
1

ABSTRACT

In this paper, we have made an attempt to take a look

under the hood of Spotlight and understand some of the

following questions amongst others:

• How well-integrated is Spotlight with the file system?

• How reliable is the interface between Spotlight and the

file system?

• Is live update a myth or a reality under heavy file

system activity?

Based on our experiments, it seems that Spotlight is not

really tightly integrated with the file system. In reality, it

is “bolted” on to the file system. The interface between

the file system and Spotlight is not reliable and live

updates are not really “live” in case of heavy file system

activity.

1 INTRODUCTION

Data is exploding at a very fast pace and capacities of

storage devices are increasing. Hence, substantial amount

of information is available even on personal computer

systems. As a result, there is an imminent need to provide

superior search mechanisms to the personal computer

system user for searching through the vast amount of

information present. Current file systems are inadequate

in providing a superior search experience as:

They provide a hierarchical name space only

There is no way to provide custom metadata to the file

system which could aid the user in search later on

Most of the search technologies present today such as

Beagle [2], Tracker [3], and Lucene [4] etc. are not tightly

integrated with the file system.

Spotlight is Apple’s search technology for extracting,

storing, indexing, and querying metadata and content of

the file system [1]. It provides an integrated system-wide

service for searching and indexing. It promises to be

tightly-integrated with the file system and hence, we

decided to look under Spotlight’s hood to understand the

level of integration with the file system and throw

spotlight on Apple’s Spotlight.

1.1 Fsevents Infrastructure

Fsevents is an in-kernel notification system for informing

user-space subscribers of file system changes. Spotlight

receives file system change notifications by subscribing to

the fsevents infrastructure. Spotlight relies on this

mechanism to keep its information current—it updates a

volume's metadata store and content index if file system

objects are added, deleted, or modified. Spotlight is the

primary subscriber of the fsevents interface. Table 1 lists

the various fsevents generated by the fsevents

infrastructure.

Event Type Description

FSE_CREATE_FILE A file was created

FSE_DELETE A file was deleted

FSE_STAT_CHANGED A file’s attributes were

changed

FSE_RENAME A file was renamed

FSE_CONTENT_MODIFIED A file’s contents were

modified

FSE_CREATE_DIR A directory was created

FSE_CHOWN A file’s ownership was

changed

Table 1. Table of the fsevents generated by the fsevent

infrastructure

The kernel exports the mechanism to user space through a

pseudo-device (/dev/fsevents). A user-space program

interested in learning about file system changes can

subscribe to the mechanism by accessing this device.

Specifically, a watcher opens /dev/fsevents and clones the

resultant descriptor using a special ioctl operation

(FSEVENTS_CLONE). A read call on the cloned

descriptor blocks until the kernel has file system changes

A Spotlight on Spotlight

Rini Kaushik

rini@cs.wisc.edu

CS736 Project, Fall 2007

University of Wisconsin, Madison

2

to report. When such a read call returns successfully, the
data read contains one or more events, each encapsulated

in a kfs_event structure.

The elements of a per-watcher event queue are not the

events themselves but pointers to kfs_event structures,

which are reference-counted structures that contain the

actual event data [6]. In other words, all watchers share a

single event buffer in the kernel. There is a global array of

event buffers fs_event_buf in the kernel which is limited in

size to 2048 elements.

Various functions in the VFS layer call add_fsevent() call

to add fsevents to the global array of events fs_event_buf.

Table 2 lists the translation between VFS functions and the

resulting fsevent type. Figure 1 shows the link between

the event pointers in the per-watcher fs_event_watcher

structure and the actual events in the in-kernel global

fs_event_buf array.

Figure 1. Shows link between per-watcher event queue

and the global array of events

VFS Function Fsevent Type

Symlink(), mknod(),

link()

FSE_CREATE_FILE

Vnode_setattr() FSE_CHOWN,

FSE_STAT_CHANGED

Unlink(), rmdir() FSE_DELETE

Rename() FSE_RENAME

Vn_close() FSE_CONTENT_MODIFIED

Table 2. The Table shows the correspondence between the

VFS layer call and the resulting fsevent type

1.2 Spotlight Subsystem

The Spotlight server (mds) is the primary daemon in the

Spotlight subsystem. It is responsible for receiving change

notifications through the fsevents interface, managing the

metadata store, and serving Spotlight queries.

 Spotlight uses a set of specialized plug-in bundles called

metadata importers for extracting metadata from different

types of documents, with each importer handling one or

more specific document types. Each importer understands

the format of a specific document type and also helps in

converting the document into a textual form which can

later be used by Search Kit in creating a content index of

the document. The mdimport program acts as a harness for

running these importers. It can also be used to explicitly

import metadata from a set of files. An importer returns

metadata for a file as a set of key-value pairs, which

Spotlight adds to the volume's metadata store. Spotlight

provides apis for writing custom metadata importers. A

list of metadata importers present by default on the system

can be found by executing “mdimport –L”. Table 3 lists a

subset of file types and the corresponding importer present

on the system by default.

File type Importer

Image Image.mdimporter

pdf PDF.mdimporter

Audio Audio.mdimporter

RTF RichText.mdimporter

Office files Microsoft

Office.mdimporter

Table 3. The Table lists the file types and the

corresponding importers

Mdsync process is used for rescanning the volume and

rebuilding the index either after the system is rebooted or

after re-indexing is manually initiated.

Spotlight provides several ways for end users and

programmers to query files and folders based on several

types of metadata: importer-harvested metadata,

conventional file system metadata, and file content (in the

case of files whose content has been indexed by Spotlight).

The Mac OS X user interface integrates Spotlight querying

in the menu bar and the Finder. For example, a Spotlight

search can be initiated by clicking on the Spotlight icon in

the menu bar and typing a search string. Command line

tool mdfind can also be used to query the files. In

Per-watcher

Fs_event_watcher

Global Array of Events[2048]

refcount

rd

wr

rd

wr

refcount

type type

3

addition, apis are provided by Spotlight to

programmatically query the system [9].

A separate index is maintained per-volume. On a volume

with Spotlight indexing enabled, the /.Spotlight-V100

directory contains the volume's content index

(ContentIndex.db), metadata store (store.db), shadow

metadata store (.store.db), and change notification log file

(.journalHistoryLog).

The content index is built atop Apple's Search Kit

technology [7], which provides a framework for searching

and indexing text in multiple languages. The metadata

store uses a specially designed database in which each file,

along with its metadata attributes, is represented as an

MDItem object, which is a Core Foundation–compliant

object that encapsulates the metadata.

1.3 Spotlight’s Architecture

As a file is created, modified or deleted, the VFS layer

puts an fsevent in the global array. Spotlight’s mds server

which is continuously reading from the fsevent device,

reads the fsevent in. It checks the file type of the file for

which the fsevent was generated and based on the type of

the file, it invokes the corresponding importer via

mdimport. Mdimport reads the metadata and the content

of the file from the file system and creates <key, value>

pairs which it sends back to the mds server. Mds server

stores the same in the metadata index (Store.db) and in the

content index (ContentIndex.db). Subsequently, a user can

submit a query for a metadata or content based query via

mdfind, finder or programmatically. These queries will be

serviced by the mds server. Mds server will read the index

stores and return the results back to the user. Figure 2,

puts the Spotlight Architecture together.

Figure 2. Spotlight architecture

2 SETUP AND METHODOLOGY

This section describes the systems used for the

experiments and the experimental methodology.

2.1 SYSTEM

The experiments were done on a MacBook with 2.16 GHz

Intel Core 2 Duo and 1 GB 667 MHz DDR2 SDRAM. The

operating system version was Mac OS 10.4.10 and the

kernel version was Darwin 8.10.2. The hard disk was a

Serial-ATA device with a capacity of 111.79 GB and a

speed of 1.5 Gigabit. The experiments were done on a 10

GB volume SpotlightTest which was formatted with

Journaled HFS+ file system.

2.2 METHODOLOGY

I used a combination of micro benchmarks, system tools

and created an fsevent subscriber to evaluate Spotlight.

While conducting the experiments, I used various tools to

better understand the system activity. I used fs_usage to

report the file system related activity occurring on the

system. The file system activity was pertaining to the

activity generated by the Spotlight processes such as mds,

mdimport, mdsync and mdnsserver. The fs_usage output

contains the timestamp, call name, file descriptor, byte

count, pathname, offset, the elapsed time spent in the

system call and the process name. I also used ktrace which

does kernel tracing on a per-process basis to trace the

system calls, namei translations and the IO calls made by

the Spotlight processes.

To characterize the cpu utilization during indexing, I used

top and iostat for characterizing the disk transfers and disk

throughput.

To get an accurate number of dropped fsevents, I checked

the /var/log/system.log for the number of messages

“fs_events: add_event: event queue is full! Dropping

events”. The add_fsevent() call in vfs_fsevents.c places

this error message whenever it is unable to find an empty

slot to place a fsevent in the global array.

I used the following command line tools provided by

Spotlight:

mdutil is used to manage the Spotlight metadata store for a

given volume. In particular, it can enable or disable

Spotlight indexing on a volume, including volumes

corresponding to disk images and external disks.

4

mdimport can be used to explicitly trigger importing of file

hierarchies into the metadata store. It is also useful for

displaying information about the Spotlight system.

• The -A option lists all metadata attributes, along with

their localized names and descriptions, known to

Spotlight.

• The -X option prints the metadata schema for the built-

in UTI types.

• The -L option displays a list of installed metadata

importers.

mdcheckschema is used to validate the given schema

file—typically one belonging to a metadata importer.

mdfind searches the metadata store given a query string,

which can be either a plain string or a raw query

expression. Moreover, mdfind can be instructed through its

-onlyin option to limit the search to a given directory. If

the -live option is specified, mdfind continues running in

live-update mode, printing the updated number of files that

match the query.

mdls retrieves and displays all metadata attributes for the

given file.

To restrict indexing only on the SpotlightTest volume, I

used mdutil tool to switch indexing off on the rest of the

volumes in the system.

To minimize the impact of fragmentation, I deleted the

index using mdutil tool and all the folders under

SpotlightTest volume between experiments and also

between iterations of the same experiment.

I developed a variant of hfsdebug to check the extent of

fragmentation present in the content and metadata index.

I used mdfind tool to query the index.

The main areas which I wanted to analyze in Spotlight

were:

• Reliability of the fsevent interface

• Liveness of Index Update

• Performance profile of indexing

• Storage characterization of the index

• System calls characterization of indexing

• Performance impact of Spotlight

• Indexing optimizations such as incremental

indexing or single-instancing

• Performance of queries

3 RESULTS

3.1 Reliability of fsevents

In this series of experiment, I reproduced situations in

which file system events were dropped by the fsevents

infrastructure. Thereafter, I analyzed the effect of the

dropped events on the consistency of the index.

I wrote a fsevent watcher (SlowWatcher) and subscribed

the same to the fsevent infrastructure, thereby creating two

watchers in the system – Spotlight and SlowWatcher. I

also wrote a multi-threaded java program in which each

thread operated on a separate directory and overwrote all

the 18603 files contained in the directory with a unique

string per-thread and per-iteration.

I was able to reproduce dropped events in two ways:

• Increasing the slowness of the SlowWatcher

• Increasing the file system activity on the system by

increasing the number of threads in the java program

Figure 4 characterizes the effect of the slowness of the

watcher on the dropped events. A watcher which is slow

in reading the events from the global fsevents queue

results in the kernel dropping the fsevents as the kernel is

unable to find a free slot to put the new fsevent pertaining

to a file system change. Since, the limit of the global

buffer is just 2048, the buffer over-run happens rapidly.

Figure 4 characterizes the effect of substantial file system

activity on fsevent drop. With substantial file system

activity, the fsevents get generated at much faster pace

than what can be consumed by the subscribers and hence,

some fsevents get dropped.

To analyze the effect of dropped events on the consistency

of the index, after every iteration, I queried for the unique

string which was embedded in the text of the file that

iteration. I used mdfind to trigger the query. In the query

results, all the files whose change notifications were

missed were missing in the query results. Thus, Spotlight

seems to be silently ignoring the dropped events. The

alternative, which is re-scanning the entire volume to

figure out the changes in the file system, is also bad. The

time to re-scan would increase substantially if the volume

is heavily populated.

5

Effect of Slow Watcher on Dropped Events

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Sleep Interval (Secs)

N
u
m
b
e
r
o
f
D
ro
p
p
e
d
 E
v
e
n
ts

Number of Dropped Events

Figure 3. The graph characterizes increase in number of

dropped events generated as a result of increasing the

slowness of the fsevent watcher. The slowness was

created by introducing a wait between ioctls to read

fsevents from the /dev/fsevent device by the SlowWatcher

Effect Of Dropped Events

0

200

400

600

800

1000

1200

1400

1600

1800

0 50000 100000 150000 200000

File System Events

D
ro
p
p
e
d
 F
il
e
 S
y
s
te
m

E
v
e
n
ts

0

200

400

600

800

1000

1200

M
is
s
in
g
 F
il
e
s
 i
n
 I
n
d
e
x

Number of dropped events
Missing files in index

Figure 4. The graph characterizes increase in number of

dropped events as file system activity is increased on the

system. Primary y-axis characterizes number of dropped

events as file system activity is increased and Secondary y-

axis characterizes inconsistent files in the index. X-axis

characterizes the actual file system events generated as a

result of increased file system activity (two per file in the

experiment)

3.2 Liveness of Index Updation

Spotlight claims to support live update of index upon file

content or attribute change. In this experiment, I wanted to

see if the live update still holds true in case of substantial

file system activity.

I used two flavors of increasing file system activity –

sequential and parallel. The java test program used java

runtime to invoke “tar –xvf” on linux-2.6.13.1.tar under

different parent directories. A linux-2.6.13.1 folder

contains 18603 files and is 236MB in size. In the parallel

flavor, configurable number of parallel threads did one

untar each. Figure 5 characterizes the increase in the time

to index as the size of the data to be indexed increases in

parallel. In the sequential flavor, configurable number of

untars happened in sequence in a single thread. Figure 6

characterizes the increase in the time to index as the size of

the data to be indexed increases sequentially. The time to

index was the cumulative time to index all the resultant

linux folders. The end time of the indexing was

considered to be the time when the last fsync of the

ContentIndex.db and Store.db occured.

Based on the experiments, the live update claim doesn’t

really hold true in case of substantial file system activities.

The index update can range from seconds to even hours

depending on the file system activity. The indexing is an

expensive and time-consuming process. Also, mdimport

runs at a low priority and any system activity gets

precedence over mdimport. This delays indexing further.

Also, the claim that queries can be updated live also

doesn’t hold true under substantial file system activity as

the queries are not answered while indexing is in progress.

Time to Index

0:00

0:07

0:14

0:21

0:28

0:36

0:43

0:50

0:57

0 200 400 600 800 1000 1200

Size of Data (MB)

T
im
e
 (
h
:m
m
)

Time to Tar in Parallel

Time To Index

Figure 5. The graph characterizes the increase in the time

to index as size of data to be indexed is increased in

parallel. For each data size point the graph shows the time

taken by the tars to finish and the time to index.

Time to Index

0:00

0:07

0:14

0:21

0:28

0:36

0:43

0:50

0 200 400 600 800 1000 1200

Size of Data (MB)

T
im
e
 (
h
:m
m
)

Time To Tar Sequentially

Time To Index

Figure 6. The graph characterizes the increase in the time

to index as size of data to be indexed is increased in

sequence. For each data size point the graph shows the

time taken by the tars to finish and the time to index.

6

3.3 Performance Profile of Indexing

In this set of experiment, I untarred a 2.6.13.1.tar which

resulted in a 236MB folder containing 18603 files. The

graphs below contain a snapshot of the ensuing CPU

Utilization and the Disk transfers and throughput while

indexing is in progress on the files in this folder.

As shown in Figure 7 and Figure 8, the indexing is a CPU

and disk intensive process if the number of the files to be

indexed is substantial. It seems that importers use

unbuffered I/O to bypasses the buffer cache; this way, the

buffer cache will not be polluted because of the one-time

reads generated by the importer. As a result, number of

disk transfers is substantial. Mds and mdimport utilize

close to 100% cpu majority of the time during indexing.

CPU Utilization during indexing

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (secs)

C
P
U
 U
ti
li
z
a
ti
o
n
 (
%
)

tar

mds

mdimport

Figure 7. The graph shows a snapshot of CPU Utilization

during indexing of a 236MB folder containing 18603 files.

Disk Transfers And Throughput During Indexing

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Time (Seconds)

D
is
k
 T
ra
n
s
fe
rs
 P
e
r

S
e
c
o
n
d

0

2

4

6

8

10

12

14

16

18

20

T
h
ro
u
g
h
p
u
t
(M
B
/s
)

Transfers Per Second

Throughput (MB/s)
Figure 8. The graph shows a snapshot of disk transfers

and throughput during indexing of a 236MB folder

containing 18603 files.

3.4 Storage characterization of index

In these set of experiments, I have tried to analyze the

storage characterization of the index.

To analyze the space requirement increase of the metadata

and the content index, I increased the index able data on

the system by increasing number of folders on the system

each containing 18603 text files and 236MB in size.

Figure 9 characterizes the increase in the size of the

content index (ContentIndex.db) and metadata index

(Store.db) as a result of the data increase. As can be seen

from the figure, the content index is 17% on an average of

the data size.

To analyze the reduction in the space requirement of the

index as a result of deletion of the file data which was

previously indexed, I deleted the folders created above in

sequence and plotted the resulting decrease in the content

and metadata index. As shown in Figure 10, the content

index doesn’t decrease in size as a result of the deletion

even after days. Only the metadata index reduces in size.

The reduction is proportional to the increase in the

previous graph.

Figures 11 and 12, characterize the fragmentation

introduced in the content and metadata index as a result of

the file data increase in the first experiment in this section.

Figure 11 characterizes the increase in the number of the

extents in the indexes and Figure 12 characterizes the

increase in the number of the blocks in the indexes. As

seen in the graphs, the indexes get quite fragmented fast.

In fact, the indexes are the most fragmented files on the

system.

Index Growth

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600

Size of File Data (MB)

In
d
e
x
 S
iz
e
 (
M
B
)

ContentDB (MB)

MetadataDB (MB)

Figure 9. The graph characterizes the increase in the index

size as the data is increased in the system. A new folder

236MB in size and containing 16803 files is added at each

iteration and y-axis plots the corresponding increase in the

content index (ContentIndex.db) and metadata store

(Store.db)

7

Effect of Data Deletion on Index

0

50

100

150

200

250

300

1416 1180 944 708 472 236

Size of File Data (MB)

S
iz
e
 o
f
In
d
e
x
 (
M
B
)

ContentDB (MB)

MetadataDB (MB)

Figure 10. The graph characterizes the decrease in the

index size is data is decreased in the system. A folder

236MB in size and containing 18603 files is deleted at

each iteration. The corresponding decrease in the

metadata index (Store.db) is plotted on the y-axis. There is

not decrease in the content index (ContentIndex.db)

Increase in fragmentation in index

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400

Size of Data (MB)

N
u
m
b
e
r
o
f
E
x
te
n
ts

Extents in ContentDB Extents in MetadataDB

Figure 11. The graph characterizes the increase in the

extents in the indexes as data is increased sequentially in

the system. A folder 236MB in size and containing 18603

files is added at each iteration. The corresponding increase

in the extents in the metadata store (Store.db) and content

index (ContentIndex.db) is plotted on the y-axis.

Increase in fragmentation in index with data

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200 400 600 800 1000 1200 1400

Size of Data (MB)

N
u
m
b
e
r
o
f
B
lo
c
k
s
 i
n
 t
h
e
 I
n
d
e
x

Blocks in ContentDB

Blocks in MetadatDB

Figure 12. The graph characterizes the increase in the

blocks in the indexes as data is increased sequentially in

the system. A folder 236MB in size and containing 18603

files is added at each iteration. The corresponding increase

in the blocks in the metadata store (Store.db) and content

index (ContentIndex.db) is plotted on the y-axis.

3.5 System call characterization of indexing

This section characterizes the system calls that happen per

Spotlight process during the indexing of one file and also

the breakdown of the number of system calls that happen

as a result of indexing a 236MB folder containing 18603

text files.

Table 3 shows the timeline of system calls generated while

indexing a single file foo.txt.

Java mds mdimport

Open foo

Write

Close

read() fsevent

getfileattr()

lstat()

getfileattr()

open()

fstat()

read()

close()

pwrite() .storedb

pwrite() ContentIndex.db
Table 3. Breakdown of system calls generated per process

during the indexing of a file foo.txt

Breakdown of IO Calls by Spotlight Indexer

0

100000

200000

300000

400000

500000

600000

700000

800000

pread pwrite open close getattrlist fstat read lstat

Type of System Call

O
c
c
u
re
n
c
e
s
 o
f
S
y
s
te
m
 C
a
ll

Figure 13. This graph shows a breakdown of the system

calls generated as a result of indexing a 236MB folder

containing 18603 files

As observed in the experiments, there are several file

attribute retrieval calls made per file during indexing.

Since, the fsevent does return the attributes of a file, the

indexer should be able to just use the same instead of

invoking multiple calls to get the attributes of the file.

8

3.6 Performance impact of Spotlight

In this set of experiment, I wanted to analyze the

performance impact of Spotlight on the system. I used a

macro-benchmark IOZone for this purpose. I changed the

code of IOZone so that it uses text files (which are

indexeable) with real content as opposed to containing just

strings of “aaa”. I ran IOZone first with indexing turned

on the volume and then with indexing turned off on the

system. Figure 14 characterizes the throughput of write

operations with/without indexing.

As seen in Figure 14, the performance impact of Spotlight

indexing during file system activity is minimal. The

Spotlight server, mds just reads the resulting fsevents

generated as a result of the file system changes while the

file system changes are happening. Once, the file system

changes are done, mds invokes mdimport on the files for

whom change notifications were received.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

File Size (KB)

T
h
ro
u
g
h
p
u
t
(K
B
/s
e
c
)

Indexing OFF

Indexing ON

Figure 14. This graph shows the disk throughput of file

writes on the y-axis with indexing turned OFF vs. indexing

turned ON.

3.7 Indexing Optimizations

In this set of experiments, I wanted to check if any

optimizations such as incremental indexing exist in the

system. I appended 34 Bytes of data at the end of 1 MB,

2MB, 3MB, 4MB and 5MB files. In order to minimize

buffer caching of these files, I first created these files and

then did IO on several files each more than 1 GB in size.

Subsequently, I appended 34 Bytes to the files. I measured

the time to index each file once the data is appended to the

file, which is plotted in Figure 15.

As seen in Figure 15, the time to index the files increases

with the size of the file. This indicates that there is no

incremental indexing present in the system.

Ideally, I wanted to do this experiment with filesizes in GB

instead of MB. However, I realized that Spotlight doesn’t

seem to be indexing any data at an offset greater than

10MB.

Time to index (secs)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

File Size (MB)

T
im
e
 t
o
 I
n
d
e
x
 (
S
e
c
s
)

Time to index (secs)

Figure 15. The graph characterizes the time to index files

as new data is appended to the end of pre-indexed files.

4 SUMMARY

Reliability of the fsevent interface
The fsevent interface is not reliable. A slow watcher or

substantial file system can result in dropped fsevents.

Spotlight silently ignores the dropped events. As a result,

the index gets inconsistent with the actual content of the

files for which the fsevents were dropped. There is a small

hard limit on the global event buffer which further

aggravates the problem. The alternative to trigger re-scan

of entire volume is also not a good solution as it can be a

performance hog in case of heavily populated volume.

There is a need to have a better infrastructure for sharing

the file system events with the user-space than fsevents.

Liveness of Index Update

In event of substantial file system activity, the index

updation is not really live. Indexing is an expensive and

time-consuming process in itself if the number of files to

be indexed is large. Also, the mdimport process runs at a

low priority. Thereby, any activity which results in high

file system changes, will get a priority over indexing.

Thus, the actual time to update the index = time for the file

system activity to finish + time to index the files. Any

queries triggered while indexing is happening on the

system are not answered.

Performance of Indexing

Indexing is a performance intensive operation

characterized by high CPU utilization and disk transfers.

Storage Characterization of Index

The content index increases quite substantially as data is

increased on the system. On average, it is 17% of the

9

actual data that was indexed. Content index is not deleted

upon folder deletion leading to further waste. The

metadata index has lot of duplicate information about the

file system as it stores the standard metadata of the files in

addition. The indexes tend to get fragmented very fast as

well.

System call characterization of indexing

There are several calls to get the attributes of the files

which seem superfluous. Since, fsevents does embed the

attributes of the file in the event itself, the same can be

used as an optimization. Also, mdimport uses no_cache

option to reduce it’s footprint on the buffer cache. On the

flip side, such an approach prevents it from reading data of

the file from the cache and leads it to the expensive

approach of reading from the disk.

Performance of Spotlight

Since mdimport runs at a low priority, any system activity

takes precedence over mdimport. However, mds does read

the events from the fsevents infrastructure and log them

into .journalhistorylog. Thus, performace impact of

Spotlight is minimal.

Indexing optimizations

No indexing optimizations such as incremental indexing

are present in Spotlight. Appending small amount of data

to an already indexed file, results in the file getting re-

indexed all over again. This would lead to quite a bit of

wasted indexing effort if the files are huge. A one byte

append at the end will lead to the huge file getting read

from the disk and getting reindexed.

5 FUTURE WORK

We would like to characterize the performance of queries

in the following way:

• Time to query as number of files in which the word is

contained is increased.

• Time to query as index gets fragmented

• Time to update query results upon file system change

In addition, it would be good to repeat the earlier

experiments with larger file sizes and also different content

types such as pdf, image files etc.

REFERENCES

[1] http://developer.apple.com/macosx/spotlight.html

[2] http://beagle-project.org/Main_Page

[3] http://www.gnome.org/projects/tracker/

[4] http://lucene.apache.org

[5] http://research.microsoft.com/adapt/phlat/

[6]http://www.opensource.apple.com/darwinsource/10.4.1

0.x86/

[7]

http://developer.apple.com/documentation/UserExperience

/Reference/SearchKit/

[8]

http://developer.apple.com/documentation/Carbon/Concep

tual/MetadataIntro/index.html

[9]

http://developer.apple.com/documentation/Carbon/Concep

tual/SpotlightQuery/index.html#//apple_ref/doc/uid/TP400

01841

[10]

http://developer.apple.com/documentation/Darwin/Concep

tual/FSEvents_ProgGuide/TechnologyOverview/chapter_3

_section_1.html#//apple_ref/doc/uid/TP40005289-CH3-

SW1

[11]http://developer.apple.com/documentation/Darwin/Ref

erence/ManPages/man1/fs_usage.1.html

[12]http://developer.apple.com/documentation/Darwin/Ref

erence/ManPages/man8/iostat.8.html

[13]http://developer.apple.com/documentation/Darwin/Ref

erence/ManPages/man1/top.1.html

