
IRON Databases
Adeel Pervez and Joshua Woleben

Department of Computers Sciences, University of
Wisconsin-Madison

Abstract: Modern database systems store critical
data such as financial transactions, health
records, research results, and government data.
Continuous access to this data and its integrity
are crucial to the business, academic and
government environments that rely on them.
Database system downtime or data loss can
cause millions of dollars in lost business and
productivity, and can even result in liability. In this
paper we have explored two modern database
systems to test their reaction to various types of
corruption. We explored a closed source,
proprietary system from Intersystems Corporation
called Cache, and an open-source database
system called PostgreSQL. To accomplish this,
fault injection at the pointer level and data
structure level was used, then the database
tested and its reaction, if any, was recorded. We
found that both database systems lack in integrity
recovery and could use improvement.

1. Introduction

Our entire economy relies on the availability and
integrity of modern database systems, from
Oracle to DB2 to MySQL. These databases store
everything from health records for patients,
government data on criminals and statistics,
financial records, accounting, research results,
and flight patterns. These databases are required
to be secure, reliable, available and perform well.
To meet all of these requirements some trade-offs
are made. Reliability may be sacrificed for
performance, or vice-versa. However, a major
question in all database systems is how to
guarantee data integrity. What good is high
availability if the data that is made available is
rendered useless because it is wrong, logically
inconsistent or impossible to read?

We decided to test the reaction of various
database systems to see how well they reacted to
integrity problems. Since the scope of the initial
venture was limited, we decided to test two major
database systems. The first system was a
MUMPS-based RDBMS from Intersystems
Corporation called Cache. Cache is a closed-
source system that is supported on almost every
platform. The other system we tested was

PostgreSQL, an open-source, SQL-based
system.

To test these systems, we were able to do
thorough fault-injection by either corrupting data
structures themselves or the pointers within the
data structures. Data was either then rewritten to
the database or integrity checked over the same
points to test the databaseʼs reaction. Each case
was recorded.

The results were unfortunate but not unexpected.
Both database systems reacted poorly to integrity
issues, although Cache was able to detect all
corruption when its integrity checker was run.
PostgreSQL was able to detect some faults
through sanity checking and type checking.

2. Intersystems Cache
2.1 Data structure

Cache is a post-relational database system
supported on almost all modern platforms. Cache
maintains data in persistent data structures called
globals. Globals are denoted by the carat symbol
followed by the global name, for example ^DATA.
Globals are tree structures that resemble arrays
of arrays and can have an indeterminate depth. A
global can either be assigned a single value, such
as a numeric or string, or can be composed of
multiple nodes denoted by numeric or string
values as subscripts, such as
^DATA(“NAME”)=”WOLEBEN, JOSHUA”.

Globals in Cache are stored on disk in files
named CACHE.DAT. Cache wonʼt mount files of
any other name, so to have multiple databases,
each CACHE.DAT file must be in its own
directory. Within CACHE.DAT files are a structure
that organize the global data and make it rapid to
find.

The basic structure inside a CACHE.DAT file is
that of a B+ tree divided into 8 KB blocks. These
blocks will have different purposes to help find the
data. The basic kinds of blocks in a Cache
database file are: global directory block, upper-
level pointer block, bottom-level pointer block,
global data block, big global data block, and map
block. Each block type also has an associated
internal number that is used by Cache.

The global directory block contains information for
each global in the database. Each entry in the

global data block contains the global name,
collation type (a designator internal to Cache that
determines how data is stored), protection setting,
growth area and the location of the globalʼs top-
level pointer block.

Top-level pointer blocks are the uppermost block
in the B+ tree for a global. This block is referred to
by the global directory block and contains indexes
for pointer blocks lower in the tree.

Pointer blocks comprise the middle levels of the B
+ tree, and contain index values for bottom-level
pointers that lead to the data.

Bottom-level pointer blocks are immediately
above the data blocks. The bottom-level pointer
blocks contain indexes that lead to the actual data
being requested.

Data blocks contain the actual data for the global
stored on disk. Data is stored in collated order
based on the collation type, global name, and
subscript name.

Occasionally a global will only need a single
pointer block. In this case, there is only one
pointer block between the global directory block
and the data block itself.

In addition to all of the pointer blocks, each
pointer and data block has a right link pointer at
the end of the block that points to the next block
on its right. This allows for an additional structure
of redundancy in the B+ tree structure.

The integrity of this B+ tree structure is critical for
continued access to the data. If the structure is
corrupted, data can be impossible to access. In
most cases only a few pointers are incorrect and
can be repaired by the operator. In cases of
severe corruption, however, we have to restore
the database from a backup and play forward the
journal files that Cache keeps to log data
transactions to the database. In this paper, we will
explore the ways that Cache reacts to a database
integrity issue and how they can be repaired, if
possible.

2.2 Methodology
The ^REPAIR utility, a Cache routine that can
access the pointer structure of the database file,
will be used to inject pointer corruption in the
database and to also repair it. We will examine

various kinds of block corruption at the pointer
and data level.

The test Cache instance (the term for an
installation of Cache) is hosted on a MacBook Pro
with an Intel Core 2 Duo processor at 2.4 GHz
and 2 GB of RAM, running Mac OS X 10.5.1. The
version of Cache being tested is 5.2.3.

The following kernel parameters had to be set in
order to run Cache on Mac OS X:
kern.sysv.shmmax to 256,000,000 bytes, and
kern.sysv.shmall to 16,777,216 bytes.

First we need a database file to test our code in.
Using the ^DATABASE routine, we can create a 5
MB database file in /Applications/cachesys/test/
CACHE.DAT.

Next we need a namespace for our code to
interact with the database. Using Cacheʼs System
Management Portal, we can create a namespace
TEST that refers to the database in /Applications/
cachesys/test.

Cache is an implementation of the MUMPS
programming language and database structure,
so our test data will be created using an M
routine. Below is our test code, a simple for loop
that will assign subscripts of a Cache global a set
of values so we have a wide array of data to work
with: f i=1:1:10000000 s ^CS736(i)=”Test data”
This code will be run in the TEST namespace at
an interactive Cache prompt.

First we should create a backup of our TEST
database so we can restore it after a fault
injection. To do this, we can shut down the
database and copy it to an alternate location.
Once we have a backup, we can restart the
database and begin probing the global structure
and attempting corruption of the pointer blocks.

Once the test data is ready, we can diagram the
block structure of the global ^CS736 by
proceeding into the %SYS namespace and
invoking the ^REPAIR utility.

^REPAIR allows us to actually change nodes of
the block weʼre viewing, so this was used to
modify the pointers in various block structures to
fault inject. Once this was written to disk, the data
was rewritten using a different value and the
databaseʼs reaction noted. After that, the

database was checked by the integrity check
utility in Cache and the error type detected noted.

2.3 Results

2.3.1 Write Results

The write results in Cache are not encouraging. In
almost all cases, Cache simply wrote the data to
the invalid pointer structure without checking it.
Sometimes this would write all correct data, and
sometimes it would only write correct data
partially through the loop. Cache was inconsistent
in how it wrote the data.

For write tests, each type of pointer was changed
to a particular value, and the reaction tested. In
the table below, a zero (0) denotes no visible
reaction. An X denotes a <DATABASE> error,
which means Cache detected the integrity fault.
An asterisk (*) means that the database

encountered a <BLOCKNO> error, which is
similar to a <DATABASE> error but specifies
Cache detected an invalid block number.

2.3.2 Integrity Test Results

The integrity test results were much more
acceptable. Cache detected nearly all of the
integrity problems we injected with its
independent integrity checker. This shows Cache
is capable of detecting the errors in its tree
structure at some point. The numbers in the
spreadsheet denote the type of error(s) detected
by Cache.

2.4 Conclusions

Result
Figure 1.

Write
Test

Zero Out of
Range

Expected
block type,

wrong
block

Global
Directory

Block

Top Pointer
Block

Bottom
Pointer Block

Data
Block

Linked to
itself

Global
Director
y Block
Pointer
Top
Pointer
Block
Down
Pointer
Top
Pointer
Block
Right
Link
Pointer
Bottom
Pointer
Block
Down
Pointer
Bottom
Pointer
Block
Right
Link
Pointer
Data
Block
Right
Link
Pointer

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 X X X X X X X

0 0 0 0 0 0 0 0

0 * 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Our conclusion is that Cache is more focused on
I/O errors than integrity errors. Cacheʼs reaction
to any I/O error in any of its databases is to
immediately freeze all updates and require
manual intervention, which is designed to
maintain current data integrity. More subtle
database errors are undetected by the write
daemons but detected by integrity checks. The
current methodology to recover data is to restore
from backup and apply journal files, which is
effective but requires extensive downtime. We
propose that Cache check the integrity of the
blocks it is going to write to disk before doing the
write, and that Cache keep journal files of the
pointer structure it changes to allow possible live
repair of the database rather than requiring

restore from a backup. These features could be
optional in environments where performance
trumps reliability.

3. PostgreSQL

3.1 Methodology

Our methodology is to apply type-aware
corruption to on-disk structures as explained in [1]
and [2], run some workload and analyze the
results to determine PostgreSQL's failure policy.
The advantage of applying type-aware corruption
is that a lot more into the system's working is
obtained than by corrupting structures in a type-
oblivious manner. Another advantage, as

Results
Figure 2.
Integrity

Zero Out of
Range

Expected
block type,

wrong block

Global
Directory

Block

Top
Pointer
Block

Bottom
Pointer Block

Data
Block

Linked
to itself

Global
Director
y Block
Pointer
Top
Pointer
Block
Down
Pointer
Top
Pointer
Block
Right
Link
Pointer
Bottom
Pointer
Block
Down
Pointer
Bottom
Pointer
Block
Right
Link
Pointer
Data
Block
Right
Link
Pointer

0 0 0 0 0 0 0 0

27 27 26 9 25 26 25 25

0 28 4 & 5 8 4 & 5 4 & 5 8 4

27 27 5 & 26 5 & 26 5 & 26 5 & 26 5 & 26 5 & 26

26 & 29 26 26 & 4 26 & 8 26 & 4 26 & 4 26 & 8 26 & 4

11 13 13 None 26 26 13 26

Item Description
pd_lsn LSN: next byte after last byte of xlog record for last change to this

page
pd_tli TimelineID of last change
pd_lower Offset to start of free space
pd_upper Offset to end of free space
pd_special Offset to start of special space
pd_pagesize_version Page size and layout version number information

Table 2. PageHeaderData Layout

Item Description
PageHeaderData 20 bytes long. Contains general information about the page, including

free space pointers.
ItemPointerData Array of (offset,length) pairs pointing to the actual items. 4 bytes per

item.
Free space The unallocated space. New item pointers are allocated from the start

of this area, new items from the end.
Items The actual items (rows in tables) themselves.
Special space Index access method specific data. Different methods store different

data. Empty in ordinary tables.
Table 1. Overall Page Layout

Item Description
t_xmin Insert transaction ID stamp
t_xmax Delete transaction ID stamp
t_cmin Insert command ID stamp
t_cmax Delete command ID stamp
t_xvac Transaction ID for vacuum
t_ctid Current TID or newer row version
t_natts Number of attributes
t_infomask Flags
t_hoff Offset to user data

Table 3. HeapTupleHeaderData

System Catalog Description
pg_aggregate Stores information regarding aggregate functions
pg_attrdef Stores default attribute values
pg_attribute Stores information about individual columns in tables
pg_class Catalogs tables, indexes, sequences etc.
pg_constraint Stores constraint information about tables
pg_database Stores information about available databases
pg_depend Records dependency information among tables
pg_index Contains partial information about indexes
pg_operator Stores information about operators
pg_type Stores data type information

Table 4. Tested System Catalog Tables

mentioned in [2], is that the exploration space of
the tests to be performed is drastically reduced.
Corruption is done in user tables, system catalog
tables and various indexes on these.

Our workloads consist of SQL statements (select,
insert, alter etc.). Our goal is to exercise the
systems as thoroughly as possible so many
variations of these are tried for each possible data
corruption.

3.2 PostgreSQL Data Structures

PostgreSQL stores its data as files on the file
system. Each table has a separate file. Each file
is divided into fixed size pages. Table 1, 2
summarize the data structures present in a single
page. Every Item (row in a table) is has a header,
the HeapTupleHeaderData. This is summarized in
Table 3. The system catalog tables that were
tested are described in Table 4.

3.3 Results

Our result are summarized Figures 1,2,3,4.. Each
cell in a figure shows the behavior when a
particular workload is applied to a particular kind
of corruption. We make use of the IRON
taxonomy as presented in [1] for classifying the
corruption detection and recovery mechanisms.
The taxonomy for our case is as follows:

3.3.1 Levels of Detection:

None: No detection is performed
Type: Corruption was detected using type
checking. Type checking means checking some
predefined magic numbers to verify validity of
data blocks.
Sanity: Corruption was detected using sanity
checking. Sanity checking entails checking data
values against well-known values to detect
corruption.

3.3.2 Levels of Recovery:

None: No recovery is performed
Propagate: An error is propagated to the user.
The system does not handle the error itself
Redundancy: Data redundancy is used to deal
with the error

Figure 1. Data Table Detection Results

Discard: Corrupt data is discarded.

For some workloads we might see multiple
mechanisms employed either for recovery or
detection. These have also been summarized in
the results.

Below we summarize some of our observations
regarding PostgreSQL's failure policy.

3.3.4 Detection Observations

Observation 1 Corruption detection in
PostgreSQL is done primarily using type and
sanity checking.

PostgreSQL checks magic numbers associated
with data structures (the PageHeader, for
example) for verification when such information is
available (see observation 2). Sanity checking is
done when applicable; for instance Free Space
Pointers are checked in this way. An out-of-
bounds Free Space Pointer is detected and an
error is reported.

Observation 2 Type information is not available
for most important data structures.

Figure 3. Data Table Detection Results

Figure 4. Data Table Recovery Results

No type information is associated with important
data structures such as an Item in a relation or an
index. An item in a relation represents a row in a
table and a tree node in an index. A corrupt
pointer to an Item is not detected due to the lack
of such type information.

Observation 3 Error detection mechanisms such
as parity and checksums are not employed.

Observation 4 Most data corruptions are not
detected.

In the tests we ran it was found that almost all
actual table data corruptions passed through
undetected. This we feel is a direct consequence
of the detection policy employed as explained
next.

 3.4 Lessons

Lesson 1 Type and sanity checking do not/cannot
detect everything.

Figure 2. Overall Recovery Results

The sanity checking for Free Space Pointers does
not detect invalid pointers that are not out-of-
bounds. Without additional information sanity
checks alone cannot detect such errors. For some
structures such information can be made
available while for others it is not possible to do
so. For instance, for actual table data, sanity
checking does not help detect corruption.

Another example of a structure where sanity
checking does not help is the Null Bitmap. The
Null Bitmap for a data row tells which columns
have null values. In a page in a table file, the Null
bitmap appears just before the actual table row. In
one of the tests we performed, a single bit
corruption in the bitmap caused the data in a row
to shift one column to the right. So data belonging
to one column appeared in the next column! No
amount of sanity checking (without additional
information) can detect such a corruption.

There are other cases in which sanity checking
might be able to detect corruption but is not
feasible to do. Examples are the constraints on a
specific column. Suppose a corruption causes a
to have multiple primary keys. With sanity
checking the only way to detect this is to compare
every value in that column with every other value.
This is clearly infeasible to do.

Lesson 2 Sanity checking can be made more
comprehensive by providing additional
information.

PostgreSQL stores Free Space start and end
pointers that point to the start and end of free
space in a data page. As we have mentioned
before, in general, invalid pointers are not
detected. This can be fixed by storing the actual
amount of free space in the page and comparing
that with the amount of free space pointed to. This
way almost all Free Space Pointer errors can be
detected.

Lesson 3 Include type information for more data
structures.

Most pointer corruptions can be detected by
including type information with the data structure
pointed to. Storing type information with an Item
would allow us to detect corrupt Item pointers.
Type information can also be a substitute for the
fix mentioned in Lesson 2. A magic number could

be added to the beginning of the array of Items in
a page. A Free Space End pointer corruption
could then be detected by checking the value
pointed to by the pointer.

Lesson 4 Use checksums

Data structures for which it is infeasible to do
sanity/type checking checksums can be used.
This should be done, at least, for important
structures if not for everything.

3.5 Recovery Observations

According to our findings PostgreSQL does not
have much machinery in the way of recovering
from data corruption. Error recovery in
PostgreSQL is tailored toward absolute system
crashes and not partial corruption. Below we
summarize our observations of the way
PostgreSQL responds to data corruption.

Observation 5 Errors encountered are mostly
propagated to the user.

PostgreSQL reports errors when they are
detected. In most cases the table causing the
error becomes inaccessible. However, there are
some instances in which doing further operations
on the table is still possible. There are still other
instances in which the entire database becomes
inaccessible.

Observation 6 Errors in performance-enhancing
data structures usually cause complete failure.

Examples are indexes. An error in an index, if
detected, will usually cause it to be propagated to
the user and the operation aborted. Even if the
actual data which is present in the table is
available, it is not checked and returned.

An example where the behavior is different is the
Free Space Map. The Free Space Map is meant
for speeding up searches for new free space
when required and is not essential for
correctness. If an error is detected in the Free
Space Map the action is to discard the map and
start anew.

Observation 7 Replication is not used for
recovery.

PostgreSQL does not maintain replicas of data
with the intention of using them for recovery when
needed. PostgreSQL does do some things that
have the side effect of a full or partial replica
being created. Indexes for instances are an
example of this.

Another example are the system catalog tables.
When creating a new database the system
catalog tables are copied from a preexisting
template of tables. Suppose during operation of a
database a system catalog table is rendered
inaccessible. The template replica is not used for
recovery even if the table remained unchanged
after being copied.

4. Related Work

Related work is being done in the filesystem field
at the University of Wisconsin-Madison, for IRON
file systems [1]. Work has also been done in
distributed systems fault injection [5]. The field of
database integrity needs further exploration and
research in order to solidify an understanding of
what can make database systems more reliable.
However, those findings must also be applied in
the constraints of performance requirements.

References

1. IRON File Systems.
2. L. N. Bairavasundaram et al., The Effects of
Disk Corruption: Case Study of a Commercial File
System.
3. PostgreSQL documentation: http://
www.postgresql.org/docs/
4. PostgresSQL source code
5. Dependency Analysis in Distributed Systems
using Fault Injection: Application to Problem
Determination in an e-commerce Environment
http://www.loria.fr/~festor/DSOM2001/
proceedings/S5-2.pdf

http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
http://www.loria.fr/~festor/DSOM2001/proceedings/S5-2.pdf
http://www.loria.fr/~festor/DSOM2001/proceedings/S5-2.pdf
http://www.loria.fr/~festor/DSOM2001/proceedings/S5-2.pdf
http://www.loria.fr/~festor/DSOM2001/proceedings/S5-2.pdf

