Reducing Disk Rotation Delays using Range Writes

Rokas Venckevicius

Mayank Maheshwari
Department of Computer Sciences
University of Wisconsin, Madison

December 20, 2007

Abstract in rotational delays and total positioning time.
Our experiments show up 8% improvement

Disk /0 is generally considered the bottlenedR rotational delays for write-intensive work-
in memory operations. This is generally dueads.

to mechanical limitations (limited disk rotation

caps transfer bandwidth), and the general ar-]

chitecture of modern disks (rotating platters acl. | ntroduction

cessed by a single head on the arm), which

causes a delay on the positioning of the heahe time overhead of disk accesses is one of
Operating systems are generally able to fight thiee significant performance bottlenecks in the
seek delays by writing to blocks not far awastorage systems. Traditionally, secondary stor-
from each other, but tackling the rotational deage has been accepted to be at least two orders
lay problem is much more complicated. We prof magnitude slower than memory and systems
pose a method to fight the disk rotational déave been built around this premise. Caching
lays, dubbedRange Writesby allowing for the of frequently accessed data and lazy write back
operating system to give a wider flexibility tpolicy are some examples where policy is dic-
disk to perform a write, potentially saving sigtated by the constraint of high disk access time.
nificant rotational delays. Instead of providing@ver the years, the access time in modern drives
just one logical block, in Range Writes the filbas reduced considerably due to architectural
system can provide multiple blocks for disk improvements in disk technology and imple-
write data to, thus allowing the disk to make mentation of scheduling algorithms which re-
smart decision and save some rotational delajuce seek time. The file system also writes files
We provide an implementation of Range Writés the disk in such a way as to reduce the disk
on Disksim disk simulator, and show the savingy® time. The Wix Fast File System is one ex-

1

ample of this spatial locality [1]. Disksim simulates some old disk models and
While a lot of improvements have been madm® the positioning time improvement is not as
to reduce the disk seek time, little has been dosignificant but we show that modern disks with
to improve rotational latency in disks. Since itesser average seek time will get much better
earlier disks, rotational latency was only a smathprovements in positioning time with Range
percentage of the total disk access time, suffifrites.
cient attention was not given to reduce it. Butin The rest of the paper is organized as fol-
modern disks, with seek time reduced considésws. Section 2 discusses the performance prob-
ably, the rotational delay has become a signifems with disks and the limitations to improving
cant portion of the delay in disk access time. them. Section 3 talks about the idea of Range
this paper, we have tried to address the issueWfites in more detail and how it can be extended
rotational delay incurred by disks, by providingpr reads. Section 4 outlines our implementation
more options to the controller in terms of a rangssing Disksim. Section 5 gives details of our ex-
of blocks it could write the data to, instead of periments and results. Related work is discussed
single logical-to-physical mapped block. in Section 6, further work in Section 7 and we
The improvisation we propose is callediill conclude in Section 8.
"Range Writes” in which the file system pro-
vides a range of logical blocks to the disk con-
troller to write to which maps to contiguoug Disk Performance Prob-
physical blocks on a track on the disk. Based on
the current disk head position, the controlleres- |€MS
timates which block among the range of blocks
provided will incur the least rotational delay an®n a rather coarse level, each disk operation
picks that block to start writing data. In case trgonsists of three major parts: seek delay, rota-
disk head points to a block in the range, theretignal delay and the actual read/write operation.
no rotational delay incurred, otherwise the coio improve disk performance, we would need
troller picks the block closest to the disk heagither to reduce one of the delays or speed up
in the range. We have implemented the idea five actual read/write operation.
small random writes but it can also be extendedThe actual read/write operation is closely
to allow flexible reads (calledFlex-reads”) coupled with the rotation speed of the disk and
where given information about the replicatetthe density of segments in each track. While
copies of file, the controller can decide whicplatter density has been constantly increasing in
copy to read from depending on the least posite previous years, the rotation speed has been
tioning time. fairly steady throughout. Furthermore, the file
We used the disk simulat@isksim [2] for system generally has very little to do with im-
our experiments and observe an improvementgbving the bandwidth (except for not adding
up t032% in the rotational latency incurred anédditional overhead and providing a contiguous
a savings ofl6% in the disk positioning time.sequence of blocks to write data to). Improv-

2

ing the actual disk bandwidth is generally momgay of performing optimization in providing the
related to improvements in hardware. block to which the disk should write to, since
What the file system can do, however, is tthey do not have access to the logical to physi-
to fight the delays introduced by disks. Tradeéal block number mappings, nor are they able to
tionally the delays are simplgead weightthat get the current position of the disk head. There-
is, they do not add in any way to the speed fdre in the best case any FS can simply guess a
disk transfer, yet every 1/0 operation has to iflock for writing to, without knowing how much
cur them. While this is not a problem for largehe rotational delay will be (except for the up-
contiguous 1/0, it quickly becomes a problemper bound o8.3 ms). We believe this could be
for small I/O operations, since the relative timgolved to some extent with Range Writes.
spent on delays becomes a high proportion of
the total time spent to perform the I/O. File sys-)
tems have traditionally attempted to fight seek Range Writes
delays by issuing write requests to blocks that
have some locality [1]. Under this lies an asFhe idea of Range Writes inherently is to pro-
sumption that blocks are mapped into disk’s sedde more options to the disk controller for
tors, tracks and cylinders in a linear mannewyites so that it can optimize the operation based
but it has proved quite effective in real systenm the information it has of the disk state. Since
aware of this structure [1]. the controller has information about the current
On the other hand, fighting rotational delaysead position, it can estimate the positioning
is much harder for the file system. A rotationdime and transfer time of the write. By pro-
delay is defined to be the time that passes aftling a range of blocks or more than one dis-
the arm has finished seeking to the right traakete blocks equidistant from each other, the
but before the write (or read) can actually beginontroller can estimate the rotational delay (if
The reason why it occurs is that the head m#ye disk head does not currently lie in the range)
be at a different position on the track than tHer the starting block of the range and select the
block that needs to be written to. Therefore th@ock with the least delay for the write. After
platter may have to spin a whole revolution (iwriting, the controller returns the block number
the worst case) until the head actually reachekthe data to the file system.
the block that it needs to start writing to. How In our implementation of Range Writes,
long is one revolution exactly? That depends eve have provided a fixed number of discrete
the disk and the rpm’s of its platters. A typiequidistant blocks to the controller for writes.
cal desktop system disk 2007 rotates af200 We have taken this approach for two reasons.
rpm [3], which translates to approximate$y3 One is for the purpose of simplification and
ms for a single revolution. If the workload ighe other is, since we are optimizing for a
many small writes, this may add a substantiabrkload consisting primarily of small random
delay and slow-down of the already slow l/@rites, providing a range of blocks would re-
operations. Furthermore, file systems have guire that the physical contiguous blocks on a

3

track should be free. It would entail keepingons provided for the scheduled request to com-
contiguous blocks empty on the track to accomlete the write. A benefit of our approach is that
modate range writes while the actual data sittee scheduler need not be modified to implement
is small. This would limit the size of the rangeange writes and it can be done independent of
that can be provided and as the start data bldble scheduling algorithm underneath.
may not be the starting block of the range (if the The concept of Range Writes can also be ex-
head position lies in the range), this could causmnded to readse.Flex-reads in which the file
fragmentation of the track. system provides information about all the repli-
With discrete equidistant blocks, the corcated copies of the file to be read to the disk
troller can write data starting from any of theseontroller. The controller using the Flex-reads
blocks based on least rotational delay and meodule and the information about the current
turn the block number to the file system whewdisk head position estimates the access time for
the data is written. We could optimize for theach replica and decides on the one with the
number of discrete blocks which reduce the rteast access time. The approach has overtones
tational delay while keeping track fragmentatioof the Shortest Positioning Time First (SPTF)
at bay. With large modern drives, the effectdgorithm and we used some of its components
of fragmentation might not be apparent immé our implementation but our main focus is on
diately but if the workload consists of a largeeducing the rotational latency and not the over-
number of small writes, it will manifest itself inall positioning time.
the form of increased latency. One of the possible limitations of this idea is
Range Writes requires modifications to that it works well for writes where the file sys-
interface between the disk and the file systetem provides the potential blocks on the same
It propagates the control to the disk to makeack and there is no extra seek time incurred. In
a decision on the position of data block outase of reads however, the replicated copies of
of the options provided to it by the file systhe file will with high probability, not be on the
tem. So, in a way, the idea is to make the disiame track of the cylinder and so the positioning
smarter and file system more disk aware. Thene might have a bearing on the optimality of
disk controller is the lowest level abstraction artie operation. In our opinion, existing modern
by providing it with decision-making capabil-drives have been optimized for low seek times
ities, it can make the most informed decisicend the commonly used scheduling algorithms
about read/write based on the state of the digke devised to reduce seek. So even for reads,
One crucial point about our approach to Rangetational latency will be the bottleneck for disk
Writes is that it itself is not the scheduler but casccess and Flex-reads should be able to provide
be thought of as thecheduler’s friend The re- a significant improvement. However, this con-
guests arriving to the disk are still scheduled gecture requires further analysis and experimen-
cording to the existing scheduling algorithm intation and we do not concentrate on reads in this
plemented in the disk. Range Writes module deaper.
cides the final block from among the block op- We analyze our implementation for different

4

number of discrete optional blocks provided andnge writes if we provide four discrete blocks.
observe that the savings in rotational delay is Before we go into the details of our implementa-
expected with the disk head being in any ptien, let us give a brief background of Disksim.
sition on the track uniformly at random. It is

discussed with experiments and results in detail

in Section 5. The other question worth ponder-

ing is whether the idea of Range Writes is really

beneficial? The next section discusses this afpd Disksim

our implementation in further depth.

Disksim is one of the most widely used disk

4 Implementation simulators in the systems community. It pro-
vides disk specifications and simulates some old

In the implementation of Range Writes, we halisk models like C;heetah and Barraguda vart-
used Disksim to simulate reads and writes orﬁQtS of Seagate disks gnd SOME Versions O.f HP
disk and get operation statistics in the form ngKS [2]. It takes as input trace files Whlch

number of events simulated, average seek aiﬂ%?”a“ the rgad_/ wrlte_ _requestg sent by the file
rotational latency, response times, inter-arrivaystem. Disksim identifies certain trace formats

request statistics etc. For our purposes, we C(S)ﬁ-sed on the dIS.k I’.TlOd.e| the simulation USGIS and
y@gputs the statistics in terms of events simu-

centrate on the average seek and rotational ti q for ti , K di
and transfer time across all disks in the sy&€d. trang er time, access time, seek distance
gnd seek time, rotational latency and other pa-

tem. Our implementation includes modifyin Il devi din the simul
Disksim to allow for the Range Writes interfac ameters across all devices used in the simula-

and accept inputs with more than one discreig"-
block numbers specified. We also introduced The components of Disksim can be broadly
modules for Range Writes in Disksim alongsid#assified into three different sets of files. One
the scheduler to pick the most efficient block iis the disk model specifications and parame-
terms of low rotational latency to write to. ter files which decide various disk parameters
Our implementation with only two discretdike the scheduling algorithm, cylinder mapping
blocks shows an improvement of up38% in strategy etc. of the simulation. The second set
reducing rotational delay and &% reduction consists of disk sub-system files which simulate
in positioning time. This gives an indication othe actions of the scheduler, disk controller, bus
the possible improvements in disk access timad I/O driver modules. The third is the set
we could achieve by providing more numbef input trace files which abstract the file sys-
of discrete blocks as options. Mathematicalligm read/write requests and consist of fields like
the expected savings would be of the order tife time at which the request was issued, logical
3/8 1.e37.5% of a revolution and s@5% im- block numbers and device number to which the
provement over average rotational delay withorgquest is to be directed.

5

4.2 Our Approach is feasible and bodes well for our implementa-

tion. Range Writes picks the block with the least
In simulation on Disksim without range writesyotational latency and proceeds to calculate the
the trace files provide the logical block numbeggcess time and transfer time statistics for the
where the data is to be written or read from. Thequest. A large number of requests (of the or-
disk controller maps these logical block nungter of10000) are simulated and the average seek

bers uniquely to physical addresses. All the rgme and rotational latency calculated to reflect
quests are added into the scheduler queue @8l performance of the disk.

the scheduler breaks it into sub-queues and orThe estimation of positioning time for the
ders requests in each sub-queue independemiiycks provided with the request is done using
It schedules the requests using the schedulingtak deviceget servtime()function in Disksim
gorithm as specified in the parameter file of thehich is the difference of access time and trans-
disk model and calculates the operation statfgr time. The positioning time in Disksim com-
tics to output. prises of the seek time and the initial rotational
In our version of Disksim, we modified thdatency. It also includes the time required for
interface to allow Disksim to accept a new tradeead switch and additional write settling time in
scheme which provides additional block nunsome cases to incorporate the real-world disk la-
bers as options to the controller along with reéency.
guest time and device number. The controllerin the Range Writes scheduler, we have re-
performs the same operations as before and $iiected ourselves to using First Come First
scheduler orders the requests in the sub-qu&erved (FCFS) algorithm for ordering the re-
according to the underlying algorithm. After thguests in the sub-queue. This was partly to
requests have been scheduled, the Range Wréesure simplicity and partly because our main
module estimates the positioning time of eagjoal was to reduce rotational latency with ex-
of the optional blocks provided with the requesiting scheduling algorithm and almost all disk
structure in the trace file. Since our main fanodels in Disksim surprisingly used FCFS for
cus in this paper is to reduce rotational latensgheduling their requests. We had also con-
in writes, the optional blocks provided are residered more commonly used scheduling algo-
stricted to be on the same track. So the seek tinttms in modern drives like C-Scan and Eleva-
for all the blocks in the request is essentially ther for Range Writes but both these algorithms
same. We would be using positioning time aratder requests to optimize for seeks and in our
rotational latency interchangeably since in ogase, all the additional blocks provided are on
case, rotational latency decides the block withe same track and hence, have same seek times.
the least positioning time. It should be noteflo these algorithms provide us with the same
here that our design goal for Range Writes is kevel of improvement for range writes as FCFS.
cater to workloads comprising mainly of smabome other algorithms like Shortest Positioning
random writes. So the idea of all the optiondlime First (SPTF) though, would require global
blocks in the request being on the same trackdering in the sub-queue based on the rota-

6

tional latency of all the additional blocks pro- RANGE rotational latency average
vided with the request structure and would re sms 35%
quire a slightly different implementation. We sm " e
have not considered SPTF in the existing ver — s 1
sion but investigating the effect of some othel * . 1 5%
scheduling algorithms will form part of our fu- *™ . 10%
ture work on range writes. il ... T
Our implementation also ensures that the ™ © 2 2 © s @ © = o 1o
scheduler for disk model need not be changet plockofiee

In our existing version, we have made Range

Writes independent of the scheduler and it dejyyre 1: Range Rotational L atency Average Per-

cides on the optimal b'QCk only after the requegtntage Improvement in Average Rotational Latency
order has been determined by the scheduling @ding Range Writes

gorithm. This provides us some ease of imple-

mentation in terms of not requiring to under-

stand the disk model and how it does sched®-1 EXperiment 1

ing? The other benefit would be to implement

it rather easily on real disks without having t§1 this experiment, we assume that there is an-

change the firmware code for scheduling on tRéher alternative given for a range write. Our
disk. trace consisted o0, 000 write requests each

of 10 blocks in size. The request were arriv-

ing at a constant rate. The disk was using an
5 Experiments and Results FCFS scheduler. All the requests arriving were

to a single zone of the disk (the first one), that
To show the actual benefits of Range Writes, wi@s 96 blocks per track and a total of around
conducted a set of experiments to reveal cert&ih 000 blocks. The purpose of the experiment
features about the savings we achieve in rotato figure out the offset that an alternative block
tional delay. The purpose of these experimersigould get, given an original block. We hypoth-
is to illustrate in what conditions Range Writegsize that the offset should be arouh® of
is beneficial, and what kind of setup we need tBe blocks per track, so aroudd. This makes
use to achieve maximum reduction of rotationgénse intuitively: if we provide an alternative
delay. We attempted to conduct these expdplock to write to that is on the other side of the
ments using scientific principles, we therefoigack than an existing block, we would on aver-
provide a hypothesis and run an experimentage get the highest savings in rotational delay.
validate or invalidate the hypothesis. Figure 1 shows the results of Experiment 1.

For all experiments we used Disksim to simu- From the results in Figure 1, we see that the

late a disk, and aHP C2249Adisk conveniently average savings in rotational delay reach about
provided to us with the distribution of disksim.32%. We would think the savings would be

‘ + RANGE rotational latency average m % improvement‘

7

RANGE positioning time average RANGE positioning time average

12 ms 18% 12ms
* @,)
. e) *, 9000, Joo0%0e RN

10 ms e R .. - 1 14% 10ms RTvS VS X3

8ms] 12% 8ms

+ 10%
6ms 6ms

4ms 6% 4ms

2ms

T 2%
a " L]
Oms = = -+ 0% Oms
0 20 40 60 80 100 0 50 100 150 200 250 300 350

Block offset Block offset

‘ + RANGE positioning time average ® % improvement‘ ‘0 RANGE positioning time average‘

Figure 2: Range Positioning Time Average Per- Figure 3: Range Positioning Time Average Aver-
centage Improvement in Average Positioning Tinage Positioning time with Range Writes with respect
using Range Writes to Block Offsets

5.2 Experiment 2
around50%, however in our experiments we are
not achieving this figure. We hypothesize this is
due to the way Disksim is set up and our incor%- .

. . ased on the results from our previous exper-
plete knowledge of the inners of its use of deter-

mining the expected rotational and seek time'rsn.em’ we set up another experiment to see if

At the same time, the highest savings come\ég\? can determine the pattern of savings in total
offsets40 — 45, which is close to half of the elay if with different offsets. We thus run the

, . experiment with a similar set-up as Experiment
zone’s number of blocks per track. Thus our I axcent he off | inal
wition is verified. : pt we vary the offset not only on a single
track (around0blocks), but through more than
one track. What we end up seeing is something
Furthermore, in Figure 2, we see the sasimilar to a sine curve:
ings in total positioning time. These savings
are more modest, as they include the seek timepPoes the result in Figure 3 make sense? It cer-
which we are not optimizing for. From the retainly does, since the dips in the curve appear in
sults we see, that with one alternative block, wegular intervals, and that is on average when we
get savings up td6%. We hypothesize thatare on the opposite side of each track on a plat-
on contemporary disks the savings would her. The peaks appear when we have two blocks
higher, as the seek time tends to improve fastiting on adjacent tracks, but essentially in the
in current disks than does rotation speed, whisame radial position. In this situation, only extra
directly affects the efficiency of range writes. seek time can be saved, but not rotational delay.

8

6 Related Work block numbers to write to, and the disk pretends
that it can only see the first block for schedul-
The idea of reducing rotational latency in diskag purposes. Once the block is actually sched-
has been around for a while but it was thought afed, it gets expanded into multiple alternative
in terms of scheduling algorithms like variantslocks, and the one with the lowest rotational
of Shortest Positioning Time First and Shortedtlay get picked. This, however, is not opti-
Access Time First. Our approach to imprownal. We might do the block expansion before
ing upon rotational latency with Range Writes isven scheduling ever happens. We believe im-
however, different in respect that it does not tgylementing this would be more complicated and
to change the scheduling algorithm underneatbquire more time and effort. This algorithm
It aids the scheduler to decide the block whiakould expand the request into three different re-
would incur the least rotational delay once thguest before even scheduling ever happens, then
requests have been scheduled. Algorithms ligees through the queue and picks the request
SPTF have not been implemented commonlywith the smallest rotational delay and writes to
disks because of the issues of starvation aind This would effectively guarantee that we're
time overheads. Range Writes does not suffgriting into a global minimum rotational delay
from these limitations and can be modeled dyock as opposed to the "local” one that we have
top of any scheduling algorithm. in our implementation.

There are also some new approaches forAnother area for future work would be to in-
scheduling suggested that perform online sisstead of giving a fixed number of blocks to the
ulation of the underlying disk. Disk Mimic [4] disk, we could provide with an actual range of
is another simulator which performs schedulingocks (indicating the first and last elements).
using Shortest Mimicked Time First algorithnWe realized that this route could be more ef-
to schedule based on the information of the stdikgient already toward the end of our modifi-
of the underlying disk. Range Writes is a ratheations to disksim, therefore we never had the
different approach to optimizing disk accessehance to run it. We do believe, however, that
by providing options, though it does use the iiit could simplify a great deal of our calclua-
formation about the current head position of thisns and communication. We would also like
disk. to investigate the effect of other scheduling al-

gorithms like SPTF etc. with Range Writes and
observe the improvements they provide as com-
7 Further Work pared to FCSF or C-Scan.

Further work provides multiple possibilities to

improve our implementation of range write Conclusions

given what we've learnt and given more time.

Our current implementation of disksim iPisks are the slowest part of a computer mem-
scheduler independein¢ we provide alternativeory sub-system, and rotational delays is one of

9

the causes of their slowness. It tends to delay {3¢ Bruce L. Worthington, Gregory R. Ganger,
disk’s total head positioning time, and opearting Yale N. Patt Scheduling Algorithms for Mod-
systems are generally unable to fight these de-ern Disk Drives. SIGMETRICS 1994: 241-
lays as effectively as the seek delays. this is252

especially a problem in workloads with man) o)
small writes. To solve this problem, we haél Florentina I. Popovici, Andrea C. Arpaci-
proposed an implementation of Range Writes, Pusséau , Remzi H. Arpaci-Dusseau Ro-
which allows for the operating system to provide PUst, Portable I/O Scheduling with the Disk
multiple blocks to disk, and let the disk choose Mimic. Proceedings of the USENIX Annual
which one to write to, based on the smallest ro- 1€chnical Conference (USENIX '03) pages
tational delay. This provides improvements in 297—310 June 2003 San Antonio, Texas
rotational delay up t80% in the simplest case,

and more in the more complicated set ups. Are

these results meaningful? They certainly apply

for mainly a specific narrow workload - many

smal new file writes, where the rotational delay

takes as much time as the actual write to disk.

However even in general we can conclude that

by making the OS more disk aware, we can re-

duce the rotational delays. And while the re-

sults of the total positioning time delay seem not

so effective for older disks, we conjecture that

modern disks, where the seek time on average is

lower than rotational delay, Range Writes would

provide even further improved performance.

References

[1] Marshall K. McKusick, William N. Joy,
Samuel J. Leffler, Robert S. Fabry A Fast
File System for UNIX.ACM Trans. Comput.
Syst. (TOCS) 2(3):181-197 (1984)

[2] Disksim Simulation Environment V3 man-
ual http://www.pdl.cmu.edu/DiskSim/ (in
Dec. 2007)

10

