Linux alone includes dozens of different file system imple-
mentations. There is no reason to believe that file system designers
are running out of ideas or that the technological changes which
often motivate new file system development are slowing down.

Given the destructive potential of buggy file systems, it is crit-
ical that error propagation patterns be carefully vetted. However,
failures in the physical layer, while inevitable, are rare enough in
daily use that traditional testing approaches are unlikely to bear
fruit. Therefore, we propose a static program analysis to identify
certain common classes of error mismanagement. Our approach is a
flow- and context-sensitive, interprocedural, forward dataflow anal-
ysis. The analysis resembles an over-approximating counterpart to
a typical (under-approximating) copy constant propagation analy-
sis [38], but with certain additional specializations for our specific
problem domain. Our analysis is unsound in the presence of point-
ers, but has been designed for a balance of precision and accuracy
that is useful to kernel developers in practice. Diagnostic reports,



for example, include detailed witness traces that illustrate the error-
fumbling steps a file system could take.

The remainder of this paper is organized as follows. Section 2
provides additional background on error management in the Linux
kernel; file systems in this kernel serve as the experimental focus
of our research. Section 3 presents the error propagation analysis
in detail, including the encoding of this dataflow problem as a
weighted pushdown system. In Section 4, we show how to extract
specific error reports and detailed diagnostic information from the
raw analysis results. Section 5 discusses our experimental results
on 48 Linux file systems. We consider related work in Section 7,
and Section 8 concludes.

2. Error Management in the Linux Kernel
In this paper we focus on file system implementations found in
the Linux 2.6.15.4 kernel. Our approach uses a mixture of generic
program analysis techniques and specializations for the idiomatic
style of code used in Linux. Other operating systems share the same
general style, although some details may differ.

2.1 Integer Error Codes
Different kinds of failure occur, and each requires different fault
management. For example, in the case of an input/output error, the
EIO error code could be generated, and a routine that receives the
error code might abort a failed transaction, schedule it for later
retry, release allocated buffers to prevent memory leaks, and so
on. In the case of a memory shortage, the ENOMEM error code is
raised, signaling that the system must release some memory in
order to continue the operation. In the case of a full disk quota,
ENOSPC is propagated across many file system routines to prevent
new allocations.

Unfortunately, Linux (like many operating systems) is written
in C, a language which offers no exception handling mechanisms
by which an error code could be “raised” or “thrown.” Errors must
propagate through conventional mechanisms such as variable as-
signments and function return values. Most Linux run time errors
are represented as simple integer codes. Each integer value repre-
sents a different kind of error, and macros give these mnemonic
names: EIO is defined as 5, ENOMEM is 12, and so on. Linux uses 34
basic named error macros, defined as the constants 1 through 34.

Error codes are negated by convention, so -EIO may be as-
signed to a variable or returned from a function to signal an I/O
error. This encourages overloading the return values of function
calls. An int-returning function might return the positive count of
bytes written to disk if a write succeeds, or a negative error code
if the write fails. A careful caller must check for negative return
values and propagate or handle errors that arise. It is important to
remember that error codes are merely integers given special mean-
ing through coding conventions. Any int could potentially hold
an error code, and the C type system offers little help determining
which variables actually carry errors.

2.2 Consequences of Not Handling Errors
Ideally, an error code arises in lower layers (such as block device
drivers) and propagates upward through the file system, passing
from variable to variable and from callee to caller, until it is prop-
erly handled or escapes into user space as an error result from a
system call. Error propagation chains can be long, crossing many
functions, modules, and software layers. If buggy code breaks this
chain, higher layers receive incorrect reports regarding the outcome
of file operations.

For example, if there is an I/O error deep down in the sync()
path, but the EIO error code is lost in the middle, then the applica-
tion will believe its attempt to synchronize with the storage system

1 int status = write(...);
2 if (status < 0) {
3 printk("write failed: %d\n", status);
4 // perform recovery procedures
5 } else {
6 // write succeeded
7 }
8 // no unchecked error at this point

Figure 1. Typical error-checking code

has succeeded, when in fact it failed. Any recovery routine imple-
mented in upper layers will not be executed. “Silent” errors such
as this are difficult to debug, and by the time they become visible,
data may already be irreparably corrupted or destroyed.

2.3 Distinguishing Checked from Unchecked Errors
There is no requirement to clear or reset an error-carrying variable
after that error has been checked and handled. Once recovery code
has dealt with the problem, a variable that contained -EIO to report
an I/O error can now be seen as merely containing the integer value
-5. Overwriting such a variable before it was checked is a bug, but
overwriting it after it has been checked is fine. For this reason, it
is useful to distinguish unchecked error codes from other values
which might either be already-checked errors or ordinary (non-
error-bearing) integers. This in turn requires recognizing correct
error handling when it does occur. Recognizing error-handling code
is nontrivial, given the complexity and variety of error recovery
policies in modern file systems. For purposes of this analysis, we
adopt a simple definition of “correct handling” that works well in
many cases, and which can be extended easily as necessary.

Figure 1 shows a typical fragment of Linux kernel code. Many
error-handling routines eventually call printk, an error-logging
function. Furthermore, the error code being handled is often passed
as an argument in the printk call. Because calling printk is an
explicit action taken by a programmer, it is reasonable to assume
that the programmer is aware of the error and is handling it ap-
propriately. Thus, while status may have contained an unchecked
error code before the call to printk on line 3, we can safely assume
that from the printk call forward, the error has been checked and
is being handled. If status contained an unchecked error on line
2, then it contains a checked error on line 4.

Because error codes are passed as negative integers (such as
-EIO for -5), sign-checking such as that on line 2 is common. If the
condition is false, then status must be non-negative and therefore
cannot contain an error code on line 6. When paths merge at line
8, status may contain a checked error or no error, but it cannot
possibly contain an unchecked error. Therefore, there is no error
propagation bug in this code.

Passing error codes to printk is common, but not universal.
Code may check for and handle errors silently, or may use printk
to warn about a problem that has been detected but not yet reme-
died. More accurate recognition of error-checking code may re-
quire programmer guidance or annotation. For example, we might
require that programmers assign a special ECHECKED value to vari-
ables with checked errors, or pass such variables as arguments to a
special checked function that marks them as taken care of. Requir-
ing explicit programmer action to mark errors as checked would
improve diagnosis by avoiding the silent propagation failures that
presently occur.

3. The Error Propagation Analysis
The first task is to determine, at each program point, the set of
unchecked error codes each variable might contain. Given this in-



formation, the bugs described in Section 2 can be detected using a
second pass over the code. For example, error overwriting occurs
when the left side of an assignment already contains an unchecked
error, while error dropping occurs when a variable containing an
unchecked error goes out of scope. Error propagation can be for-
mulated as a forward dataflow problem. Error constants such as
EIO generate unchecked error codes. Assignments and related con-
structs propagate unchecked errors forward from one location (vari-
able) to another. Propagation ends when a variable goes out of
scope or is correctly checked by error-handling code.

This problem is reminiscent of copy constant propagation [38].
However, copy constant propagation identifies the one constant
value that a variable must contain (if any), whereas we identify
the set of error code constants that a variable may contain. Copy
constant propagation drives replacement of variables with constants
in optimizing compilers, and therefore must err on the side of
under-approximation. We use error propagation analysis to drive
bug reporting, and therefore we prefer over-approximate so that no
possible bug is overlooked.

3.1 Weighted Pushdown Systems
We use weighted pushdown systems [28] to formulate and solve
the error propagation dataflow problem. A weighted pushdown sys-
tem is a pushdown system that has a weight associated with each
rule. These weights can be thought of as transfer functions that de-
scribe the effect of each statement on the state of the program. Such
weights must be elements of a set that satisfies the bounded idem-
potent semiring properties. We now formally define weighted push-
down systems and related terms; Section 3.2 shows how weighted
pushdown systems can be applied to solve the error propagation
dataflow problem.

Definition 1. A pushdown system is a triple P = (P, Γ, ∆)
where P and Γ are finite sets called the control locations and the
stack alphabet, respectively. A configuration ofP is a pair 〈p, w〉,
where p ∈ P and w ∈ Γ∗. ∆ contains a finite number of rules of
the form 〈p, γ〉 ↪→ 〈p′, w〉, where p, p′ ∈ P , γ ∈ Γ, and w ∈ Γ∗,
which define a transition relation ⇒ between configurations of P
as follows:

If r = 〈p, γ〉 ↪→ 〈p′, w〉, then 〈p, γw′〉 ⇒ 〈p′, ww′〉 for all
w′ ∈ Γ∗.

As shown by Lal et al. [22] and Reps et al. [28], a pushdown
system can be used to model the set of valid paths in an interproce-
dural control-flow graph (CFG).

Definition 2. A bounded idempotent semiring is a quintuple (D,
⊕, ⊗, 0, 1), where D is a set, 0 and 1 are elements of D, and
⊕ (the combine operator) and ⊗ (the extend operator) are binary
operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element,
and where ⊕ is idempotent (i.e., for all a ∈ D, a⊕ a = a).

2. (D,⊗) is a monoid with the neutral element 1.
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have a⊗ (b⊕

c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).
4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D,

a⊗ 0 = 0 = 0⊗ a.
5. In the partial order v defined by: ∀a, b ∈ D, a v b iff

a⊕ b = a, there are no infinite descending chains.

Each element of D is called a weight. The extend operator (⊗)
is used to calculate the weight of a path. The combine operator (⊕)
is used to compute the weight of a set of paths that merge.

Property 1 in the above definition ensures that the order in which
we merge paths is not relevant. Property 2 requires the existence
of a weight that has no effect on the state of the program, i.e., an

identity function. Property 3 allows exploring program paths in a
more efficient manner. Property 5 is required in order to guarantee
termination.

Definition 3. A weighted pushdown system is a triple W =
(P,S, f) such that P = (P, Γ, ∆) is a pushdown system, S =
(D,⊕,⊗, 0, 1) is a bounded idempotent semiring, and f : ∆ → D
is a function that assigns a value from D to each rule P .

Let σ = [r1, . . . , rk] be a sequence of rules (a path in the CFG)
from ∆∗. A value can be associated with σ by using function f .
This value is defined as v(σ) = f(r1)⊗· · ·⊗f(rk). In addition, for
any configurations c and c′ of P , path(c, c′) denotes the set of all
rule sequences [r1, . . . , rk], i.e., the set of all paths, that transform
c into c′.

Definition 4. LetW = (P,S, f) be a weighted pushdown system,
where P = (P, Γ, ∆), and let C ⊆ P × Γ∗ be a regular set of
configurations. The generalized pushdown successor problem is
to find for each c ∈ P × Γ∗:

• δ(c) ≡ ⊕{v(σ) |σ ∈ path(c′, c), c′ ∈ C}
• a witness set of paths w(c) ⊆ ∪c′∈C path(c′, c) such that
⊕σ∈w(c)v(σ) = δ(c).

The generalized pushdown successor problem is a forward
reachability problem. It finds δ(c), the combine of values of all
paths between pairs of configurations, i.e., the meet over all paths
value for each pair of configurations. A witness set w(c) is also
obtained. This is a subset of the paths inspected such that their
combine is equal to δ(c). This set can be used as a means to justify
the resulting δ(c).

The meet over all paths value is the best possible solution to
a static dataflow problem. Thus, a weighted pushdown system is
a useful dataflow engine for problems that can be encoded with
suitable weight domains. It has been shown how dataflow prob-
lems such as copy constant propagation can be encoded as weight
domains [28]. In Section 3.2 we show how the error propagation
problem can also be encoded as a weight domain. Our approach
also makes extensive use of witness sets to provide programmers
with detailed diagnostic traces for each potential bug; details of this
process appear in Section 4.

In order to handle local variables properly, we use the exten-
sion to weighted pushdown systems proposed by Lal et al. [22].
This extension requires the definition of a merge function. A merge
function can be seen as a special case of the extend operator. This
function is used when extending a weight w1 at a call program point
with a weight w2 at the end of the corresponding callee. The result-
ing weight corresponds to the weight after the call. The difference
between the merge function and a standard extend operation is that
w2 contains information about the callee’s locals that is irrelevant
to the caller. Thus, the merge function defines what information
from w2 to keep or discard before performing the extend.

3.2 Creating the Weighted Pushdown System
As discussed in Section 3.1, the weighted pushdown system con-
sists of three main components: a pushdown system, a bounded
idempotent semiring, and a mapping from pushdown system rules
to associated weights. We now define these components for a
weighted pushdown system that encodes the error propagation
dataflow problem.

3.2.1 Pushdown System
We model the control flow of the program with a pushdown system
following the standard approach described by Lal et al. [23]. Let
P contain a single state {p}. Γ corresponds to program statement
locations, and ∆ corresponds to edges of the interprocedural CFG.
Table 1 shows the PDS rule for each type of CFG edge.



Rule Control flow modeled

〈p, u〉 ↪→ 〈p, v〉 CFG edge u → v, which is not a call
〈p, c〉 ↪→ 〈p, fenterr〉 CFG edge c → r, which calls

procedure f beginning at node fenter

〈p, fexit〉 ↪→ 〈p, ε〉 Return from procedure f at fexit

Table 1. The encoding of control flow as PDS rules

3.2.2 Bounded Idempotent Semiring
We classify integer constants into two categories: error constants
and non-error constants. Let E be the set of error constants, such
as the values -1 through -34 in Linux. For purposes of this analysis,
all non-error constants can be treated as a single value, which we
represent as OK . We also introduce uninitialized to represent
uninitialized values. Let C = E ∪ {OK , uninitialized} be the set
of all constants. Finally, let V be the set of all program variables.

Let S = (D, ⊕, ⊗, 0, 1) be a bounded idempotent semiring as
in Definition 2. Elements of D are drawn from V → 2V∪C , so each
weight in D is a mapping from variables to sets containing vari-
ables, error values, OK and/or uninitialized . This is interpreted
as giving the possible values of v following execution of a given
program statement in terms of the values of constants and variables
before that statement.

The combine operator is applied component-wise, with each
variable v mapping to any of the values it could have mapped to
in either of the weights being combined. For all w1, w2 ∈ D and
all v ∈ V:

(w1 ⊕ w2)(v) ≡ w1(v) ∪ w2(v)

The extend operator is also applied component-wise:

(w1 ⊗ w2)(v) ≡ (C ∩ w2(v)) ∪
[

v′∈V∩w2(v)

w1(v
′)

where w1(v) 6= ∅, otherwise (w1 ⊗ w2)(v) ≡ ∅. This definition
is essentially function composition generalized to the power set of
variables and constants rather than just single variables.

The weight 1 is defined as {(v, {v}) | v ∈ V}, which maps each
variable to the set containing only itself. This weight can be seen
as a power set generalization of the identity function. We define
weight 0 as {(v, ∅) | v ∈ V}, mapping each variable to the empty
set.

Finally, the merge function is defined as follows. Let w1 be the
weight of the caller just before the call, and let w2 be the weight at
the very end of the callee. Then for any variable v ∈ V ,

merge(w1(v), w2(v)) ≡

(
w1(v) if v is a global variable
w2(v) if v is a local variable

This has the effect of propagating any changes that the callee made
to globals while discarding any changes that the callee made to
locals.

3.2.3 Transfer Functions
Each control-flow edge in the source program corresponds to a
WPDS rule and therefore needs an associated weight drawn from
the set of transfer functions D defined in Section 3.2.2. In the
following discussion of specific source constructs, we generally
describe the transfer function as being associated with a specific
statement. The corresponding WPDS rule weight is associated with
edge from that statement to its unique successor. Conditionals have
multiple outgoing edges and therefore will require multiple transfer
functions.

Assignment statements. We consider two types of assignments as
explained below. We leave the discussion of assignments involving
function calls such as v = f() for later in this section.

Simple assignments. These are assignments of the form v = e,
where e ∈ V ∪ C. Let Ident be the function that maps each
variable to the set containing itself. The transfer function for a
simple assignment is then Ident [v 7→ {e}]. In other words, v must
have the value of e after this assignment, while all other variables
still have whatever values they had before the assignment.

Complex assignments. These are assignments in which the as-
signed expression e is not a simple variable or constant. We assume
that the program has been converted into three-address form, with
no more than one operator on the right side of each assignment.

Consider an assignment of the form v = e1 op e2 where
e1, e2 ∈ V ∪ C and op is a binary arithmetic or bitwise opera-
tor (+, &, <<, etc.). Define Vars as the set of variables appearing
on the right side of the assignment: Vars ≡ {e1, e2} ∩ V . Al-
though error codes are represented as integers they are concep-
tually atomic values on which arithmetic operations are mean-
ingless. Thus, if op is an arithmetic or bitwise operation, then
we can safely assume that the variables in V do not contain er-
rors. Furthermore, the result of this operation must be a non-error
as well. Therefore, the transfer function for this assignment is
Ident [u 7→ OK for all u ∈ Vars ∪ {v}].

Consider instead an assignment of the form v = e1 op e2 where
e1, e2 ∈ V ∪ C and op is a binary relational operator (>, ==,
etc.). Relational comparisons are meaningful for error codes, so
we cannot assume that e1 and e2 are non-errors. However, we
can assume that the result of the comparison, assigned to v, is a
non-error. Therefore, the transfer function for this assignment is
Ident [v 7→ OK ].

Assignments involving unary operators (v = op e1) are treated
similarly: arithmetic and bitwise operators map both v and e1 (if
a variable) to {OK}. However, C programmers often use logical
negation to test for equality to 0. So when op is logical negation
(!) or an indirection operator (&, *), the transfer function maps v to
OK but leaves e1 unchanged.

Conditional statements. We assume that conditional statements
with compound conditions are rewritten as nested conditional state-
ments with simple conditions. A transfer function is then associated
with each branch of a conditional statement. The transfer function
to be applied on each branch depends upon the condition.

Consider a conditional statement of the form if (v), where
v ∈ V . The transfer functions associated with the true and false
branches are Ident and Ident [v 7→ {OK}], respectively. The true
branch is selected when v is not equal to zero, which does not reveal
any additional information about v: it may or may not contain an
error value. In this case, variables should remain mapped to what-
ever values they had before, and thus we simply apply the identity
function. On the other hand, the false branch is selected when v
is equal to zero. Because zero is never an error code, this tells us
that v definitely does not contain an error value. In this case the
Ident [v 7→ {OK}] transfer function reflects the new knowledge
obtained about v while keeping all other variables unchanged.

Conversely, consider conditional statements of the form if (! v),
if (v > 0), if (v ≥ 0), if (0 < v), if (0 ≤ v), if (v == 0) and
if (0 == v). In all of these cases, the transfer function associated
with the true branch is Ident [v 7→ {OK}]. The true branch is
never selected when v is negative, so v cannot contain an error
value on that branch. The transfer function for the false branch is
the identity function Ident .

Lastly, consider conditional statements such as if (v < 0),
if (v ≤ 0), if (0 > v) and if (0 ≥ v). We associate the transfer
function Ident with the true branch and Ident [v 7→ {OK}] with



the false branch. In each of these cases, the false branch is only
selected when v is non-negative, which means that v cannot contain
an error code.

For conditional statements that do not match any of the patterns
discussed above, we simply associate Ident with both true and
false branches. An example of such a pattern is if (v1 < v2), where
v1, v2 ∈ V .

Function calls. We adopt the convention used by Reps et al. [28]
in which the CFG for each function has unique entry and exit
nodes. The entry node is not the first statement in the function, but
rather appears just before the first statement. Likewise, we assume
that all function-terminating statements (e.g., return statements
or last-block fall-through statements) have a newly-introduced per-
function exit node as their unique successors. We use these dummy
entry and exit nodes to manage data transfer between callers and
callees, as discussed below.

CFGs for individual functions are combined together to form an
interprocedural CFG. Furthermore, each CFG node n that contains
a function call is split into two nodes: a call node n1 and a return-
site node n2. There is an interprocedural call-to-enter edge from
n1 to the callee’s entry node. Similarly, there is an interprocedural
exit-to-return-site edge from the callee’s exit node to n2. As before,
the rest of the nodes represent statements and conditions in the
program.

Local variable initialization. First consider a call to a void func-
tion that takes no parameters. Let L ⊆ V be the set of local
variables and G ⊆ V be the set of global variables in the pro-
gram. Recall that transfer functions are associated with edges
in the CFG. For the edge from the callee’s entry node to the
first actual statement in the callee, we use the transfer function
Ident [v 7→ {uninitialized} for v ∈ L]. When a function begins
executing, local variables are uninitialized while global variables
retain their old values.

Parameter passing. Now consider a call to a void function that
takes one or more parameters. We introduce new global variables,
called exchange variables, to convey actual arguments from the
caller into the formal parameters of the callee. One new exchange
variable is introduced for each function parameter. For example,
consider a function F with formal parameters f1 and f2. Let
F (a1, a2) be a function call to F with actual parameters a1 and a2,
where a1, a2 ∈ V ∪C. We introduce two global exchange variables
named F$1 and F$2. The transfer function on the call-to-enter
edge is Ident [F$i 7→ {ai} for 0 < i ≤ number of parameters], as
though each actual argument were copied into the corresponding
global exchange variable. Along the edge from the callee’s entry
node to the first actual statement in the callee, we use the transfer
function Ident [v 7→ {uninitialized} for v ∈ L][fi 7→ {Fi} for
0 < i ≤ number of parameters], as though each formal argument
were initialized with a value from the corresponding global ex-
change variable. Other local variables are uninitialized as before.
Thus, argument passing is modeled a two-step process: first the
caller copies its arguments into global exchange variables, then the
callee copies from the global exchange variables into its formal
parameters.

Return value passing. Lastly, suppose that function F is a non-
void function. The transfer functions associated with the call-to-
enter and enter-to-first-statement edges remain as given above. For
the edge connecting each return node to the dummy exit node,
we use the transfer function Ident [F$return 7→ {r}] where
F$return is a global exchange variable and r ∈ V ∪ C is the
value being returned. The exit-to-return-site edge has the transfer
function Ident [v 7→ {F$return}] where v ∈ V is the variable (if
any) receiving the return value in the caller. For void functions, this
transfer function is just the identity function.

Other interprocedural issues. We consider functions whose im-
plementation is not available to not have any effect on the state of
the program, thus we simply apply the identity function on calls
to such functions. This could easily be augmented to declare some
external functions as error-code-returning via explicit programmer
annotations. For functions with variable-length parameter lists, we
apply the above transfer functions but we only consider the formal
parameters explicitly declared.

Pointers. Our treatment of pointers is both unsound and incom-
plete, but it gives useful results in practice. We find a common pat-
tern in the use of pointers to integer variables used to hold error
values. Many functions take a pointer to the callee-local variable
where an error code, if any, should be written. Thus we only con-
sider pointer parameters and ignore other pointer operations. We
assume that inside a function, pointer variables have no aliases and
are never changed to point to some other variable.

Under these conditions, pointer parameters are indistinguish-
able from call-by-copy-return parameters. On the interprocedural
call-to-enter edge, we copy pointed-to values from the callee into
the caller, just as for simple integer parameters. On the interproce-
dural exit-to-return-site edge, we copy callee values back into the
caller. This extra copy-back on return is what distinguishes pointer
arguments from non-pointer arguments, because it allows changes
made by the callee to become visible to the caller.

Function pointers. Most function pointers in Linux file systems
are used in a fairly restricted manner. Global structures define han-
dlers for generic operations (e.g., read, write, open, close), with
one function pointer field per operation. Fields are populated either
statically or via assignments of the form “file_ops->write =
ntfs_file_write” where ntfs_file_write names a function,
not another function pointer. In either case, it is straightforward to
identify the set of all possible implementations of a given opera-
tion. We then rewrite calls across such function pointers as switch
statements that choose among possible implementations nondeter-
ministically. This technique, first employed by Gunawi et al. [11],
accounts for approximately 80% of function pointer calls while
avoiding the overhead and complexity of a general field-sensitive
points-to analysis. The remaining 20% of calls are treated as Ident .

printk. As suggested in Section 2.3, we consider any error values
in a variable to have been checked when the variable is passed
as an argument to printk. printk is a variable-length parameter
list function whose first parameter is always a format string. The
transfer function for such a call is Ident [v 7→ OK for v in the
actual int-typed arguments to printk].

4. Finding and Describing Bugs
Ideally, some action should be taken whenever an error occurs.
Actions range from simple notification to attempted recovery. We
say that an error has been checked if such an action has taken
place. Thus, our goal is to find those error instances that vanish
before proper checking is performed. We find three general cases
in which unchecked errors are commonly lost: the variable holding
the unchecked error value (1) is overwritten with a new value,
(2) goes out of scope, or (3) is returned by a function but not saved
by the caller. We further discuss each of these scenarios below.

Overwritten. An unchecked error is overwritten when the vari-
able that contains it is assigned another value. The new value can
be anything, including another error value. If the left side of any
assignment may already contain an error, then that assignment is
invalid and will produce a diagnostic message from our tool. How-
ever, we explicitly allow an error value to be overwritten with itself.
For example, x = EIO is allowed if x can already have the value



1 int nextId()
2 {
3 static int id;
4 ++id;
5 return id;
6 }
7

8

9 int load()
10 {
11 int status = -EIO;
12 int result = 0;
13

14 if (nextId())
15 result = status;
16

17 if (nextId())
18 result = -EPIPE;
19

20 return result;
21 }

(a) Example code

example.c:11: "status" receives an error from "TENTATIVE_EIO"
example.c:12: "status" may have an unchecked error
example.c:14: "status" may have an unchecked error
example.c:4: "status" may have an unchecked error
example.c:5: "status" may have an unchecked error
example.c:14: "status" may have an unchecked error
example.c:15: "result" receives an error from "status"
example.c:17: "result" may have an unchecked error
example.c:4: "result" may have an unchecked error
example.c:5: "result" may have an unchecked error
example.c:17: "result" may have an unchecked error
example.c:18: overwriting potential unchecked error in "result"

(b) Complete diagnostic path trace

example.c:11: "status" receives an error from "TENTATIVE_EIO"
example.c:15: "result" receives an error from "status"
example.c:18: overwriting potential unchecked error in "result"

(c) Diagnostic path slice

Figure 2. Example code fragment and corresponding diagnostic output

EIO or OK , but is flag as invalid if x can already have any other
error value. We open this loophole because we find that this is a
commonly-occurring pattern universally judged to be acceptable
by our operating-systems domain experts.

Out of scope. Another common scenario in which unchecked er-
rors are lost is when variables go out of scope. In order to detect
this problem, we insert assignment statements at the end of each
function that assign OK to each local variable except for the vari-
able being returned (if any). Thus, if any local variable contains an
unchecked error when the function ends, then the error is overwrit-
ten by the inserted assignment and our analysis detects the problem.

Unsaved return values. For each function whose result is not
already being saved by the caller, we introduce a temporary local
variable to hold that result. These temporaries are overwritten with
OK at the end of the function, as described above. Thus, unsaved
return values are transformed into out-of-scope bugs. A systematic
naming convention for these newly-added temporary variables lets
us distinguish the two cases later so that they can be described
properly in diagnostic messages.

4.1 Querying the Weighted Pushdown System
We perform a poststar query [28] on the weighted pushdown sys-
tem, with the beginning of the program as the starting configura-
tion. A weighted automaton is obtained as the result. In order to
read out weights from this automaton, we apply the path_summary
algorithm of Lal et al. [21]. This algorithm calculates, for each state
in the automaton, the combine of all paths in the automaton from
that state to the accepting state, if any. We are then able to retrieve
the weight for any specific point in the program, which is the weight
from the beginning of the program to that particular point.

We retrieve the associated weight w for each assignment p. It is
important to note that w does not include the effect of the assign-
ment found at p itself. Our goal is to find whether the assignment
at p may overwrite an error value. Let S, T ⊆ C respectively be the
sets of possible constant values held by the source and target of the
assignment, as revealed by w. Then:

1. If T ∩ E = ∅, then the assignment cannot overwrite any error
code and need not be examined further.

2. If T ∩ E = S = {e} for some single error code e, then the
assignment can only overwrite an error code with the same
code. As noted above, we explicitly allow this.

3. Otherwise, it is possible that this assignment will overwrite an
unchecked error code with a different code. Such an assignment
is incorrect, and will be presented to the programmer along with
suitable diagnostic information.

We report at most one overwritten error for each assignment; we
do not report every error value that might be overwritten. This can
sometimes be a source of imprecision. For example, the instance
chosen to be reported may actually be a false positive, fooling the
programmer into believing that no real problem exists. However, a
different error value potentially overwritten by the same assignment
may be a true bug. On the other hand, reporting all possibly-
overwritten error values might overwhelm the programmer with
seemingly-redundant output.

4.2 Witnesses, Paths, and Slices
Weighted pushdown systems support witness tracing. As men-
tioned in Definition 4, a witness set is a set of paths that justify
the weight reported for a given configuration. This information lets
us report not just the location of a bad assignment, but also detailed
information about how that program point was reached in a way
that exhibits the bug.

For each program point p containing a bad, error-overwriting
assignment, we can retrieve a corresponding set of witness paths.
Each witness path starts at the beginning of the program and ends
at p. We select one of these paths arbitrarily and traverse it back-
ward, starting at p and moving along reversed CFG edges toward
the beginning of the program. During this backward traversal, we
keep track of a single special target location which is initially the
variable overwritten at p. The goal is to stop when the target is di-
rectly assigned the error value under consideration, i.e., when we



have found the point at which the error was originated. This allows
us to present only a relevant suffix of the complete witness path.

Let t be the currently-tracked target location. Each statement
along the backward traversal of the selected witness path has one
of the following forms:

1. t = x for some other variable x ∈ V . Then the overwritten error
value in t must have come from x. We continue the backward
path traversal, but with x as the new tracked target location in-
stead of t. Additionally, we produce diagnostic output showing
the source file name, line number, and the message “t receives
an error value from x.”

2. t = e for some error constant e ∈ E . We have reached the
point of origin of the overwritten error. Our diagnostic trace is
now complete for the bad assignment at p. We produce a final
diagnostic message showing the source file name, line number,
and the message “t receives the error value e.”

3. Anything else. We continue the backward path traversal, retain-
ing t as the tracked target location. Additionally, we produce
diagnostic output showing the source file name, line number,
and the message “t may contain an error value.”

If all diagnostic output mentioned above is presented to the
programmer, then the result is a step-by-step trace of every program
statement from the origin of an error value to its overwriting at p.
If diagnostic output is omitted for case 3, then the trace shows only
key events of interest, where the error value was passed from one
variable to another. We term this a path slice, as it is analogous to
a static program slice that retains only the statements relevant to a
particular operation. In practice, we find that the concise path slice
provides a useful overview while the complete witness path trace
helps to fill in details where gaps between relevant statements are
large enough to make intervening control flow non-obvious.

Figure 2(a) shows an example code fragment that contains some
error propagation bugs. Figure 2(b) shows a complete diagnostic
path trace for one bug. Observe that this trace begins in function
load but traverses into the nextId twice (lines 4 and 5) while
traveling from the error code generation point (line 11) to the
overwriting assignment (line 18). Figure 2(c) shows the diagnostic
path slice which includes only those lines directly relevant to the
error. Here we see just three events of interest: the generation of
an error code in status on line 11, the transfer of that error code
from status to result on line 15, and the overwriting assignment
to result on line 18.

5. Experimental Evaluation
Our implementation uses the CIL C front end [26] to apply prelim-
inary source-to-source transformations on Linux kernel code, then
traverse the CFG and emit a textual representation of the weighted
pushdown system. We use the WALi WPDS library [20] to perform
the interprocedural dataflow analysis on this weighted pushdown
system. Within the WALi-based analysis code, we encode weights
(transfer functions) using binary decision diagrams (BDDs) [4] as
implemented by the BuDDy BDD library [24]. BDDs have been
used before to encode weight domains [31]. The BDD representa-
tion allows us to perform key semiring operations, such as extend
and combine, in a highly efficient manner..

We analyze 48 Linux file system implementations. We omit the
SGI-donated XFS file system from our study, as it uses error codes
quite unlike those found elsewhere in Linux. We also exclude the
hppfs, devfs, debugfs, hotfs and openpromfs file systems since they
do not use the 34 basic error codes that we analyze.

Table 2 summarizes our findings. We find possible error propa-
gation bugs in 37 out of 48 file systems, or 77% of the file systems
analyzed. Among the possible bugs, out-of-scope errors dominate.

FS Ov Sc Un Total KLOC

ext3 16 44 47 107 12
ReiserFS 8 43 28 79 24
IBM JFS 1 23 45 69 17
CIFS 18 37 12 67 21
ext2 13 15 11 39 6
SMB 13 14 9 36 6
Apple HFS+ 1 17 18 36 7
JFFS v2 4 23 7 34 11
Apple HFS 1 22 11 34 5
NCP 9 19 3 31 5
Boot FS 0 18 10 28 1
Plan 9 3 17 7 27 4
procfs sup 2 19 1 22 6
AFS 2 11 6 19 7
UDF 5 7 4 16 9
FAT 3 11 2 16 4
Coda 3 12 1 16 3
ADFS 5 7 3 15 2
NFS Client 2 6 6 14 18
ISO 1 11 0 12 3
FUSE 0 10 1 11 3
Automounter 3 8 0 11 2
sysfs sup 0 10 0 10 2
Automounter4 3 7 0 10 2
Amiga FFS 0 8 1 9 3
JFFS 0 4 4 8 5
UFS 3 4 0 7 5
OS/2 HPFS 0 6 0 6 6
MSDOS 2 2 0 4 1
System V 0 1 2 3 3
Minix 0 1 2 3 4
VFAT 0 2 0 2 1
romfs sup 1 1 0 2 1
NFS Lockd 0 1 1 2 4
HugeTLB 0 2 0 2 1
EFS 0 1 0 1 1
BeOS 0 1 0 1 3
Relayfs 0 0 0 0 1
ramfs sup 0 0 0 0 1
QNX 4 0 0 0 0 2
Partitions 0 0 0 0 4
NTFS 0 0 0 0 18
NFS Server 0 0 0 0 14
NFS ACL Prot. 0 0 0 0 20
Free VxFS 0 0 0 0 2
exportfs sup. 0 0 0 0 1
devpts 0 0 0 0 1
Compr. ROM 0 0 0 0 1

Total 122 445 242 809 283

Table 2. Number of bugs found, categorized into overwritten (Ov),
out of scope (Sc), and unsaved return values (Un). KLOC gives the
size of each file system implementation in thousands of lines of
code. File systems are sorted by total number of bugs found.

5.1 Bugs found
Here we give a few examples of true bugs found by our tool.

Example 1: Figure 3 shows a fragment of ext3 file system code
in which a bug is found. An instance of an unsaved error can
be found on line 3. Callers to ext3_free_branches have no
way of knowing whether the operation succeeded or failed. We
typically find that these callers cannot do anything in the event of



1 static void ext3_free_branches(...) {
2 ...
3 if (is_handle_aborted(handle))
4 return;
5 ...
6 }

Figure 3. An example of a bug found by the tool

a failure, and therefore they assume that ext3_free_branches
always succeeds. This silent failure is clearly a problem, as callers
may continue with other operations as though nothing bad had
happened.

Example 2: Our analysis uncovers an interesting and potentially
harmful bug in the ISO file system. If there is a read failure dur-
ing a directory entry lookup, then the error is ignored, leading to
a lookup failure. In this case, the error is saved but later overwrit-
ten without being checked. This situation could be problematic in
the presence of a transient I/O failure as follows: if subdirectory
/tmp/dir already exists, but ls /tmp/dir fails due to a transient
read failure, then mkdir /tmp/dir will create a second directory
with the same name as the one that already exists. The end result is
a corrupted file system with two /tmp/dir subdirectories.

Example 3: Our third example also affects the ext3 file sys-
tem. Function void ext3_xattr_cache_insert includes com-
ments claiming that it “Returns 0, or a negative number
on failure.” However, this is a void function. Our tool iden-
tifies a local variable within this function which may contain an
unchecked error, but which goes out of scope instead of being
propagated to callers. Neighboring functions have similar com-
ments and they do return int error values. Clearly this function
should return an int error value as well. Of course, this change
requires corresponding changes in callers to save and either handle
or propagate the returned error. Our tool can support this redesign
by checking whether callers have been updated correctly.

5.2 False Positives
We have manually inspected the 122 overwritten errors reported as
well as 100 of the out-of-scope errors found. We examined the path
or slice provided for each of these reported errors. The inspection
of overwritten errors took place in the presence of a kernel expert
(and coauthor) who judged each reported issue as a true bug or a
false positive.

Figure 4 shows a graphical representation of the total number
of overwritten errors reported for 24 different file system imple-
mentations (implementations for which no overwritten bugs were
reported are ommitted). These same numbers can also be found in
Table 2, under the Ov column. The total number of bugs is further
divided into true bugs and false positives. As an example, consider
the file system implementation CIFS. A total of 18 overwritten bugs
were found in this file system, however only 8 of them are true
bugs while the remaining 10 are false positives. A grand total of
180 overwritten errors are found accross all the analyzed file sys-
tems. We find that 11% of these bugs are true bugs (20) whereas
the remaining 89% (160) are false positives. Only a subset of the
out-of-scope errors were manually inspected. We find that 43% of
these bugs were false positives falling into a common pattern.

In the case of overwritten errors, false positives arise due to
either idiomatic programming styles found in the kernel code or
the existence of contexts in which overwriting an unchecked error
becomes legal. As we discuss below, these scenarios represent a
challenge to any static analysis technique. On the other hand, we
find that the most of the out-of-scope false positives found are due

Overwritten Errors - False Positives
Total Errors Reported: 180
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Figure 4. A graphical representation of the number of overwritten
errors reported for several file system implementations. The total
number of bugs founds is further broken into true bugs and false
positives.

1 err = -EIO; // represents a null buffer head
2 if (!bh)
3 goto cleanup;

Figure 5. Typical misplacement of assignments

to error copying. Finally, we also find that a mix of false positives
arise due to our incomplete definition of error-handling functions.

5.2.1 Problematic Coding Styles
We begin by discussing programming styles found to confuse our
tool. As mentioned above, these coding styles are particularly prob-
lematic when looking for overwritten errors. We further divide
these into three categories: initializing with an error code, misplac-
ing assignments, and overwriting with a different error code.

Variable initialization using error codes. Programmers occa-
sionally initialize a local variable with an error code before any
error has actually occurred. The error code is kept in the variable
if a problem eventually occurs; otherwise it is overwritten. This
appears to have been done as a means of refactoring. For example,
a common scenario is found when several branches return the same
default error. Instead of assigning the default error in each of those
branches, the error code is assigned at the beginning of the func-
tion and overwritten if none of the failing branches is taken, i.e.,
the operation was successful.

Misplaced assignments. This is the source of most false posi-
tives. This situation is similar to the initialization problem in that an
error code is assigned in advance. The error is assigned before it is
known whether an error condition is actually met. Figure 5 shows
a typical example. The assignment on line 1 should be postponed
until just before line 3, at which point we are certain that the buffer
head is null are about to jump to cleanup code.



1 if (rc == -EAGAIN)
2 rc = -EHOSTDOWN;

Figure 6. Overwriting an error code with a different error code

1 int err;
2 for (...) {
3 bh = getfrag(..., &err);
4 if (!bh)
5 ...
6 if (bh && !buffer_update())
7 ...
8 }

Figure 7. Redundant error reporting

1 rc = ext3_mark_inode_dirty();
2 error = rc; // the error value is transferred
3 rc = inode_setattr(); // legal overwrite

Figure 8. An example illustrating the copy of an error code

Overwriting an error code with another error code. Situations
arise in which overwriting an error code with another error code
does not represent a bug. For example, an error code generated in
one layer of the operating system may need to be translated into
a different error code when received by another layer. Allowing
such assignments clearly depends on the context and the error codes
involved. Unfortunately, there is no formal error hierarchy, which
makes difficult, if not impossible, to automatically differentiate
between correct and incorrect overwrites. Figure 6 shows a simple
example of translating one error code into a different one.

Overwriting an error code may also be allowed when there is an-
other way to detect the problem. We refer to this as redundant error
reporting. In Figure 7 we can see that err may be overwritten in-
side the loop when passed as parameter to the getfrag function on
line 3. However, it so happens that getfrag returns null whenever
it writes an error code into its pointer argument. Thus, the !bh tests
are sufficient and checking err as well would be redundant. The
only potential problem is that a more specific error in err could be
overwritten with a more general one, leading to loss of information
about what exactly went wrong.

5.2.2 Making Copies of Errors
One more scenario is found to produce false positives, which

are out-of-scope related. A variable containing an error code may
be copied into other variables. In practice, checking at least one
of these copies suffices. Our tool is more restrictive and expects
each copy to be eventually checked. Figure 8 shows an example.
A copy of an error value is made on line 2. The variable holding
the first copy is then overwritten on line 3, which is not a bug. This
example suggests that the last variable assigned the error value is
the one that must be checked. Unfortunately, this is not always true,
and it is difficult to determine which overwrites can be allowed on
the assumption that some other copy will eventually be checked.
Solving this may require incorporating the concept of ownership
used in static leak detection by Heine [12]. Transferring an error
value can also transfer ownership of that error. Exactly one variable
has ownership on an error value at any given program point, and
that is the copy that must be checked.

5.2.3 Error-handling Functions
File system implementations define certain functions that handle
errors. Thus, a call to such a function usually means that the an
error has been checked. Some of these functions take the variable
containing the error value as parameter, in which case it is clear
which error is being handled. Other error-handling functions do not
take the error value as parameter. Knowing which error should be
considered checked after such a call requires deeper understanding
of the surrounding context. A first attempt to solve this problem
is simply to identify the calls to these functions and consider their
parameters as checked, as is already done for printk.

5.3 Performance
We divide the analysis into three phases: (1) extracting a textual
weighted pushdown representation of the kernel code, (2) solving
the poststar query, and (3) finding bugs and traversing the witness
information to produce diagnostic output.

The largest file system analyzed (in lines of code) is ReiserFS,
at 24 KLOC. The total analysis running time for this file system
is 6 hours, 8 minutes, 51 seconds. The time is further divided into
each phase. Phase 1 (WPDS extraction) takes 8 seconds. Phase 2
(poststar solving) takes 1 hour, 20 minutes, 7 seconds. Phase 3 (bug
identification and reporting) takes 4 hours, 48 minutes, 36 seconds.
By contrast, one of the smallest file systems in which more bugs are
found is Boot FS, at 1 KLOC. Analysis of this file system takes a
total 1 hour, 7 minutes, 14 seconds. Phase 1 takes 6 seconds; Phase
2 takes 17 minutes, 28 seconds; and Phase 3 takes 49 minutes, 38
seconds.

6. Improving the Precision of the Analysis
As discussed in Section 5, our tool is able to report interesting,
serious and otherwise-difficult-to-find bugs, however it also suffers
from a high rate of false positives. Our focus in this section is to
improve the precision of our analysis by reducing the number of
false positives. In particular, our initial goal is to reduce the number
of false positives for the category of overwritten errors.

The remainder of this section describes a new approach that re-
duces the number of overwritten false positives in about 77%. Un-
fortunately, this new approach introduces the risk of false negatives,
although we find that their occurrence rate is somewhat low (5%).
At the same time, the 95% of the originally reported true bugs are
still found and reported.

6.1 New Approach
This approach focuses on eliminating two out of the three sources
of false positives discussed in Section 5.2.1. We are referring to
initialization using error codes and misplaced assignments. We
further inspect the false positives that fall into these categories and
find an interesting pattern: these problematic coding styles mostly
occur within functions generating a given error code. We find that
callers to these functions instead limit themselves to propagate the
error code. This brings an interesting point to our attention: it might
be acceptable to overwrite an error code within the function that
originates it but not once the error code is returned to a caller.

This general observation leads us to revisit the design of our
analysis. Rather than tracking down a single category of error
codes, we now introduce two different categories: tentative and
nontentative . An error code is referred as tentative whithin the
function that generates it and it can be overwritten. As soon as the
error code is returned from the originating function, a tentative er-
ror is transformed into a nontentative one and it should no longer
be overwritten. Both kinds of error codes are treated differently
when determining whether an unchecked error code might be over-
written or not.



The basics of our new approach remain as explained in Sec-
tion 3.2. Modifications and additions are further explained in the
following subsections.

6.1.1 Tentative and NonTentative Error Codes
We still consider only the 34 basic error codes used in Linux, how-
ever internally we are tracking down 68 different error codes. For
each basic error code, we simply consider two versions: tentative
and nontentative . For example, the error code EIO results in a
tentative EIO and a nontentative EIO.

6.1.2 Transfer Functions
Transfer functions remain as discussed in Section 3.2.3. However,
we need to change the definition of E , which was introduced earlier
in Section 3.2.2. As discussed in the previous subsection, we now
have two kinds of error codes. We define E as the set containing
the tentative constant error codes. The reason for this is that
all instances of error codes in the source code are translated into
their corresponding tentative codes. This means that the textual
representation of the kernel code as a weighted pushdown system
(which includes the transfer functions for each program statement)
can only contain tentative (as opposed to nontentative) error
codes. Later when operations such as extend, combine and merge
are applied in order to solve the dataflow problem, an internal
transformation from tentative to nontentative codes will take
place if required. This is explained in the next subsection.

6.1.3 Merge Function
A tentative error code is transformed into a nontentative error
only when it is returned from a function. At the transfer function
level, we would be able to make this transformation only when a
function specifically returns a constant error code. Unfortunately,
functions not only return constants, but variables and more complex
expressions. Consider the case in which a variable is returned, we
would need to know the specific tentative error codes the variable
might contain in order to transformate them into their correspond-
ing nontentative codes. As it can be seen, this information is not
available at this point. On the other hand, this information is avail-
able when applying the merge function, discussed in Section 3.1.
Thus, we add the capability of error transformation to the merge
function.

At each particular point in which the merge function is ap-
plied, we have information about the callee and the caller whose
weights are about to be extended. As mentioned earlier, we intro-
duce a global variable to hold the return value of a given function
(functionName$return). Thus, we can find the values that the global
variable calleeName$return may contain when returning from the
callee and before we extend with the caller. For any of those values
which happen to be tentative error codes, we simply replace them
with their corresponding nontentative codes.

6.1.4 Finding and Describing Bugs
We still report overwrites of tentative errors, however we differ-
entiate them from overwrites of nontentative errors, which are
more likely to be true bugs. This allows us to rank the bugs re-
ported. Thus, the programmer could start inspecting the overwrites
of nontentative error codes and then, depending on the time avail-
able, proceed to inspect the rest of the bug reports. On the other
hand, the programmer could choose to filter the bugs found and
only look at those involving nontentative error codes.

We still produce a single path/slice to demonstrate the existence
of a overwrite at a particular point in the program. Unfortunately,
this is not always the best idea as several error codes might be
overwritten at that particular point and we might end up choosing
an error code that leads to a false positive when choosing a different

Overwritten Errors - Tentative/Non-tentative
Total Errors Reported: 137
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Figure 9. A graphical representation of the number of overwritten
errors found by the new tool. Bugs are now divided into four cate-
gories: 1) nontentative true bugs, 2) nontentative false positives,
3) tentative true bugs and 4) tentative false positives. A total of
137 bugs are found accross all the file system implementations an-
alyzed.

error code might have demonstrated the existence of a true bug.
We now give priority to nontentative errors. Thus, if many error
codes are being overwritten at the same program point, then we
prefer to report the overwrite of a nontentative error code over
the overwrite of a tentative one.

Describing bugs also suffered modifications as we no longer
keep track of a single error code (the one being overwritten). Error
codes may transform, thus we need to make sure we do not lose
track of the current error code to be tracked down.

6.2 New Results
Figure 9 contain the new results obtained. The bugs found are di-
vided into four categories: 1) nontentative true bugs, 2) nontentative
false positives, 3) tentative true bugs and 4) tentative false posi-
tives. We are still able to report all the true bugs found in the pre-
vious analysis while reducing the number of bug reports from 180
to 137. We also find that 19 out of the 20 true bugs are overwrites
to nontentative errors. Thus, experimental results show that our
assumption that error codes can be overwritten within the function
that generates them gives good results in practice. It is possible for
the programmer to give priority to nontentative related bugs as
they are more likely to be true bugs. The programmer still has the
option to go through all bug reports. This can be beneficial since it
allows the programmer to decide what and how many bug reports
to examine. On the other hand, 117 out of the 137 bugs reported are
still false positives, a high rate that can overwhelm the programmer.

Figure 10 presents the results obtained when only considering
nontentative related bugs. We find that the number of false pos-
itives is reduced in 77% while finding 95% of the true bugs. By
filtering the results, we fail to report one true bug. Unfortunately,
less false positives usually means more false negatives. A compro-
mise is necessary.
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Figure 10. A graphical representation of the number of
nontentative overwritten errors. We only consider nontentative
related bugs, reducing the number of false positives from 160 to 37
while finding 19 out of the 20 true bugs.

6.3 Reducing Out-of-Scope False Positives
Finally, we briefly describe an approach to reduce the number of
out-of-scope false positives. The idea is as follows. We earlier
found that the main source of false positives for this category of
errors is the copying of error codes. Our tool requires every copy to
be checked, which is too restrictive. The problem is that we do not
have a way to distinguish between different instances of the same
error code. It is fundamental to be able to recognize those instances
that are copies of a given error code.

First of all, we can introduce a natural new category of error
codes: checked and unchecked errors. Only then we would be able
to determine which out-of-scope bugs to report as potential bugs.

The second addition to the current design of our analysis is to
make each error constant found in the source code unique. For
example, each use of EIO in the source code would lead to a
unique EIO error code. This would allow us to easily identify the
copies of a given error code when solving the dataflow analysis
problem. Checking a particular EIO instance would imply checking
the other copies of this error code and promoting all of them to
checked . Later in the phase of finding bugs, we would obviously
not report out-of-scope variables holding checked error codes. This
is likely to eliminate all the false positives identified so far. A
further study should be conducted as out-of-scope errors have not
been inspected in the presence of a kernel expert, thus we are
lacking of confirmation about real bugs. At the same time, it is more
obvious to spot out-of-scope false positives than false positives for
overwrites.

7. Related work
The problem of unchecked function return values is longstanding,
and is seen as especially endemic in C due to the wide use of return
values to indicate success or failure of system calls. LCLint stati-
cally checks for function calls whose return value is immediately

discarded [7], but does not attempt to trace the flow of errors over
extended paths. GCC 3.4 introduced a warn_unused_result an-
notation for functions whose return values should be checked, but
again enforcement is limited to the call itself: storing the result in
a variable which is never subsequently used is enough to satisfy
GCC. Neither LCLint nor GCC analyzes deeply enough to uncover
bugs along extended propagation chains.

It is tempting to blame this problem on C, and argue for adopt-
ing structured exception handling instead. Language designs for
exception management have been under consideration for decades
[9, 25]. Setting aside the impracticality of reimplementing ex-
isting operating systems in new languages, static verification of
proper exception management has its own difficulties. C++ excep-
tion throwing declarations are explicitly checked at run time only,
not at compile time. Java’s insistence that most exceptions be either
caught or explicitly declared as thrown is controversial [34, 37].
Frustrated Java programmers are known to pacify the compiler by
adding blanket catch clauses that catch and discard all possible ex-
ceptions. C# imposes no static validation; Sacramento et al. found
that 90% of relevant exceptions thrown by .NET assemblies (C# li-
braries) are undocumented [29]. Thus, while exceptions change the
error propagation problem in interesting ways, they certainly do not
solve it.

Numerous proposals detect or monitor error propagation pat-
terns at run time, typically during controlled in-house testing with
fault-injection to elicit failures [5, 8, 10, 13, 14, 15, 18, 19, 32].
In contrast to these dynamic techniques, our approach offers the
stronger assurances of static analysis, which become especially im-
portant for critical software components such as operating system
kernels.

Recent work by Gunawi et al. [11] highlights error code propa-
gation bugs in file systems as a special concern. Gunawi’s proposed
Error Detection and Propagation (EDP) analysis is essentially a
type inference over the file system’s call graph, classifying func-
tions as generators, propagators, or terminators of error codes. Our
approach uses a more precise analysis framework that offers flow-
and context-sensitivity. WPDS witness traces (Section 4) offer a
level of diagnostic feedback not possible with Gunawi’s whole-
function-classification approach.

Bigrigg and Vos [3] describe a dataflow analysis for detecting
bugs in the propagation of errors in user applications. Their ap-
proach augments traditional def-use chains with intermediate check
operations: correct propagation requires a check between each def-
inition and subsequent use. This is similar to our tracking of er-
ror values from generation to eventual handling or accidental dis-
carding. Bigrigg and Vos apply their analysis manually, whereas
we have a working implementation that is interprocedural, context-
sensitive, and has been applied to 283 thousand lines of kernel code.

The FiSC system of Yang et al. [39] uses software model check-
ing to check for a number of file-system-specific bugs. Relative
to our work, FiSC employs a richer (more domain-specific) model
of file system behavior, including properties of on-disk represen-
tations. However, FiSC does not check for error propagation bugs
and has been applied to only three of Linux’s many file systems.

8. Future Work and Conclusions
Besides continuing tuning our tool to produce better results, other
future work includes support for error transformation and asyn-
chronous paths. Error transformation refers to changes in how er-
rors are represented as they propagate across software layers. Inte-
ger error codes may pass through structure fields, be cast into other
types, be transformed into null pointers, and so on. An improved
analysis should be able to track errors across all of these represen-
tations. Operating systems are concurrent programs; asynchronous
paths arise from concurrently-executing code that may produce er-



rors or otherwise interact with the code under inspection. Recent
work by Jhala et al. [17] may be applicable here.

We have designed and implemented an interprocedural, flow-
and context-sensitive static analysis for tracking the propagation of
errors through file systems. Our approach is based on a novel over-
approximating counterpart to copy constant propagation analysis,
with additional specializations for our unusual problem domain.
The analysis is encoded as an extended weighted pushdown sys-
tem, and poststar queries on this system allow detailed diagnosis
of a variety of error mismanagement bugs. We have applied our
implementation to four dozen Linux file systems and found non-
trivial bugs. False positives arise, but many of these arise from a
small number of recurring patterns that should also be amenable to
automated analysis.

We also designed and implemented a variation of the analysis
in order to reduce the number of false positives for overwrites. Our
approach successfully reduced the number of false positives in 77%
while finding 95% of the true bugs. An important lesson learned
is that even when automatization does not seem feasible, we can
always study the source code and extract valuable information that
can be used to tune our analysis. We also examined 100 out-of-
scope bugs and identified a recurrent pattern that serves as a source
of false positives. We propose a new variation of our analysis that
could remove the most of them.

Each positive step toward eliminating error propagation bugs in-
creases the trustworthiness of file systems and, in turn, of computer
systems as a whole.
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