
A Simulated Study of File System Metadata Scalability

Jianming Wu

Computer Sciences Department
University of Wisconsin, Madison

Abstract

In this paper, we analyzed four Linux file systems for their
metadata scalability. The increasing gap between the size
of data set and memory capacity has placed an pressure
on existing file systems. We studied the design and im-
plementation of these file system to gain an insight of how
they organize their metadata to manage raw data. Sim-
ulations are conducted to see the simulated behavior of
those four file system. We simulated a simple case with
only one directory and one file with various size, an emu-
lated disk with data from previous literature and a simple
calculation is presented for an aging file system.

Our results shows that not all extent-based file sys-
tem always has less overheads than traditional block-
based file system, and those extent-based file systems
with variable-sized inode structure have good flexibility
to scale, thus avoid the metadata scalability problem that
has been emerging.

1 Introduction

We present a simulated study of file system scalabil-
ity problem caused by its metadata. Four file sys-
tems on Linux platform: Ext3, ReiserFS, JFS and XFS
are studied to check their scalability to accommo-
date the technology advancement in the near future.
The simulated approach enables us to gain a rough
idea of how each different file system scales in artifi-
cial environments and then jump to conclusions on
their scalability in practice.

File system scalability is not a new topic in oper-

ating system research literature. People’s demand
for larger storage system has never been underrep-
resented. To accommodate the increasing hard disk
size and workload, the file systems have evolved to
be more scalable. From the traditional UNIXfile sys-
tem UFS, which was modeled from the memory and
could provide satisfactory performance at that time,
to nowadays XFS with complex data structures and
algorithms to manage terabytes hard disk spaces.
From the floppy disk file system FAT12, which has
only 12 bits for cluster addressing, to modern file
system’s 64 bit addressing capacity.

Till now, the metadata scalability of file systems
caused by the technology advancement has never
been well studied. Recently, Mark Kryder proposed
Kryder’s Law [13] stating that the capacity of hard
disk drive will double annually. A study of over
70,000 sample file systems from 2000 to 2004 shows
that the aggregate fullness of hard disks seldom
changes [1]. Therefore, we can conclude that the
data set of a computer system will also double an-
nually. However, the Moore’s Law [8] predicts the
transistor density on a single integrated circuit will
double in 18 months, which determines the grow-
ing rate of main memory capacity of a computer sys-
tem. So the fact that the growth rate of data set out-
pacing that of main memory may cause scalability
problem of file systems. File systems use metadata
to organize and manage data on disk and in mem-
ory, which places a storage overhead in the system.
This overhead may become significant with the in-
creasing gap between data set and memory, and fi-
nally cause performance degradation.

1

In this paper, we analyzed four file systems on
Linux platform and simulated their overheads in
several scenarios. The simplest case we simulated
was a single file contained in the root directory,
in which we studied the relationship between file
size and metadata overhead in different file systems.
Then we created an emulated file system with pa-
rameters taken from [1] to simulate the synthesized
overheads. In this synthesized case, we studied
file size with a typical distribution and two extreme
case: small and large. We also simulated a simple
aging file system to see its trend of scalability.

Our results indicate that well-designed block-
based file system with variable-sized inode struc-
ture, such as ReiserFS, can have less overhead than
some extent-based file systems, such as JFS, in cases
when file size is relatively small. Extent-based file
systems have sub-linear relationship with the size
of data size. In optimized case, the overhead in
extent-based file systems is constant. The most im-
portant conclusion is that extent-based file systems
with variable-sized inode structure, such as XFS, can
scale to a large extent no matter what distribution of
the file sizes is.

The rest of this paper is as follows. A brief intro-
duction to the file system architecture in Linux will
be presented in Section 2. Then, four popular file
systems on Linux platform will be examined in Sec-
tion 3. The simulation results are shown in Section
4. Conclusions and related work are presented in
Section 5 and 6.

2 A Tour of Linux VFS

The Virtual File System (VFS) [4] is first developed
in SUN Network File System to provide a common
interface for the kernel to operate both network file
system and local file systems. Linux adopted this
design to support tens of various file systems. It is
an intermediate layer placed between the kernel and
the underlying file systems in an operating system
to provide a common interface to the kernel for file
operations. It maintains common data structures in
memory to present an abstraction of all files in this
system. The underlying file systems manage on-disk

Applications

System Calls

Virtual File System

Ext3 JFS AFS

Figure 1: Virtual File System Layer

file data and structure. They implement various op-
erations on actual storage systems. Thus, the ker-
nel uses the same function names to call into the file
systems, and VFS decides which file system specific
calls will be invoked. The architecture of VFS is il-
lustrated in Figure 1. In this figure, three underlying
file systems are mounted to VFS. Two file systems
(Ext3 and JFS) are typical disk file systems; while the
third one, AFS, is a network file system.

When a partition is mounted, the particular file
system on that partition will be registered at the VFS.
On registration, the functions for file system-wide
operations, super operations and single file op-
erations, inode operations will be loaded into
the corresponding VFS calls. Hence, the calls into
VFS from kernel are directly translated into actual
file system calls. Regarding data structures, VFS
maintains data structures with common fields for all
file systems that are essential to perform general op-
erations. Each file system may have their own spe-
cific data fields in memory, but VFS is not aware of
these data. Thus, the functions and data structures
above and below VFS layer are well connected.

In the VFS layer, several data structures are de-
signed to represent objects and improve perfor-
mance. The struct inode is an in-memory ab-
stract data structure to represent file objects in ker-
nel for all file systems. Common data fields for all
kinds of files, such as data block mapping, owner
information and last access time, are stored in this
structure. The dentry structure in Linux stands
for directory entry, which caches mappings of file
names and corresponding inodes. Thus, it provides

2

short-cuts from file name to inode number, without
traditional directory tree traversal. The file struc-
ture and fdtable structure are maintained for ev-
ery process that performs file operations. The file
structure keeps runtime properties of a file, such as
the current offset. The fdtable structure is a file de-
scriptor table that keeps a track of opened files and
provides an process-wide index of files for users.
Figure 2 shows the relationship of major data struc-
tures in VFS with Ext3 as the underlying file system
1.

As the major data structures in VFS are the same
for all kinds of file systems. They have already re-
ceived much attention to keep a reasonable balance
between performance and memory efficiency. How-
ever, regarding file system specific metadata, most
work done is performance oriented while less is
done to improve memory efficiency and scalability.
As the faster growth rate of hard disk drive capacity
than memory capacity [13] and the stability of disk
fullness [1], it is necessary to examine the overheads
of these file system specific metadata to evaluate the
scalability of file systems. In the next section, we will
briefly revisit the design and implementation of four
Linux file systems.

3 The Nuts and Bolts

In this section, we will examine the differences in the
design and implementation of four popular file sys-
tems. We only focus on the metadata of data block
organization as all file systems need to deal with
this problem and this kind of metadata will possi-
bly grow with regard to file size. Actual file systems
have their own on-disk file layouts and data organi-
zations. They need to implement complete on-disk
file operations for the VFS. Due to there different
design, the overheads of in-memory data structures
are different. These overheads are mainly the data
block pointers. With the growth of data set, this kind
of previously underrepresented overhead should be
well studied to prevent performance degradation.

1The inode for /file 2 is not shown here

Table 1: A Summary of File Systems Features

Fixed-size Variable-sized
Inode Structure Inode Structure

Block-based Ext3 ReiserFS
Extent-based JFS XFS

These file systems mainly varies in the ways they
organize data blocks and their inode structures.
Some file system uses block pointers, in which each
data block has one pointer. This is the most straight-
forward way to organize data blocks. Some file
system uses extent-based organization, which uses
a pointer and a length to represent a set of con-
tiguous data blocks. This approach potentially re-
duces the overhead of data block pointers, but its
space efficiency depends on the fragmentation of
files. Thus, defragmentation utilities are needed to
keep the disk at a relatively low fragmentation sta-
tus. Some file system uses fixed size inode structure,
which is easy to design and implement. However,
because the number of data block per file varies, in-
direction technique, such as indirect pointer in Ext3
and B+ tree in JFS, is introduced, which places extra
overheads in the file system. Some file system uses
variable-sized inode structure, in which the data ad-
dressing part can grow as the file size grows. This
approach gains advantage of flexibility in data orga-
nization, but more complex addressing mechanisms
are needed to translate logic data block number to
physical block number. In the rest of this section,
four popular file systems in Linux: Ext3, ReiserFS,
JFS and XFS, are studied. A summary of features of
these four file systems is shown in Table 1. Their
main features are briefly introduced and data ad-
dressing (based on Linux source code of kernel ver-
sion 2.6.22) methods are examined.

3.1 Ext3

Ext3 file system is the simplest file system among all
these the file systems we studied. It was designed
to provide journaling feature while hold backwards

3

0

1

2

3
f i l e s t ruc tu re o f

/ f i l e_1

P r o c e s s _ 1

0

1

2

3

4

f i l e s t ruc tu re o f
/ f i l e_2

P r o c e s s _ 2

f i l e s t ruc tu re o f
/ f i l e_1

den t r y o f
/ f i l e_1

d e n t r y o f
/ f i l e_2

e x t 3 _ i n o d e

v f s _ i n o d e

Figure 2: Major Data Structures in VFS

compatibility with Ext2 file system. So the on-disk
structures in Ext3 are almost the same as Ext2 file
system. Ext3 is a typical block-based file system with
fixed inode structure. In the fixed inode structure of
Ext3, there are 15 pointers for data block addressing.
Of these pointers, 12 are direct pointers, which point
to individual data blocks on disk. The 13th pointer is
the indirect pointer, which points to a block of data
block pointers. The 14th pointer is the double indi-
rect pointer which points to a block of indirect point-
ers, and the last one is the triple indirect pointer.
Therefore, the overhead of data block pointers is al-
most linear to the file size. For example, in a 32-bit
system with block size set to be 4 KB , when the file
size S KB is less than 48KB, then the overhead is 15
pointers, or 60 bytes; when S is larger than 48 but
less than 4146, then the overhead is (S/4 + 3) point-
ers, or (S + 12) bytes.

The data block addressing method used in Ext3 is
straightforward: based on the desired offset of logic
data block number, the physical data block can be
accessed by at most four disk read: for first 48 KB
data, single disk read is required; for data offset

larger than 48 KB but less than 4146 KB , two disk
reads are required, first the indirect pointer block,
then the specific data block; for data offset larger
than 4146 KB but less than 4198450 KB (4 GB + 4 MB
+ 48 KB), three reads are needed; and for data offset
larger than 4198450 KB but less than 4299165746 KB
(4 TB + 4 GB + 4 MB + 48 KB), four disk reads are
needed.

3.2 ReiserFS

ReiserFS [5] is a general-purpose file system with
journaling. It was designed to outperform the Ext2
file system and improve disk space efficiency. As a
result, ReiserFS can perform much faster than Ext2
and Ext3 when file size is relatively small, which is a
great advantage in some kind of web services.

Compared to Ext3 file system, which also has jour-
naling, ReiserFS has two notable features: balanced
trees for file layout management and variable meta-
data structure/location. The major benefit of B+ tree
is its extensibility. There is almost no limit on the
numbers of objects in the B+ tree. Hence, the file

4

system using B+ tree for file layout can extend as the
tree grows, and the location of objects is no longer
fixed.

Different from the inode number used in Ext3 to
identify a file or directory, an object (file/directory)
in ReiserFS can be referenced by multiple items.
Each part of the object has a corresponding item.
ReiserFS uses keys to identify items, which consists
of the directory ID, the object ID, the offset with the
object, and a type. ReiserFS uses these keys to lo-
cate items in the B+ tree. Thus, items within the
same directory, items for the same file, are implic-
itly grouped together due to the characteristics of B+
tree. There are four types of items: stat item, direc-
tory item, direct item and indirect item. They are
assigned a type value in this order. Thus, in the B+
tree, the metadata of an object, the stat item, always
comes ahead of the object data.

Files are made up of direct item and/or indirect
items. If a file is small enough (less or equal to 4048
bytes), then the whole file data is contained in the di-
rect item. ReiserFS has especially good performance
with small files as the meta-data and data are closely
placed on disk. No additional seeking is needed if
the file size is no larger than 4048 bytes. Otherwise,
indirect items are needed and the direct item is used
to store the tail part of the file data. Given a 4 KB
block size, there can be 1012 pointers2 to unformat-
ted data blocks per indirect item. Thus, one indirect
item counts up to 4048 KB of data with the block
size of 4 KB . If more space needed, more indirect
items will be allocated for that file. The addressing
method in ReiserFS is: first find the right item cov-
ering the desired offset, then get data directly if it’s
in a direct item or follow a pointer to a unformatted
data block if it’s in an indirect item.

Another notable features of ReiserFS is that Reis-
erFS adds quite a few bytes to the vfs inode struc-
ture when in memory. This small overhead of inode
structure is a direct result of its simple design of data
organization. The space efficiency brought by the
small overhead of inode structure can be huge with
the increasing data set. In section 4, there is analysis

2(4096-24 byte block header - 24 byte item header)/4 byte =
1012

of the benefit brought by ReiserFS’ small overhead
of inode structure.

3.3 JFS

JFS [2] [3] is IBM’s Journaled File System which pro-
vide direct support of Distributed Computing En-
vironment (DCE). JFS separates the notion of ag-
gregates and filesets, which stand for physical disk
space storage pools and logical file namespaces.
This separation helps JFS to manage resources in dis-
tributed environments. The major goal of JFS is to
provide fast file system restart in the event of a sys-
tem crash. Thus, JFS was designed with focus on the
journaling feature.

JFS uses extent-based allocation mechanism to
support large volume of disk space. Small files (less
or equal to 128 Byte) can be stored in inline stor-
age space. Due to the extent representation of data
blocks, small block size is preferred (512B or 1KB)
to reduce internal fragments. At the same time, the
metadata to address data can be kept at a low level.
JFS has a fixed number of of extents, so when more
extents are needed, like Ext3, JFS will use indirect
extents to accommodate the large data size. B+ tree
is also used in JFS, but only for file layout, not file
data layout.

JFS has a noticeably large inode structure, which is
512 bytes for on-disk structure and over 560 bytes for
in-memory inode structure. Unlike Ext3, in which
the location of inodes are fixed, JFS generate inodes
dynamically. When more inodes are needed, JFS al-
locates an inode extent which is 16 KB in size, to
store new inodes. The large inode structure makes
JFS has a high overhead of metadata if the file num-
ber is large while the file sizes are small.

3.4 XFS

XFS [9] is the next generation local file system for
SGI’s workstation and server. It was designed to
run on machines with gigabytes of memory and ter-
abytes of hard disk spaces. So the scalability is a pre-
mier design goal of XFS. To achieve high scalability,
XFS pervasively uses B+ trees to organize metadata.
For example, the directory items, file data extents,

5

attributes extents and even the free space extents.
Due to the scalability of B+ tree, XFS achieved high
scalability and performance [12].

XFS also uses extent as the allocation unit. So for
file data, the extent-based representation greatly re-
duces the overhead of pointers, as used in Ext3. For
free spaces, the extent-based management eliminate
the necessary of bitmap, thus enables low metadata
level when used in large disk pools. The inode struc-
ture is also variable as ReiserFS. The fixed part of in-
ode structure is small, and the rest part depends on
the numbers of extents that this inode owns. Thanks
to the B+ tree, XFS has a small fixed number of ex-
tents in inode structure. If more extents needed due
to the large file size, a B+ tree is created to organize
those extents.

4 Simulation Result

With the trend that files are growing bigger and big-
ger, the affected part in file metadata is the data
block management. Larger space needs more data
to maintain fast access to data at any offset. So we’ll
focus on the data block management part of these
file systems. In this section, we built an overhead
simulator to simulate the overheads of the four file
systems we studied in three scenarios. The first sce-
nario is a single file with various sizes, in which the
comparison of the overheads in each file system is
obvious. The second scenario is a simulated disk
case, in which a typical set of file servers is simu-
lated and we could gain an idea of the overheads of
these file systems in practice. The third scenario is
an aging file system which evolves in its life time.

4.1 A Single-Dir-Single-File Case

In this part, a single file case will be simulated for
all four file systems. We perform this experiment to
show a typical overheads relationship with the size
of a file.

For the two block-based file systems Ext3 and
ReiserFS, they should display a similar over-
heads/file size relationship as at least one pointer
is needed for each data block in both of them. The

inode size and location in Ext3 are fixed, so Ext3
uses multiple indirect pointers (indirect, double in-
direct and triple indirect) to organize the large num-
ber of data block pointers for huge files. This will
place extra overhead in Ext3 file system. However,
in ReiserFS, both inode size and location can be vari-
able. Thus, ReiserFS uses only one level of indi-
rect pointers for huge files. This change improves
file read/write performance but from Figure 3(a) we
can see the overheads of these two file systems are
almost the same in general. Due to the advantage
of containing all data of small files inside the inode
structure, we know that it makes ReiserFS perform
exceptionally well in small file operations. From Fig-
ure 3(b) we could discover that ReiserFS has less
overhead than Ext3 does for small files.

For JFS and XFS, they are two extent-based file
systems. In this single file case, the data blocks are
composed of one single data block for the directory
and the rest for the file data. Therefore, one extent
is enough to cover all the data blocks in that file, re-
gardless of the file size. So in both Figure 3(a) and
Figure 3(b) we can see that these two file systems
have constant small overheads when file size scales.

4.2 An Emulated Disk

In this part, a simulation on an emulated disk will
be conducted. It is hard to find a perfect typical disk
partition to perform the simulation in the real world.
So we experiment with an emulated disk which has
typical characteristics of real world disks. To meet
our simulation requirement, four numbers of a file
system should be set: the directory count, directory
size distribution, file count and file size distribution.

Based on the work done by Agrawal et al.[1], we
used the data from year 2004 to create an emulated
disk. Those data in [1] were collected from over
70,000 sample file systems, so the statistical numbers
can not meet in a single file system. For example, the
median number of direct count in 2004 was 4 thou-
sand and median file count was 52 thousand. From
this, we can conclude the average files within a di-
rectory for a typical disk would be around 13, but
the paper said in 2004 the average file count in a di-
rectory was 10.2. So we just fix the directory count,

6

16B

64B

256B

1KB

4KB

16KB

64KB

256KB

1MB

4MB

0 256MB 512MB 768MB 1GB

O
ve

rh
ea

d
(lo

gs
ca

le
)

File Size

One Directory with One File, File size from 0B to 1GB

Ext3
ReiserFS

JFS
XFS

(a) File size from 0B to 1GB

0

2KB

4KB

6KB

8KB

10KB

12KB

0 2MB 4MB 6MB 8MB

O
ve

rh
ea

d

File Size

One Directory with One File, File size from 0B to 8MB

Ext3
ReiserFS

JFS
XFS

(b) File size from 0B to 8MB

Figure 3: Single-Dir-Single-File Simulation

and generate other data from their distribution.

First, we set the directory count to be 4 thousand,
the median number observed in [1]. Because there
are two kind of entries in a directory: the files and
the subdirectories. Thus we created three distribu-
tions to approximate the distributions of files in a
directory, the distributions of subdirectory and the
file size distribution. In our emulation, only the total
number of entries should be considered as the files
and subdirectories are treated in the same way when
counting the overheads. From [1], we know that the
median of file count in a directory is almost 2 and the
arithmetic mean is around 10.2. Combined with the
shape of Figure 14, we choose Kumaraswamy distri-
bution with α = 0.45 and β = 32.02 to approximate
the curve on Figure 14. With these two parameters
well chosen, we have our median number equals 2
and arithmetic mean equals 10.2, which are similar
to [1]’s data. For subdirectory count, due to its sim-
ple distribution curve, we manually set the cumu-
lative percentages from 0 to 10 based on Figure 15.
For the file size distribution, which was depicted on
Figure 2 and 3 of [1], we know the median is almost
4 KB and mean is 189 KB in 2004. We used log-
normal distribution curve to approximate this distri-
bution. Two parameters: µ = 8.32 and σ = 2.78 are

selected based on the median and mean values for
the log-normal distribution. Thus, the basic charac-
teristics of file size distribution is well approximated
by our log-normal distribution with median at 4096
and arithmetic mean at 189 KB .

The exact overheads of block-based file systems
can be simulated with the emulated disk above set.
However, it is difficult to measure the overheads
in extent-based file systems. Because overheads in
extent-based file system depend on the fragmenta-
tion of the file system. In the worst case, each extent
contains only one block, then the overheads are lin-
ear to the number of total data blocks; however, in
the best case, the defragmentation utility connects
all the data blocks of one file into one single extent,
thus the overheads are constant to a single file. Due
to the fact that JFS provided defragmentation utili-
ties [3] to manually optimize the data block layout,
and XFS does this defragmentation work automati-
cally whenever an allocation is occurred [9], we can
safely assume the emulated partition is already de-
fragmented, i.e.every file contains only one extent
of data. This assumption does not affect the result
of block-based file systems, as the aggregation of
data blocks in one file will not change the number
of pointers needed for that file.

7

10MB

20MB

30MB

40MB

50MB

Ext3 ReiserFS JFS XFS

O
ve

rh
ea

d

Emulated Disk with typical file size, total data size 14GB

Figure 4: Overheads in an emulated disk approximating
typical disks

Figure 4 shows the graph of overheads in these
four file systems. This emulated disk has around
14 GB raw data. From the graph, Ext3 has the
poorest space efficiency, with overheads 0.33% of
the raw data. ReiserFS performs as expected, with
overheads roughly 0.10% of the raw data. To our
surprise, JFS also incurs high overheads ratio in our
simulation and its advantage of extent-based alloca-
tion does not show any benefit against ReiserFS. We
think this is largely because of the large inode size
of JFS, which adds up to an inneglectible amount of
overheads. XFS, as expected, has the least overheads
due to its variable-sized inode structure and extent-
based allocation.

To further study the effect of file size, we created
two more emulated disk: one with all file sizes equal
1 KB , the other one with all file sizes equal 10 MB
. The structure of the disk is set to be the same em-
ulated disk as stated above. We select 1 KB as the
representative of small files and 10 MB for large
files because those two are two typical extremes of
file systems, though over 100 MB may be a typical
file size in some certain file systems, such as GFS [6].
The results are shown in Figure 5.

From Figure 5(a) we see ReiserFS incurs very lit-
tle overhead as ReiserFS can store this small piece of
data in its inline storage space. In this small file case,
JFS’s big inode structure places a huge overhead for
the system. With the file size increasing, JFS’s over-

head remains the same as we assumed the disk is
always defragmented. But the overhead of Ext3 and
ReiserFS grows linearly with the size of data set. At
the 10 MB level, from Figure 5(b), we noticed that
both Ext3 and ReiserFS have higher overhead than
JFS, and the gap between Ext3 and ReiserFS is de-
creasing.

4.3 An Aging File System

The file system is not stable. Its aging will result in
a larger data set and fragmented data layout. Smith
et al.[11] has done some research into the file system
aging. They created a file system aging model based
on the snapshots of real file systems they collected.

Here we have no such snapshots of read file sys-
tems. Thus, the fragmentation model can not be de-
signed. But we can do some simple calculations on
the size of data set. If a file system uses block-based
allocation, such as Ext3 and ReiserFS, then the ratio
of overheads to the size of data set is at least 0.1%.
Given today’s mainstream hard disk drive capacity
500 GB and the typical fullness ratio of 40%, we get
the overhead is roughly 0.2 GB . By Kryder’s Law
[13] and observation of disk fullness by Agrawal et
al.[1], we can deduct that the overhead doubles an-
nually. Then for the memory size growth, given to-
day’s mainstream memory size 2 GB , and luckily
Moore’s Law could still hold in the following years,
then in less than 10 years, the overhead will outnum-
ber the memory size in block-based file systems.

5 Conclusions

Different file systems have different metadata to or-
ganize raw data. They organize data either in a
block-based way or an extent-based way. The block-
based allocation is a straightforward design to man-
age raw data as each pointer points to exactly one
data block. Thus, the data access method and perfor-
mance is good as there is a direct mapping of file off-
set and the corresponding pointer to that data block.
The extent-based allocation reduces space overhead
in storing so many pointers to the data block. Due
to the fact that extent-based allocation eliminates the

8

5MB

10MB

15MB

20MB

Ext3 ReiserFS JFS XFS

O
ve

rh
ea

d

Emulated Disk with file size 1KB, total data size 41MB

(a) Emulated disk with file sizes equal 1 KB

200MB

400MB

600MB

800MB

Ext3 ReiserFS JFS XFS

O
ve

rh
ea

d

Emulated Disk with file size 10MB, total data size 409GB

(b) Emulated disk with file sizes equal 10 MB

Figure 5: Emulated disk with file sizes in two extremes

direct mapping of file offset and the correspond-
ing pointer, the random I/O performance may not
as good as the block-based counterpart. However,
extent-based allocation would increase the sequen-
tial I/O performance [7]. What’s more, extent-based
allocation’s reduction of the pointers to address file
data in turn reduces the cache usage for large file
servers. Thus, more and more recently file systems
adopt the extent-based allocation method.

The most amazing findings in our simulation is
that extent-based file systems are not always better
than block-based file systems. For example, in small
file case, well-designed block-based file system Reis-
erFS has far less overhead than extent-based file sys-
tem JFS. Extent-based allocation can definitely re-
duce the overhead if the disk is well defragmented,
however, the inode structure and other related data
structure should also receive enough attentions to
make it outperform traditional block-based alloca-
tion in space efficiency.

The extent-based file systems are proved to be
scalable in the war of Moore’s Law and Kryder’s
Law. Even the size of data size grows faster than
the memory capacity, extent-based file systems can
keep the overhead at a quasi-constant level. Espe-
cially the XFS with variable-sized inode structure, it

can keep the overhead relatively low in both small
file case and large file case.

Due to the increasing gap between data set and
memory, more and more effort should be placed in
the design of clever algorithms in file systems to
keep the metadata at a low level. Human-oriented
design has been changed to disk-oriented design to
lower the metadata overhead and improve file sys-
tem scalability. We think the extent-based file system
with variable-sized inode structure will be a trend in
the future file system design.

6 Related Work

Weinstock et al.[14] presented an analysis of system’s
scalability and described the factors to be considered
when assessing the potential for system scalability.
A definition of scalability is given and a model is
presented to stand for scalability. They also analyze
the restrict factors and how to solve them.

McVoy et al.[7] did research into the benefit of per-
formance gains by using extent-based file systems.
They observed the I/O improvement but a few un-
expected problems also emerged in extent-based file
system, such as the page thrashing problem.

9

Smith et al.[11] found that the file system bench-
marks always perform test on a clean disk, which
can not fully reflect the practical file systems’ per-
formance. Thus, they designed a file system aging
model to artificially age a file system, to make it
larger and fragmented. They used a series of snap-
shots of real file systems and interpolate these snap-
shots by simulating the life cycle of files. Hence, they
can create an aged file system by replaying a work-
load similar to that experienced by a real file system
over a certain period.

Prabhakaran et al.[10] developed two tools: Se-
mantic Block Analysis (SBA) to help infer file sys-
tems’ behavior, and Semantic Trace Playback (STP)
to simulate disk traffics. Combined with these two
tools, they analyzed four journaling file systems and
uncovered many strengths and weaknesses of these
file systems by semantic level analysis.

7 Acknowledgments

The author would like to express great thanks
to Prof. Remzi Arpaci-Dusseau for his guidance
throughout the whole project. Without him, the
project may get stuck many times. I also want to
thank Nitin Agrawal. He helped me to analyze the
data of an emulated disk. Besides, I would like to
express my thankfulness to Han Zhang and Gwen-
dolyn Stockman, who helped me select the right dis-
tributions and pick up right parameters.

References
[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A

Five-Year Study of File-System Metadata. In Proceedings of
the 5th Conference on File and Storage Technologies (FAST ’07),
San Jose, California, February 2007.

[2] S. Best. JFS Overview –How the Journaled File System cuts
system restart times to the quick. Technical report, Linux
Technology Center, IBM, January 2000.

[3] S. Best and D. Kleikamp. JFS Layout –How the Journaled
File System handles the on-disk layout. Technical report,
Linux Technology Center, IBM, 2000.

[4] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly Media, Inc., 3rd edition, 2006.

[5] F. Buchholz. The structure of the Reiser file system. 2006.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43, New
York, NY, USA, 2003. ACM.

[7] L. W. McVoy and S. R. Kleiman. Extent-like performance
from a UNIXfile system. In Proceedings of the USENIX Winter
1991 Technical Conference, pages 33–43, Dallas, TX, USA, 21–
25 1991.

[8] G. E. Moore. Cramming more components onto integrated
circuits. Electronics, 38(8), April 1965.

[9] B. Naujok. XFS Filesystem Structure. Technical report, Sili-
con Graphics, Inc., 2006.

[10] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Analysis and Evolution of Journaling File Systems.
In The Proceedings of the USENIX Annual Technical Conference
(USENIX ’05), pages 105–120, Anaheim, CA, April 2005.

[11] K. A. Smith and M. I. Seltzer. File system aging - increasing
the relevance of file system benchmarks. In SIGMETRICS
’97: Proceedings of the 1997 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems,
pages 203–213, New York, NY, USA, 1997. ACM.

[12] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS file system. In Pro-
ceedings of the USENIX 1996 Technical Conference, pages 1–14,
San Diego, CA, USA, 22–26 1996.

[13] C. Walter. Kryder’s Law. Scientific American, pages 32–33,
August 2005.

[14] C. B. Weinstock and J. B. Goodenough. On system scalabil-
ity. Technical report, Carnegie Mellon Software Engineering
Institute, March 2006.

10

