
Footprint-based Scheduling

Marc de Kruijf and Gwendolyn Stockman

CS736 Course Project, Fall 2007
Department of Computer Sciences, University of Wisconsin–Madison

Abstract

As we move into the multicore era, fine-grain multithread-
ing will be among the primary tools used by software
developers to enhance the parallel performance of their
applications. However, more so than in prior, coarse-
grain multithreading systems, intelligent locality-aware
scheduling of fine-grain threads is paramount for good
performance. Fortunately, in fine-grain multithreaded ap-
plications there is an abundance of threads eligible for
execution at any given time, suggesting opportunities to
develop efficient, locality-aware thread scheduling algo-
rithms that can improve overall performance.

In this paper, we develop techniques for footprint-based
thread scheduling – a previously uncharted area of re-
search. We experimentally evaluate two sets of synthetic
workloads to demonstrate the importance of locality-
aware scheduling. For array-based workloads, we show
a worst-case 5X performance difference between locality-
aware and locality-indifferent executions. Similarly, for
tree-based workloads, we show in excess of a 2X per-
formance difference across best-case and worst-case ex-
ecutions. We also discuss and present architectural en-
hancements to expose thread footprint information to soft-
ware for efficient footprint-based thread scheduling. Fi-
nally, we describe a footprint-based thread scheduling al-
gorithm to be evaluated in future work.

1 Introduction

Multithreaded applications are becoming pervasive due to
the emergence of multicore processors. Historically, mul-

tithreading has been used primarily to extract concurrency
between I/O and computation, but it can also be used
to enable concurrent computation on multiprocessor sys-
tems. One of the main problems with threads, however,
is that their memory access behavior is completely invis-
ible, which makes it challenging to schedule threads for
optimal cache utilization and performance. In this paper,
we address this problem by proposing thread scheduling
based on cache footprint analysis.

There are effectively two varieties of multithreading:
coarse-grain and fine-grain. For applications with coarse-
grain multithreading, cache locality is not a pressing con-
cern. These applications consist of relatively few threads
with infrequent communication, and the threads are typ-
ically scheduled to run for an OS time slice, which is on
the order of millions of processor cycles. At the end of
a time slice, a ”context switch” occurs and threads are
rescheduled, but for coarse-grain threads the cost of re-
establishing context by re-populating caches is amortized
across the lifetime of the thread’s execution, and is there-
fore relatively negligible. Furthermore, these coarse-grain
threads have only gotten relatively longer with time, as
processor speeds have radically improved and demands
on system interactivity (in terms of the OS time slice) have
remained relatively constant. Hence, there has historically
not been significant incentive to research this topic.

In contrast to coarse-grain multithreading, fine-grain
multithreading involves of an abundance of threads with
frequent communication and short execution times, typi-
cally only 100 to 10,000 cycles. Applications with fine-
grain multithreading have many frequently executed, in-
dependent regions of code that can be extracted for par-
allel execution. This style of multithreading has recently

1



gained attention for two reasons: (1) due to their short
execution time, it is only suitable when the overheads of
scheduling and communication are small, as is the case
on multicore systems; and (2) due to technology trends,
continued application performance growth must come pri-
marily from explicit application-level parallelism, which
is necessary to exploit innovations in multicore proces-
sor architectures. Fine-grain multithreading (sometimes
calledtask-level parallelismin the literature) has the po-
tential to significantly enhance parallel performance for a
significant number of applications.

Despite its growing popularity, however, fine-grain
multithreading has the central drawback that it generally
achieves very poor cache re-use; threads have a relatively
short duration and are context switched frequently with-
out opportunity to leverage the data already in the cache.
Hence, the processor must frequently stall to re-populate
thread context, and the wait is often substantial as illus-
trated in Figure 1.

Yet there is often an abundance of fine-grain threads
eligible for execution at any given time, and hence there
is opportunity to develop efficient, locality-aware thread
scheduling algorithms that can improve overall perfor-
mance. In this paper, we build on this observation to de-
velop techniques forfootprint-basedthread scheduling –
a previously uncharted field of research.

The central contributions of this paper are as follows:

• An evaluation of two synthetic workloads – an array-
based workload and a tree-based workload – on
a uniprocessor system. This evaluation demon-
strates the potential for performance improvement
using locality-aware schedulers for fine-grain mul-
tithreaded applications.

• Proposed primitives for exposing hardware cache
footprint information to a software-level scheduler
environment. These primitives enable sophisticated,
runtime scheduler adaptation with minimal over-
head. To the best of our knowledge, this is the first
effort exploring this area.

• A footprint-based uniprocessor scheduler algorithm
to be evaluated in future work.

The remainder of this paper is organized as follows.
Section 2 describes related work. In section 3, we de-
scribe our experimental methodology. Section 4 presents

Figure 1: The memory hierarchy of a typical uniprocessor
system.

our results. In section 5, we discuss our results and
present directions for future work. Finally, section 6 con-
cludes.

2 Related Work

In this section, we open with related work in the area
of multiprocessor scheduling, and end with more general
work in the area of batched thread scheduling and other
domain-specific locality-aware scheduling work.

2.1 Multiprocessor Thread Scheduling

While our work focuses primarily on uniprocessor sys-
tems, prior research in locality-aware scheduling has been
directed primarily at multiprocessor systems. In these
systems, there is an interesting trade-off between load bal-
ance and locality, and this trade-off has received signifi-
cant attention in the literature.

Scheduling strategies for multiprocessor systems gen-
erally fall into one of three categories:static schedul-
ing, scheduling using shared queues, andscheduling us-
ing per-processor queues.

2



In static scheduling [10], threads are mapped to proces-
sors as soon as they are created. Although this approach
can result in locality-optimal execution, it compromises
load balance and fairness, which can lead to poor perfor-
mance.

Shared queues are the approach adopted in coarser-
grain multithreading applications because they are simple
and they effectively implement load balancing: when a
processor becomes idle, it dynamically retrieves a thread
from the shared queue. In this manner, threads are fairly
scheduled and load is perpetually balanced across the
available processors. This approach is widely used in
coarse-grain threading environments where load balance
is important and locality is not a significant part of the
overall performance equation. It is also useful in fine-
grain multithreaded applications where there is simply no
data or code sharing between threads. An implementa-
tion of MapReduce for the Cell processor is one example
of an application that uses a shared queue in a fine-grain
threading environment [4]; in MapReduce, there is no lo-
cality internal to the Map, Reduce, and grouping phases.

The shared queue model has two primary disadvan-
tages, however: first, access to a shared queue results
in frequent contention for shared resources, as observed
by Andersonet al. [1]; and second, cache utilization is
poor since locality is not preserved across threads that
share data. To manage these problems, fine-grain thread
schedulers have traditionally used per-processor queues.
Per-processor queues were favored by Eageret al.after
they experimentally measured the costs associated with
process migration [6]. Similarly, Squillante and La-
zowska explored the locality benefits of establishing pro-
cess affinity to a particular processor using queueing net-
work models [13], and also quantified the trade-off be-
tween load balance and cache performance using their an-
alytical model. Finally, Torellaset al.explored the benefits
of affinity-based scheduling of multiprocessor workloads
using per-processor queues, with analysis supported by
low-level performance data [15].

There have also been several parallel language runtimes
proposed using per-processor queues. Filaments [7] and
Cilk [3] are two examples. Of particular interest, Cilk
uses non-blocking double-ended deques for queues. Pro-
cessors access their local queues by pushing and popping
from the bottom, which maximizes locality. Remote pro-
cessors access the queues by popping from the top. Re-

sults show that this strategy achieves very high efficiency
due to strong locality preservation and minimal data struc-
ture contention. Lastly, Carbon [9] implements hard-
ware support for Cilk-style per-processor queues, show-
ing substantial performance improvement over a variety
of software-based fine-grain thread schedulers.

2.2 Batched Thread Scheduling

Debattistaet al.develop user-level thread scheduling algo-
rithms that group fine-grain threads together into coarser-
grain entities termedbatches, allowing improved cache
utilization on uniprocessors [5]. On shared memory pro-
cessors, it further lowered contention for shared data
structures and decreased the occurrence offalse sharing
(two threads on separate processors accessing different
addresses that map to the same cache line), with only neg-
ligible impact to load balance.

Their basic technique is to use per-processor batch
queues. When a thread spawns a new thread, that thread is
added to the currently executing batch. New batches are
created when the current batch overflows. This approach
is very simple, and the rationale is that threads typically
scheduled sporadically and subsequently suffering from
the cache interference of intervening threads (as charac-
terized by Thiebaut and Stone [14]) are scheduled several
times within the same batch, exhibiting much better lo-
cality. Similarly, communicating threads tend to be co-
located within the same batch, and are therefore able to
make rapid forward progress.

SEDA [16] and StagedServer [11] are two event-driven
architectures for scalable servers that process events in
stages, using an approach similar to Debattistaet al. to
exploit locality. Staged processing separates out logical
units of computation into stages and attempts to maximize
processor cache locality by aggregating (batching) the ex-
ecution of multiple similar events within an event queue,
resulting in improved performance. SEDA also provides
support for load balancing using re-assignment performed
by dynamic resource controllers. StagedDB [8] applies
this same idea to database request processing, breaking a
request’s execution into stages and processing a group of
sub-requests at each stage.

3



Figure 2: The portion of the array workloadsA, B, andC
touch.

for (r = low; r <= high; r++) {
sum += array[r][0];

}

Figure 3: Pseudocode for array workloadsA, B, andC.

3 Methodology

To examine the impact of locality on thread scheduling
we examined two groups of synthetic workloads. The
first group was a set of array-based workloads to help us
understand the importance of locality for threaded appli-
cations withregular memory access patterns. The sec-
ond group was a set of binary search tree (BST) traversal
workloads to examine the locality behavior of threaded
applications withirregular memory access patterns.

Our workloads were run using the GEMS simulation
toolset [12]. Using the simulator allowed us to evaluate
custom system configurations, such as direct-mapped L1
and L2 caches. The system configuration we used for our
evaluation is shown in Table 1. To evaluate performance
we divided the number of processor cycles by the number
of instructions executed to derive the cycles per instruc-
tion (CPI). CPI is our performance metric, where a lower
CPI indicates better performance.

3.1 Array-based Workloads

For the array-based workloads we used an integer (4
bytes) array of 512 rows by 16 columns, yielding a to-
tal size of 32 KB with one row being the size of one cache
block. Figures 2 and 3 illustrate our three workloads on
the array:

A: Access the first half of the array (rows 0-255)

B: Access the middle half of the array (rows 128-383)

C: Access the last half of the array (rows 256-511)

Several combinations of workloads were examined for
cache locality between workloads. These include:

Combination 1: N occurrences each of workloadsA
andB.

Combination 2: N occurrences each of workloadsA
andC.

Combination 3: N occurrences each of workloadsA,
B, andC.

For each of these combinations two schedules were
considered:

Schedule 1: Run allN instances of one workload con-
secutively, followed byN instances of the next
workload, and so on.

Schedule 2: Run one instance of each workload, and
then repeatN times in the same order.

For example, ifN = 2, then for Combination 1 we would
have schedules:AABB andACAC.

3.2 Tree-based Workloads

We used a BST of218 − 1 nodes, where each node con-
tained a word. Our workloads traverse the BST by search-
ing for each word that comprises the BST in turn, where
each search is conceptually a thread of execution that
could potentially be scheduled. The different traversals
are shown in Figure 4. The best-case traversal is an in-
order traversal, where we first traverse the left subtree,
then visit the root, and finally move to the right subtree.
This is illustrated in Figure 4(a). The worst order to tra-
verse the BST is depicted in Figure 4(c), where temporal

4



Component Configuration
Processor Sparc, dual-issue
L1 Cache 16 KB, direct-mapped, 1 cycle access latency, 64 byte block
L2 Cache 1 MB, direct-mapped, 13 cycle access latency, 64 byte block
Main Memory 1 GB, 200 cycle access latency

Table 1: GEMS simulator system configuration.

(a) Best-case BST traversal order (b) Random BST traversal order (c) Worst-case BST traversal order

Figure 4: Illustrations showing scaled-down versions of our three BST traversal workloads. The actual binary search
tree had218 − 1 nodes.

search path groupings are as dissimilar as possible. For
a more general traversal case, we also evaluated a ran-
dom tree traversal, where the order in which the words
are searched is random, as shown in Figure 4(b).

4 Experimental Results

Here we present our experimental results for the differ-
ent workload combinations and schedules discussed pre-
viously.

4.1 Array-based Workloads

We ran each workload combination described in sec-
tion 3.1 with the number of occurrences of each workload
(i.e. N ) being 1, 10, 100, and 1000. We foundN = 1000
to be the most accurate and thus will mainly present re-
sults forN = 1000. Also, we initialize the L1 and L2
caches before each experiment by iterating through the
entire array from row 0 to 511, which results in all rows
being in the L2 cache, and rows 256 to 511 being in the
L1 cache at the start of each experiment. SinceA is al-
ways the first workload run, it must always go to the L2
cache for each piece of data.

Figure 5: Results of Schedule 1 and Schedule 2 for a
workload combination ofA and C both run with 4 dif-
ferent values ofN .

5



(a) (b) (c)

Figure 6: (a) Workload Combination ofA andC. (b) Workload Combination ofA andB. (c) Workload Combination
of A, B, andC

First we will look at a workload combination ofA and
C. As you can see in Figure 5(a) whenN = 1 the cy-
cles per iteration (CPI) is about the same no matter which
schedule is used. This is because none of the data in the
L1 cache is used by the first the workload (A), and there-
fore it will always bypass the L1 cache and go to the L2
cache. However, as we increaseN the CPI for Schedule
1 (run all the occurrences ofA followed by all the occur-
rences ofC) decreases, while the CPI for Schedule 2 (al-
ternate between runningA andC) remains the same. This
relationship withN is similar for the other combinations
and schedules examined, and the change in CPI between
running each workload for 100 iterations and 1000 itera-
tions is negligible. Thus, we shall only show results for
N = 1000 for the other workload combinations.

Figure 6(b) shows us how the two different schedules
perform with a workload combination ofA and B. A
comparison of Figure 6(b) and Figure 6(c) clearly shows
the benefit of running workloads with cache footprints
which partially overlap one after another. This also checks
with what we expected–that running a combination of
workloadsA andB would perform better when following
Schedule 2 then a combination ofA andC. Finally, if we
have a workload consisting of 1000 occurrences of each
of A, B, C, we again see the benefit of overlapping cache
footprints. A quick comparison of Figure 6(a) and Fig-
ure 6(c) show that there is a benefit to placingB between
the calls ofA andC. However, note that the performance
of schedule 2 in Figure 6(c) is worse than the performance
in Figure 6(b), that is because there is only aB placed be-

Figure 7: Comparison of different BST traversals.

tween calls ofA followed by C, not between calls ofC
followed by A, thus cache footprints are not utilized to
their full potential in this algorithm.

4.2 BST-based Workloads

The BST-based workloads are meant to be more complex
than the previous array-based workloads. The BST used
contained218 − 1 nodes. Each node contained 1 word
of about 11 bytes, and two 4 byte pointers, resulting in a
total workload size of 4-5MB. The tree is so large that it
is unlikely that for any two random nodes the traversal to
them will follow many of the same branches, and as a re-
sult the two searches are likely to not interact well in the
cache. This can be seen by comparing the performance

6



of the best-case workload to the randomized workload in
Figure 7. In fact the randomized workload has perfor-
mance significantly closer to that of the worst-case work-
load than that of the best-case workload. This is an ex-
ample of how much cache-aware scheduling algorithms
can help improve the performance of even randomized
workloads, and how much is lost by not taking cache lo-
cality into account when deciding what order to schedule
threads in.

5 Discussion and Future Work

Our experimental results indicate that there is potential
for significant performance improvement using footprint-
aware scheduling. However, cache footprint information
cannot be readily extracted on current systems. At best,
processors may provide performance counters to track
cache hit and miss information over some interval of time.
This information could be useful, but it does not expose
sufficient memory context to draw accurate conclusions
with respect to thread interactions. Similar information
can be obtained using gray-box techniques [2], measuring
the execution time relative to some dynamic instruction
count and subsequently inferring hit and miss characteris-
tics, but this approach is less flexible since it assumes that
memory behavior is the primary source of variability in
execution time, and is not appropriate if thread synchro-
nization, for example, also contributes substantial vari-
ability. Furthermore, the problem of extraneous memory
context remains.

The context of one or more thread executions can be
isolated by loading data into the cache or flushing the
cache of all relevant data in advance. This way, the execu-
tion is isolated from contextual effects, and thread interac-
tions can be accurately measured. This technique is viable
for static workloads, where a static schedule can be gener-
ated in advance and re-used across executions. However,
for dynamic workloads, the cost of periodically overwrit-
ing or flushing the cache is likely to be prohibitive, con-
tributing unacceptable overhead.

To resolve the problem of extraneous context, we pro-
pose a minor architectural extension to enable efficient
dynamic footprint-based scheduling. In this section, we
describe our proposal and the rationale behind it. We also
describe a scheduling algorithm that harnesses this infor-

mation, to be evaluated in future work.

5.1 Architectural Support for Footprint-
based Scheduling

The opposite extreme of merely providing hit and miss
counters is providing access to the entire cache state.
However, from both a software and hardware perspec-
tive, the overhead of doing this is unreasonable; the re-
quired hardware support would be monstrous, and the
software analysis required to extract meaningful sched-
uler data would be excessive. Rather, the hit and miss
counts provide good starting points because the overhead
is minimal and the information is already quite useful.

The enhancement we propose is to track hits and misses
relative only to the most recently executed threadas fol-
lows. The hardware records the footprint of the most re-
cent thread by tracking each cache line with a ”Touched”
bit. Hits and misses are tracked for the current thread as
normal, butonly the first hit or miss is recorded. The rea-
son is that only the first access to a given cache line mat-
ters. Subsequent accesses are internal to the thread and do
not affect inter-thread scheduling choices. The sum of the
hit and miss counts will be the total number of cache lines
touched.

Table 2 shows the information tracked by hardware
(bold) and the information to be exposed to software (ital-
ics): Shared Hitrepresents the number of cache lines hit
on first access by the current thread and touched by the
previous thread;Shared Missrepresents the number of
cache lines missed on first access by the current thread
and touched by the previous thread;Overwrittenrepre-
sents the number of cache lines untouched by the current
thread and also untouched by the previous thread; andUn-
changedrepresents the number of cache lines touched by
this thread and untouched by the previous thread.

Even thoughOverwrittenandUnchangedboth imply
the absence of any interaction between the two threads for
that particular cache line, we still choose to keep them dis-
tinct because the difference can be leveraged for more in-
formed scheduling. For example, let us assume that thread
t2 executes after threadt1, and that there are many lines
Unchangedin this sequence. If we know some threadt3
that has good sharing witht1, we can schedule it subse-
quent tot2 and be confident that much of the sharing will

7



Current Thread Footprint

Previous Thread Footprint
Hit Miss Untouched

Touched Shared Hit Shared Miss
Unchanged

Untouched Overwritten

Table 2: Hardware statistics exposed to software, summed over all cache lines:Shared Hit, Shared Miss, Overwritten,
andUnchanged.

be preserved. In contrast, if many lines wereOverwritten,
it would not be a good idea, because the shared data will
most likely have been evicted from the cache. This dis-
tinction can thus be useful from a scheduling perspective
and introduces very little extra overhead.

The hardware support to enable this is a single extra
bit per cache line to record whether that line was touched
by the most recent thread, circuitry to populate and ex-
tract this data when a context switch occurs, and hard-
ware interfaces to extract this information. We have im-
plemented these changes as part of the GEMS simulation
toolset [12]. The modifications have been tested and have
been found to work successfully.

5.2 A Footprint-based Scheduling Algo-
rithm

In this section, we present a simple footprint-based
scheduling algorithm. First, we address which threads
to consider when scheduling, and then we address how
to schedule those threads. Suppose we have a stream of
threads to run. If it is a finite stream, we could go through
all permutations in order to find the best ordering with re-
spect to cache locality, however this may take too long
and assuming a finite list of threads is not practical. Since
we cannot consider all threads when creating an ordering,
there must be a maximum number of threads which can
be taken into consideration without causing unacceptable
delays. LetNDecide be the number of threads to be con-
sidered at a time. This is essentially taking the infinite
stream case and breaking it down into a series of finite
streams.

We now have two options about what to do after we
order the firstNDecide elements. First, we could execute
all of them as scheduled, or execute the firstNExecute

of them, add the nextNExecute that were not previously

considered into the group to consider and repeat. Note
that if NExecute = NDecide then these two options are the
same. Also, the first option requires less processing, while
the second may provide better interaction in the cache.
There is a downfall to this second option though. There
is the potential for starvation. One possible fix is to take
theageof a thread (i.e. how many times it has been in the
scheduled portion of the list but not executed) into account
when scheduling threads.

To decide the order in which to execute theNExecute

threads we propose the simple metric ofShared Hits−
Shared Misses, which may be extended in future research.
These statistics can be either fed in initially to the system
or collected over time. Note that unless the workload is
very clearly defined these statistics will not be 100% ac-
curate, but rather more of an average of the interaction of
the cache footprints of the threads over time. We then do
N2

Decide pair wise comparisons to pick the optimal order.
In general, this exhaustive approach may be too time con-
suming, and it may be better to use a less precise method
of picking the order of the threads. These are some of the
questions we plan to explore in future work.

6 Conclusions

As we move into the multicore era, fine-grain multithread-
ing will be among the primary tools used by software
developers to enhance the parallel performance of their
applications. However, more so than in prior, coarse-
grain multithreading systems, intelligent locality-aware
scheduling of these fine-grain threads is paramount for
good performance.

In this paper, we have demonstrated the importance
of preserving memory access locality across fine-grain
threaded applications by experimentally evaluating two
sets of synthetic workloads. One set involved a se-

8



ries of array-based workloads that showed a worst-case
5X performance difference between locality-optimal and
locality-indifferent executions. The second set involved
a series of tree-based traversal workloads that showed in
excess of a 2X performance difference across best-case
and worst-case executions.

We have also presented proposed architectural en-
hancements to allow the exposure of hardware-level
thread footprint information to software-level systems to
enable efficient and informed thread scheduling decisions.
Using these proposed enhancements, we have also de-
scribed a footprint-based thread scheduling algorithm to
be evaluated in future work.

Footprint-based thread scheduling is a hitherto unex-
plored research domain that we have identified as holding
great promise for future endeavor. Meanwhile, scheduling
for fine-grain multithreading is an enterprising research
area ripe for lasting contributions. Let there be much con-
tinued research that follows in these footsteps.

References
[1] T. E. Anderson, D. D. Lazowska, and H. M. Levy. The perfor-

mance implications of thread management alternatives for shared-
memory multiprocessors. InSIGMETRICS ’89: Proceedings of
the 1989 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pages 49–60, 1989.

[2] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
Control in Gray-Box Systems. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), pages
43–56, October 2001.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing.Journal of the ACM, 46(5):720–
748, September 1999.

[4] M. de Kruijf and K. Sankaralingam. Mapreduce for the Cell B.E.
Architecture.University of Wisconsin Computer Sciences Techni-
cal Report CS-TR-2007-1625, October 2007.

[5] K. Debattista, K. Vella, and J. Cordina. Wait-free cache-affinity
thread scheduling.Software, IEE Proceedings, 150(2):137–146,
April 2003.

[6] D. L. Eager, E. D. Lazowska, and J. Zahorjan. The limited perfor-
mance benefits of migrating active processes for load sharing. In
SIGMETRICS ’88: Proceedings of the 1988 ACM SIGMETRICS
conference on Measurement and Modeling of Computer Systems,
pages 63–72, 1988.

[7] D. R. Engler, G. R. Andrews, and D. K. Lowenthal. Shared
filaments: Efficient support for fine-grain parallelism on shared-
memory multiprocessors.Dept. of Computer Science. University
of Arizona, TR 93-13, April 1993.

[8] S. Harizopoulos and A. Ailamaki. Stageddb: Designing database
servers for modern hardware.IEEE Data Engineering Bulletin,
28(2):11–16, June 2005.

[9] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural
support for fine-grained parallelism on chip multiprocessors. In
ISCA ’07: Proceedings of the 34th annual international sympo-
sium on Computer architecture, pages 162–173, May 2007.

[10] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors.ACM Computing
Surveys, 31(4):406–471, 1999.

[11] J. Larus and M. Parkes. Using cohort scheduling to enhance server
performance.Technical Report MSR-TR-2001-39, Microsoft Re-
search, March 2001.

[12] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor sim-
ulator (gems) toolset.SIGARCH Computer Architecture News,
33(4):92–99, 2005.

[13] M. S. Squillante and E. D. Lazowska. Using processor-cache affin-
ity information in shared-memory multiprocessor scheduling. In
IEEE Transactions on Parallel and Distributed Systems, volume 4,
pages 131–143, February 1993.

[14] D. Thiebaut and H. S. Stone. Footprints in the cache.ACM Trans-
actions on Computer Systems, 5(4):305–329, 1987.

[15] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the performance
of cache-affinity scheduling in shared-memory multiprocessors.
Journal of Parallel Distributed Computing, 24(2):139–151, 1995.

[16] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-
conditioned, scalable internet services. InSOSP ’01: Proceedings
of the Eighteenth ACM Symposium on Operating Systems Princi-
ples, pages 230–243, 2001.

9


