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Abstract: Modern database systems store critical 
data such as financial transactions, health 
records, research results, and government data. 
Continuous access to this data and its integrity 
are crucial to the business, academic and 
government environments that rely on them. 
Database system downtime or data loss can 
cause millions of dollars in lost business and 
productivity, and can even result in liability. In this 
paper we have explored two modern database 
systems to test their reaction to various types of 
corruption. We explored a closed source, 
proprietary system from Intersystems Corporation 
called Cache, and an open-source database 
system called PostgreSQL. To accomplish this, 
fault injection at the pointer level and data 
structure level was used, then the database 
tested and its reaction, if any, was recorded. We 
found that both database systems lack in integrity 
recovery and could use improvement.

1. Introduction

Our entire economy relies on the availability and 
integrity of modern database systems, from 
Oracle to DB2 to MySQL. These databases store 
everything from health records for patients, 
government data on criminals and statistics, 
financial records, accounting, research results, 
and flight patterns. These databases are required 
to be secure, reliable, available and perform well. 
To meet all of these requirements some trade-offs 
are made. Reliability may be sacrificed for 
performance, or vice-versa. However, a major 
question in all database systems is how to 
guarantee data integrity. What good is high 
availability if the data that is made available is 
rendered useless because it is wrong, logically 
inconsistent or impossible to read?

We decided to test the reaction of various 
database systems to see how well they reacted to 
integrity problems. Since the scope of the initial 
venture was limited, we decided to test two major 
database systems. The first system was a 
MUMPS-based RDBMS from Intersystems 
Corporation called Cache. Cache is a closed-
source system that is supported on almost every 
platform. The other system we tested was 

PostgreSQL, an open-source, SQL-based 
system.

To test these systems, we were able to do 
thorough fault-injection by either corrupting data 
structures themselves or the pointers within the 
data structures. Data was either then rewritten to 
the database or integrity checked over the same 
points to test the databaseʼs reaction. Each case 
was recorded.

The results were unfortunate but not unexpected. 
Both database systems reacted poorly to integrity 
issues, although Cache was able to detect all 
corruption when its integrity checker was run. 
PostgreSQL was able to detect some faults 
through sanity checking and type checking.

2. Intersystems Cache
2.1 Data structure

Cache is a post-relational database system 
supported on almost all modern platforms. Cache 
maintains data in persistent data structures called 
globals. Globals are denoted by the carat symbol 
followed by the global name, for example ^DATA. 
Globals are tree structures that resemble arrays 
of arrays and can have an indeterminate depth. A 
global can either be assigned a single value, such 
as a numeric or string, or can be composed of 
multiple nodes denoted by numeric or string 
values as subscripts, such as 
^DATA(“NAME”)=”WOLEBEN, JOSHUA”.

Globals in Cache are stored on disk in files 
named CACHE.DAT. Cache wonʼt mount files of 
any other name, so to have multiple databases, 
each CACHE.DAT file must be in its own 
directory. Within CACHE.DAT files are a structure 
that organize the global data and make it rapid to 
find.

The basic structure inside a CACHE.DAT file is 
that of a B+ tree divided into 8 KB blocks. These 
blocks will have different purposes to help find the 
data. The basic kinds of blocks in a Cache 
database file are: global directory block, upper-
level pointer block, bottom-level pointer block, 
global data block, big global data block, and map 
block. Each block type also has an associated 
internal number that is used by Cache.

The global directory block contains information for 
each global in the database. Each entry in the 



global data block contains the global name, 
collation type (a designator internal to Cache that 
determines how data is stored), protection setting, 
growth area and the location of the globalʼs top-
level pointer block.

Top-level pointer blocks are the uppermost block 
in the B+ tree for a global. This block is referred to 
by the global directory block and contains indexes 
for pointer blocks lower in the tree.

Pointer blocks comprise the middle levels of the B
+ tree, and contain index values for bottom-level 
pointers that lead to the data.

Bottom-level pointer blocks are immediately 
above the data blocks. The bottom-level pointer 
blocks contain indexes that lead to the actual data 
being requested.

Data blocks contain the actual data for the global 
stored on disk. Data is stored in collated order 
based on the collation type, global name, and 
subscript name.

Occasionally a global will only need a single 
pointer block. In this case, there is only one 
pointer block between the global directory block 
and the data block itself.

In addition to all of the pointer blocks, each 
pointer and data block has a right link pointer at 
the end of the block that points to the next block 
on its right. This allows for an additional structure 
of redundancy in the B+ tree structure.

The integrity of this B+ tree structure is critical for 
continued access to the data. If the structure is 
corrupted, data can be impossible to access. In 
most cases only a few pointers are incorrect and 
can be repaired by the operator. In cases of 
severe corruption, however, we have to restore 
the database from a backup and play forward the 
journal files that Cache keeps to log data 
transactions to the database. In this paper, we will 
explore the ways that Cache reacts to a database 
integrity issue and how they can be repaired, if 
possible.

2.2 Methodology
The ^REPAIR utility, a Cache routine that can 
access the pointer structure of the database file, 
will be used to inject pointer corruption in the 
database and to also repair it. We will examine 

various kinds of block corruption at the pointer 
and data level.

The test Cache instance (the term for an 
installation of Cache) is hosted on a MacBook Pro 
with an Intel Core 2 Duo processor at 2.4 GHz 
and 2 GB of RAM, running Mac OS X 10.5.1. The 
version of Cache being tested is 5.2.3.

The following kernel parameters had to be set in 
order to run Cache on Mac OS X: 
kern.sysv.shmmax to 256,000,000 bytes, and 
kern.sysv.shmall to 16,777,216 bytes.

First we need a database file to test our code in. 
Using the ^DATABASE routine, we can create a 5 
MB database file in /Applications/cachesys/test/
CACHE.DAT.

Next we need a namespace for our code to 
interact with the database. Using Cacheʼs System 
Management Portal, we can create a namespace 
TEST that refers to the database in /Applications/
cachesys/test.

Cache is an implementation of the MUMPS 
programming language and database structure, 
so our test data will be created using an M 
routine. Below is our test code, a simple for loop 
that will assign subscripts of a Cache global a set 
of values so we have a wide array of data to work 
with: f i=1:1:10000000 s ^CS736(i)=”Test data” 
This code will be run in the TEST namespace at 
an interactive Cache prompt.

First we should create a backup of our TEST 
database so we can restore it after a fault 
injection. To do this, we can shut down the 
database and copy it to an alternate location. 
Once we have a backup, we can restart the 
database and begin probing the global structure 
and attempting corruption of the pointer blocks.

Once the test data is ready, we can diagram the 
block structure of the global ^CS736 by 
proceeding into the %SYS namespace and 
invoking the ^REPAIR utility. 

^REPAIR allows us to actually change nodes of 
the block weʼre viewing, so this was used to 
modify the pointers in various block structures to 
fault inject. Once this was written to disk, the data 
was rewritten using a different value and the 
databaseʼs reaction noted. After that, the 



database was checked by the integrity check 
utility in Cache and the error type detected noted.

2.3 Results

2.3.1 Write Results

The write results in Cache are not encouraging. In 
almost all cases, Cache simply wrote the data to 
the invalid pointer structure without checking it. 
Sometimes this would write all correct data, and 
sometimes it would only write correct data 
partially through the loop. Cache was inconsistent 
in how it wrote the data.

For write tests, each type of pointer was changed 
to a particular value, and the reaction tested. In 
the table below, a zero (0) denotes no visible 
reaction. An X denotes a <DATABASE> error, 
which means Cache detected the integrity fault. 
An asterisk (*) means that the database 

encountered a <BLOCKNO> error, which is 
similar to a <DATABASE> error but specifies 
Cache detected an invalid block number.

2.3.2 Integrity Test Results

The integrity test results were much more 
acceptable. Cache detected nearly all of the 
integrity problems we injected with its 
independent integrity checker. This shows Cache 
is capable of detecting the errors in its tree 
structure at some point. The numbers in the 
spreadsheet denote the type of error(s) detected 
by Cache. 

2.4 Conclusions
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Our conclusion is that Cache is more focused on 
I/O errors than integrity errors. Cacheʼs reaction 
to any I/O error in any of its databases is to 
immediately freeze all updates and require 
manual intervention, which is designed to 
maintain current data integrity. More subtle 
database errors are undetected by the write 
daemons but detected by integrity checks. The 
current methodology to recover data is to restore 
from backup and apply journal files, which is 
effective but requires extensive downtime. We 
propose that Cache check the integrity of the 
blocks it is going to write to disk before doing the 
write, and that Cache keep journal files of the 
pointer structure it changes to allow possible live 
repair of the database rather than requiring 

restore from a backup. These features could be 
optional in environments where performance 
trumps reliability.

3. PostgreSQL

3.1 Methodology

Our methodology is to apply type-aware 
corruption to on-disk structures as explained in [1] 
and [2], run some workload and analyze the 
results to determine PostgreSQL's failure policy. 
The advantage of applying type-aware corruption 
is that a lot more into the system's working is 
obtained than by corrupting structures in a type-
oblivious manner. Another advantage, as 
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Item Description
pd_lsn LSN: next byte after last byte of xlog record for last change to this 

page 
pd_tli TimelineID of last change 
pd_lower Offset to start of free space 
pd_upper Offset to end of free space 
pd_special Offset to start of special space 
pd_pagesize_version Page size and layout version number information 

Table 2. PageHeaderData Layout

Item Description
PageHeaderData 20 bytes long. Contains general information about the page, including 

free space pointers. 
ItemPointerData Array of (offset,length) pairs pointing to the actual items. 4 bytes per 

item. 
Free space The unallocated space. New item pointers are allocated from the start 

of this area, new items from the end. 
Items The actual items (rows in tables) themselves. 
Special space Index access method specific data. Different methods store different 

data. Empty in ordinary tables. 
Table 1. Overall Page Layout

Item Description
t_xmin Insert transaction ID stamp
t_xmax Delete transaction ID stamp
t_cmin Insert command ID stamp
t_cmax Delete command ID stamp
t_xvac Transaction ID for vacuum
t_ctid Current TID or newer row version
t_natts Number of attributes
t_infomask Flags
t_hoff Offset to user data

Table 3. HeapTupleHeaderData

System Catalog Description
pg_aggregate Stores information regarding aggregate functions
pg_attrdef Stores default attribute values
pg_attribute Stores information about individual columns in tables
pg_class Catalogs tables, indexes, sequences etc.
pg_constraint Stores constraint information about tables
pg_database Stores information about available databases
pg_depend Records dependency information among tables
pg_index Contains partial information about indexes
pg_operator Stores information about operators
pg_type Stores data type information

Table 4. Tested System Catalog Tables



mentioned in [2], is that the exploration space of 
the tests to be performed is drastically reduced. 
Corruption is done in user tables, system catalog 
tables and various indexes on these.

Our workloads consist of SQL statements (select, 
insert, alter etc.). Our goal is to exercise the 
systems as thoroughly as possible so many 
variations of these are tried for each possible data 
corruption.

3.2 PostgreSQL Data Structures

PostgreSQL stores its data as files on the file 
system. Each table has a separate file. Each file 
is divided into fixed size pages. Table 1, 2 
summarize the data structures present in a single 
page. Every Item (row in a table) is has a header, 
the HeapTupleHeaderData. This is summarized in 
Table 3. The system catalog tables that were 
tested are described in Table 4.

3.3 Results

Our result are summarized Figures 1,2,3,4.. Each 
cell in a figure shows the behavior when a 
particular workload is applied to a particular kind 
of corruption. We make use of the IRON 
taxonomy as presented in [1] for classifying the 
corruption detection and recovery mechanisms. 
The taxonomy for our case is as follows:

3.3.1 Levels of Detection:

None: No detection is performed
Type: Corruption was detected using type 
checking. Type checking means checking some 
predefined magic numbers to verify validity of 
data blocks.
Sanity: Corruption was detected using sanity 
checking. Sanity checking entails checking data 
values against well-known values to detect 
corruption.

3.3.2 Levels of Recovery:

None: No recovery is performed
Propagate: An error is propagated to the user. 
The system does not handle the error itself
Redundancy: Data redundancy is used to deal 
with the error

Figure 1. Data Table Detection Results





Discard: Corrupt data is discarded.

For some workloads we might see multiple 
mechanisms employed either for recovery or 
detection. These have also been summarized in 
the results.

Below we summarize some of our observations 
regarding PostgreSQL's failure policy.

3.3.4 Detection Observations

Observation 1 Corruption detection in 
PostgreSQL is done primarily using type and 
sanity checking.

PostgreSQL checks magic numbers associated 
with data structures (the PageHeader, for 
example) for verification when such information is 
available (see observation 2). Sanity checking is 
done when applicable; for instance Free Space 
Pointers are checked in this way. An out-of-
bounds Free Space Pointer is detected and an 
error is reported.

Observation 2 Type information is not available 
for most important data structures.

Figure 3. Data Table Detection Results

Figure 4. Data Table Recovery Results

No type information is associated with important 
data structures such as an Item in a relation or an 
index. An item in a relation represents a row in a 
table and a tree node in an index. A corrupt 
pointer to an Item is not detected due to the lack 
of such type information.

Observation 3 Error detection mechanisms such 
as parity and checksums are not employed.

Observation 4 Most data corruptions are not 
detected.

In the tests we ran it was found that almost all 
actual table data corruptions passed through 
undetected. This we feel is a direct consequence 
of the detection policy employed as explained 
next.

 3.4 Lessons

Lesson 1 Type and sanity checking do not/cannot 
detect everything.

Figure 2. Overall Recovery Results



The sanity checking for Free Space Pointers does 
not detect invalid pointers that are not out-of-
bounds. Without additional information sanity 
checks alone cannot detect such errors. For some 
structures such information can be made 
available while for others it is not possible to do 
so. For instance, for actual table data, sanity 
checking does not help detect corruption.

Another example of a structure where sanity 
checking does not help is the Null Bitmap. The 
Null Bitmap for a data row tells which columns 
have null values. In a page in a table file, the Null 
bitmap appears just before the actual table row. In 
one of the tests we performed, a single bit 
corruption in the bitmap caused the data in a row 
to shift one column to the right. So data belonging 
to one column appeared in the next column! No 
amount of sanity checking (without additional 
information) can detect such a corruption.

There are other cases in which sanity checking 
might be able to detect corruption but is not 
feasible to do. Examples are the constraints on a 
specific column. Suppose a corruption causes a  
to have multiple primary keys. With sanity 
checking the only way to detect this is to compare 
every value in that column with every other value. 
This is clearly infeasible to do.

Lesson 2 Sanity checking can be made more 
comprehensive by providing additional 
information.

PostgreSQL stores Free Space start and end 
pointers that point to the start and end of free 
space in a data page. As we have mentioned 
before, in general, invalid pointers are not 
detected. This can be fixed by storing the actual 
amount of free space in the page and comparing 
that with the amount of free space pointed to. This 
way almost all Free Space Pointer errors can be 
detected.

Lesson 3 Include type information for more data 
structures.

Most pointer corruptions can be detected by 
including type information with the data structure 
pointed to. Storing type information with an Item 
would allow us to detect corrupt Item pointers. 
Type information can also be a substitute for the 
fix mentioned in Lesson 2. A magic number could 

be added to the beginning of the array of Items in 
a page. A Free Space End pointer corruption 
could then be detected by checking the value 
pointed to by the pointer.

Lesson 4 Use checksums

Data structures for which it is infeasible to do 
sanity/type checking checksums can be used. 
This should be done, at least, for important 
structures if not for everything.

3.5 Recovery Observations

According to our findings PostgreSQL does not 
have much machinery in the way of recovering 
from data corruption. Error recovery in 
PostgreSQL is tailored toward absolute system 
crashes and not partial corruption. Below we 
summarize our observations of the way 
PostgreSQL responds to data corruption.

Observation 5 Errors encountered are mostly 
propagated to the user.

PostgreSQL reports errors when they are 
detected. In most cases the table causing the 
error becomes inaccessible. However, there are 
some instances in which doing further operations 
on the table is still possible. There are still other 
instances in which the entire database becomes 
inaccessible.

Observation 6 Errors in performance-enhancing 
data structures usually cause complete failure.

Examples are indexes. An error in an index, if 
detected, will usually cause it to be propagated to 
the user and the operation aborted. Even if the 
actual data which is present in the table is 
available, it is not checked and returned.

An example where the behavior is different is the 
Free Space Map. The Free Space Map is meant 
for speeding up searches for new free space 
when required and is not essential for 
correctness. If an error is detected in the Free 
Space Map the action is to discard the map and 
start anew. 

Observation 7 Replication is not used for 
recovery.



PostgreSQL does not maintain replicas of data 
with the intention of using them for recovery when 
needed. PostgreSQL does do some things that 
have the side effect of a full or partial replica 
being created. Indexes for instances are an 
example of this.

Another example are the system catalog tables. 
When creating a new database the system 
catalog tables are copied from a preexisting 
template of tables. Suppose during operation of a 
database a system catalog table is rendered 
inaccessible. The template replica is not used for 
recovery even if the table remained unchanged 
after being copied.

4. Related Work

Related work is being done in the filesystem field 
at the University of Wisconsin-Madison, for IRON 
file systems [1]. Work has also been done in 
distributed systems fault injection [5]. The field of 
database integrity needs further exploration and 
research in order to solidify an understanding of 
what can make database systems more reliable. 
However, those findings must also be applied in 
the constraints of performance requirements.
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