
Reducing Disk Rotation Delays using Range Writes

Rokas Venckevicius
Mayank Maheshwari

Department of Computer Sciences
University of Wisconsin, Madison

December 20, 2007

Abstract

Disk I/O is generally considered the bottleneck
in memory operations. This is generally due
to mechanical limitations (limited disk rotation
caps transfer bandwidth), and the general ar-
chitecture of modern disks (rotating platters ac-
cessed by a single head on the arm), which
causes a delay on the positioning of the head.
Operating systems are generally able to fight the
seek delays by writing to blocks not far away
from each other, but tackling the rotational de-
lay problem is much more complicated. We pro-
pose a method to fight the disk rotational de-
lays, dubbedRange Writes, by allowing for the
operating system to give a wider flexibility to
disk to perform a write, potentially saving sig-
nificant rotational delays. Instead of providing
just one logical block, in Range Writes the file
system can provide multiple blocks for disk to
write data to, thus allowing the disk to make a
smart decision and save some rotational delay.
We provide an implementation of Range Writes
on Disksim disk simulator, and show the savings

in rotational delays and total positioning time.
Our experiments show up to32% improvement
in rotational delays for write-intensive work-
loads.

1 Introduction

The time overhead of disk accesses is one of
the significant performance bottlenecks in the
storage systems. Traditionally, secondary stor-
age has been accepted to be at least two orders
of magnitude slower than memory and systems
have been built around this premise. Caching
of frequently accessed data and lazy write back
policy are some examples where policy is dic-
tated by the constraint of high disk access time.
Over the years, the access time in modern drives
has reduced considerably due to architectural
improvements in disk technology and imple-
mentation of scheduling algorithms which re-
duce seek time. The file system also writes files
to the disk in such a way as to reduce the disk
I/O time. The UNIX Fast File System is one ex-

1



ample of this spatial locality [1].
While a lot of improvements have been made

to reduce the disk seek time, little has been done
to improve rotational latency in disks. Since in
earlier disks, rotational latency was only a small
percentage of the total disk access time, suffi-
cient attention was not given to reduce it. But in
modern disks, with seek time reduced consider-
ably, the rotational delay has become a signifi-
cant portion of the delay in disk access time. In
this paper, we have tried to address the issue of
rotational delay incurred by disks, by providing
more options to the controller in terms of a range
of blocks it could write the data to, instead of a
single logical-to-physical mapped block.

The improvisation we propose is called
”Range Writes” in which the file system pro-
vides a range of logical blocks to the disk con-
troller to write to which maps to contiguous
physical blocks on a track on the disk. Based on
the current disk head position, the controller es-
timates which block among the range of blocks
provided will incur the least rotational delay and
picks that block to start writing data. In case the
disk head points to a block in the range, there is
no rotational delay incurred, otherwise the con-
troller picks the block closest to the disk head
in the range. We have implemented the idea for
small random writes but it can also be extended
to allow flexible reads (called”Flex-reads”)
where given information about the replicated
copies of file, the controller can decide which
copy to read from depending on the least posi-
tioning time.

We used the disk simulatorDisksim [2] for
our experiments and observe an improvement of
up to32% in the rotational latency incurred and
a savings of16% in the disk positioning time.

Disksim simulates some old disk models and
so the positioning time improvement is not as
significant but we show that modern disks with
lesser average seek time will get much better
improvements in positioning time with Range
Writes.

The rest of the paper is organized as fol-
lows. Section 2 discusses the performance prob-
lems with disks and the limitations to improving
them. Section 3 talks about the idea of Range
Writes in more detail and how it can be extended
for reads. Section 4 outlines our implementation
using Disksim. Section 5 gives details of our ex-
periments and results. Related work is discussed
in Section 6, further work in Section 7 and we
will conclude in Section 8.

2 Disk Performance Prob-
lems

On a rather coarse level, each disk operation
consists of three major parts: seek delay, rota-
tional delay and the actual read/write operation.
To improve disk performance, we would need
either to reduce one of the delays or speed up
the actual read/write operation.

The actual read/write operation is closely
coupled with the rotation speed of the disk and
the density of segments in each track. While
platter density has been constantly increasing in
the previous years, the rotation speed has been
fairly steady throughout. Furthermore, the file
system generally has very little to do with im-
proving the bandwidth (except for not adding
additional overhead and providing a contiguous
sequence of blocks to write data to). Improv-

2



ing the actual disk bandwidth is generally more
related to improvements in hardware.

What the file system can do, however, is try
to fight the delays introduced by disks. Tradi-
tionally the delays are simplydead weight, that
is, they do not add in any way to the speed of
disk transfer, yet every I/O operation has to in-
cur them. While this is not a problem for large,
contiguous I/O, it quickly becomes a problem
for small I/O operations, since the relative time
spent on delays becomes a high proportion of
the total time spent to perform the I/O. File sys-
tems have traditionally attempted to fight seek
delays by issuing write requests to blocks that
have some locality [1]. Under this lies an as-
sumption that blocks are mapped into disk’s sec-
tors, tracks and cylinders in a linear manner,
but it has proved quite effective in real systems
aware of this structure [1].

On the other hand, fighting rotational delays
is much harder for the file system. A rotational
delay is defined to be the time that passes after
the arm has finished seeking to the right track,
but before the write (or read) can actually begin.
The reason why it occurs is that the head may
be at a different position on the track than the
block that needs to be written to. Therefore the
platter may have to spin a whole revolution (in
the worst case) until the head actually reaches
the block that it needs to start writing to. How
long is one revolution exactly? That depends on
the disk and the rpm’s of its platters. A typi-
cal desktop system disk in2007 rotates at7200

rpm [3], which translates to approximately8.3
ms for a single revolution. If the workload is
many small writes, this may add a substantial
delay and slow-down of the already slow I/O
operations. Furthermore, file systems have no

way of performing optimization in providing the
block to which the disk should write to, since
they do not have access to the logical to physi-
cal block number mappings, nor are they able to
get the current position of the disk head. There-
fore in the best case any FS can simply guess a
block for writing to, without knowing how much
the rotational delay will be (except for the up-
per bound of8.3 ms). We believe this could be
solved to some extent with Range Writes.

3 Range Writes

The idea of Range Writes inherently is to pro-
vide more options to the disk controller for
writes so that it can optimize the operation based
on the information it has of the disk state. Since
the controller has information about the current
head position, it can estimate the positioning
time and transfer time of the write. By pro-
viding a range of blocks or more than one dis-
crete blocks equidistant from each other, the
controller can estimate the rotational delay (if
the disk head does not currently lie in the range)
for the starting block of the range and select the
block with the least delay for the write. After
writing, the controller returns the block number
of the data to the file system.

In our implementation of Range Writes,
we have provided a fixed number of discrete
equidistant blocks to the controller for writes.
We have taken this approach for two reasons.
One is for the purpose of simplification and
the other is, since we are optimizing for a
workload consisting primarily of small random
writes, providing a range of blocks would re-
quire that the physical contiguous blocks on a

3



track should be free. It would entail keeping
contiguous blocks empty on the track to accom-
modate range writes while the actual data size
is small. This would limit the size of the range
that can be provided and as the start data block
may not be the starting block of the range (if the
head position lies in the range), this could cause
fragmentation of the track.

With discrete equidistant blocks, the con-
troller can write data starting from any of these
blocks based on least rotational delay and re-
turn the block number to the file system where
the data is written. We could optimize for the
number of discrete blocks which reduce the ro-
tational delay while keeping track fragmentation
at bay. With large modern drives, the effects
of fragmentation might not be apparent imme-
diately but if the workload consists of a large
number of small writes, it will manifest itself in
the form of increased latency.

Range Writes requires modifications to the
interface between the disk and the file system.
It propagates the control to the disk to make
a decision on the position of data block out
of the options provided to it by the file sys-
tem. So, in a way, the idea is to make the disk
smarter and file system more disk aware. The
disk controller is the lowest level abstraction and
by providing it with decision-making capabil-
ities, it can make the most informed decision
about read/write based on the state of the disk.
One crucial point about our approach to Range
Writes is that it itself is not the scheduler but can
be thought of as thescheduler’s friend. The re-
quests arriving to the disk are still scheduled ac-
cording to the existing scheduling algorithm im-
plemented in the disk. Range Writes module de-
cides the final block from among the block op-

tions provided for the scheduled request to com-
plete the write. A benefit of our approach is that
the scheduler need not be modified to implement
range writes and it can be done independent of
the scheduling algorithm underneath.

The concept of Range Writes can also be ex-
tended to readsi.e.Flex-reads in which the file
system provides information about all the repli-
cated copies of the file to be read to the disk
controller. The controller using the Flex-reads
module and the information about the current
disk head position estimates the access time for
each replica and decides on the one with the
least access time. The approach has overtones
of the Shortest Positioning Time First (SPTF)
algorithm and we used some of its components
in our implementation but our main focus is on
reducing the rotational latency and not the over-
all positioning time.

One of the possible limitations of this idea is
that it works well for writes where the file sys-
tem provides the potential blocks on the same
track and there is no extra seek time incurred. In
case of reads however, the replicated copies of
the file will with high probability, not be on the
same track of the cylinder and so the positioning
time might have a bearing on the optimality of
the operation. In our opinion, existing modern
drives have been optimized for low seek times
and the commonly used scheduling algorithms
are devised to reduce seek. So even for reads,
rotational latency will be the bottleneck for disk
access and Flex-reads should be able to provide
a significant improvement. However, this con-
jecture requires further analysis and experimen-
tation and we do not concentrate on reads in this
paper.

We analyze our implementation for different

4



number of discrete optional blocks provided and
observe that the savings in rotational delay is as
expected with the disk head being in any po-
sition on the track uniformly at random. It is
discussed with experiments and results in detail
in Section 5. The other question worth ponder-
ing is whether the idea of Range Writes is really
beneficial? The next section discusses this and
our implementation in further depth.

4 Implementation

In the implementation of Range Writes, we have
used Disksim to simulate reads and writes on a
disk and get operation statistics in the form of
number of events simulated, average seek and
rotational latency, response times, inter-arrival
request statistics etc. For our purposes, we con-
centrate on the average seek and rotational time
and transfer time across all disks in the sys-
tem. Our implementation includes modifying
Disksim to allow for the Range Writes interface
and accept inputs with more than one discrete
block numbers specified. We also introduced
modules for Range Writes in Disksim alongside
the scheduler to pick the most efficient block in
terms of low rotational latency to write to.

Our implementation with only two discrete
blocks shows an improvement of up to32% in
reducing rotational delay and a16% reduction
in positioning time. This gives an indication of
the possible improvements in disk access time
we could achieve by providing more number
of discrete blocks as options. Mathematically,
the expected savings would be of the order of
3/8 i.e.37.5% of a revolution and so75% im-
provement over average rotational delay without

range writes if we provide four discrete blocks.
Before we go into the details of our implementa-
tion, let us give a brief background of Disksim.

4.1 Disksim

Disksim is one of the most widely used disk
simulators in the systems community. It pro-
vides disk specifications and simulates some old
disk models like Cheetah and Barracuda vari-
ants of Seagate disks and some versions of HP
disks [2]. It takes as input trace files which
abstract the read/write requests sent by the file
system. Disksim identifies certain trace formats
based on the disk model the simulation uses and
outputs the statistics in terms of events simu-
lated, transfer time, access time, seek distance
and seek time, rotational latency and other pa-
rameters across all devices used in the simula-
tion.

The components of Disksim can be broadly
classified into three different sets of files. One
is the disk model specifications and parame-
ter files which decide various disk parameters
like the scheduling algorithm, cylinder mapping
strategy etc. of the simulation. The second set
consists of disk sub-system files which simulate
the actions of the scheduler, disk controller, bus
and I/O driver modules. The third is the set
of input trace files which abstract the file sys-
tem read/write requests and consist of fields like
the time at which the request was issued, logical
block numbers and device number to which the
request is to be directed.

5



4.2 Our Approach

In simulation on Disksim without range writes,
the trace files provide the logical block numbers
where the data is to be written or read from. The
disk controller maps these logical block num-
bers uniquely to physical addresses. All the re-
quests are added into the scheduler queue and
the scheduler breaks it into sub-queues and or-
ders requests in each sub-queue independently.
It schedules the requests using the scheduling al-
gorithm as specified in the parameter file of the
disk model and calculates the operation statis-
tics to output.

In our version of Disksim, we modified the
interface to allow Disksim to accept a new trace
scheme which provides additional block num-
bers as options to the controller along with re-
quest time and device number. The controller
performs the same operations as before and the
scheduler orders the requests in the sub-queue
according to the underlying algorithm. After the
requests have been scheduled, the Range Writes
module estimates the positioning time of each
of the optional blocks provided with the request
structure in the trace file. Since our main fo-
cus in this paper is to reduce rotational latency
in writes, the optional blocks provided are re-
stricted to be on the same track. So the seek time
for all the blocks in the request is essentially the
same. We would be using positioning time and
rotational latency interchangeably since in our
case, rotational latency decides the block with
the least positioning time. It should be noted
here that our design goal for Range Writes is to
cater to workloads comprising mainly of small
random writes. So the idea of all the optional
blocks in the request being on the same track

is feasible and bodes well for our implementa-
tion. Range Writes picks the block with the least
rotational latency and proceeds to calculate the
access time and transfer time statistics for the
request. A large number of requests (of the or-
der of10000) are simulated and the average seek
time and rotational latency calculated to reflect
the performance of the disk.

The estimation of positioning time for the
blocks provided with the request is done using
the deviceget servtime() function in Disksim
which is the difference of access time and trans-
fer time. The positioning time in Disksim com-
prises of the seek time and the initial rotational
latency. It also includes the time required for
head switch and additional write settling time in
some cases to incorporate the real-world disk la-
tency.

In the Range Writes scheduler, we have re-
stricted ourselves to using First Come First
Served (FCFS) algorithm for ordering the re-
quests in the sub-queue. This was partly to
ensure simplicity and partly because our main
goal was to reduce rotational latency with ex-
isting scheduling algorithm and almost all disk
models in Disksim surprisingly used FCFS for
scheduling their requests. We had also con-
sidered more commonly used scheduling algo-
rithms in modern drives like C-Scan and Eleva-
tor for Range Writes but both these algorithms
order requests to optimize for seeks and in our
case, all the additional blocks provided are on
the same track and hence, have same seek times.
So these algorithms provide us with the same
level of improvement for range writes as FCFS.
Some other algorithms like Shortest Positioning
Time First (SPTF) though, would require global
ordering in the sub-queue based on the rota-

6



tional latency of all the additional blocks pro-
vided with the request structure and would re-
quire a slightly different implementation. We
have not considered SPTF in the existing ver-
sion but investigating the effect of some other
scheduling algorithms will form part of our fu-
ture work on range writes.

Our implementation also ensures that the
scheduler for disk model need not be changed.
In our existing version, we have made Range
Writes independent of the scheduler and it de-
cides on the optimal block only after the request
order has been determined by the scheduling al-
gorithm. This provides us some ease of imple-
mentation in terms of not requiring to under-
stand the disk model and how it does schedul-
ing? The other benefit would be to implement
it rather easily on real disks without having to
change the firmware code for scheduling on the
disk.

5 Experiments and Results

To show the actual benefits of Range Writes, we
conducted a set of experiments to reveal certain
features about the savings we achieve in rota-
tional delay. The purpose of these experiments
is to illustrate in what conditions Range Writes
is beneficial, and what kind of setup we need to
use to achieve maximum reduction of rotational
delay. We attempted to conduct these experi-
ments using scientific principles, we therefore
provide a hypothesis and run an experiment to
validate or invalidate the hypothesis.

For all experiments we used Disksim to simu-
late a disk, and anHP C2249Adisk conveniently
provided to us with the distribution of disksim.

Figure 1: Range Rotational Latency Average Per-
centage Improvement in Average Rotational Latency
using Range Writes

5.1 Experiment 1

In this experiment, we assume that there is an-
other alternative given for a range write. Our
trace consisted of10, 000 write requests each
of 10 blocks in size. The request were arriv-
ing at a constant rate. The disk was using an
FCFS scheduler. All the requests arriving were
to a single zone of the disk (the first one), that
has96 blocks per track and a total of around
50, 000 blocks. The purpose of the experiment
is to figure out the offset that an alternative block
should get, given an original block. We hypoth-
esize that the offset should be around1/2 of
the blocks per track, so around48. This makes
sense intuitively: if we provide an alternative
block to write to that is on the other side of the
track than an existing block, we would on aver-
age get the highest savings in rotational delay.
Figure 1 shows the results of Experiment 1.

From the results in Figure 1, we see that the
average savings in rotational delay reach about
32%. We would think the savings would be

7



Figure 2: Range Positioning Time Average Per-
centage Improvement in Average Positioning Time
using Range Writes

around50%, however in our experiments we are
not achieving this figure. We hypothesize this is
due to the way Disksim is set up and our incom-
plete knowledge of the inners of its use of deter-
mining the expected rotational and seek times.
At the same time, the highest savings come at
offsets40 − 45, which is close to half of the
zone’s number of blocks per track. Thus our in-
tuition is verified.

Furthermore, in Figure 2, we see the sav-
ings in total positioning time. These savings
are more modest, as they include the seek time,
which we are not optimizing for. From the re-
sults we see, that with one alternative block, we
get savings up to16%. We hypothesize that
on contemporary disks the savings would be
higher, as the seek time tends to improve faster
in current disks than does rotation speed, which
directly affects the efficiency of range writes.

Figure 3: Range Positioning Time Average Aver-
age Positioning time with Range Writes with respect
to Block Offsets

5.2 Experiment 2

Based on the results from our previous exper-
iment, we set up another experiment to see if
we can determine the pattern of savings in total
delay if with different offsets. We thus run the
experiment with a similar set-up as Experiment
1, except we vary the offset not only on a single
track (around90blocks), but through more than
one track. What we end up seeing is something
similar to a sine curve:

Does the result in Figure 3 make sense? It cer-
tainly does, since the dips in the curve appear in
regular intervals, and that is on average when we
are on the opposite side of each track on a plat-
ter. The peaks appear when we have two blocks
sitting on adjacent tracks, but essentially in the
same radial position. In this situation, only extra
seek time can be saved, but not rotational delay.

8



6 Related Work

The idea of reducing rotational latency in disks
has been around for a while but it was thought of
in terms of scheduling algorithms like variants
of Shortest Positioning Time First and Shortest
Access Time First. Our approach to improv-
ing upon rotational latency with Range Writes is
however, different in respect that it does not try
to change the scheduling algorithm underneath.
It aids the scheduler to decide the block which
would incur the least rotational delay once the
requests have been scheduled. Algorithms like
SPTF have not been implemented commonly in
disks because of the issues of starvation and
time overheads. Range Writes does not suffer
from these limitations and can be modeled on
top of any scheduling algorithm.

There are also some new approaches for
scheduling suggested that perform online sim-
ulation of the underlying disk. Disk Mimic [4]
is another simulator which performs scheduling
using Shortest Mimicked Time First algorithm
to schedule based on the information of the state
of the underlying disk. Range Writes is a rather
different approach to optimizing disk accesses
by providing options, though it does use the in-
formation about the current head position of the
disk.

7 Further Work

Further work provides multiple possibilities to
improve our implementation of range writes,
given what we’ve learnt and given more time.
Our current implementation of disksim is
scheduler independenti.e.we provide alternative

block numbers to write to, and the disk pretends
that it can only see the first block for schedul-
ing purposes. Once the block is actually sched-
uled, it gets expanded into multiple alternative
blocks, and the one with the lowest rotational
delay get picked. This, however, is not opti-
mal. We might do the block expansion before
even scheduling ever happens. We believe im-
plementing this would be more complicated and
require more time and effort. This algorithm
would expand the request into three different re-
quest before even scheduling ever happens, then
goes through the queue and picks the request
with the smallest rotational delay and writes to
it. This would effectively guarantee that we’re
writing into a global minimum rotational delay
block as opposed to the ”local” one that we have
in our implementation.

Another area for future work would be to in-
stead of giving a fixed number of blocks to the
disk, we could provide with an actual range of
blocks (indicating the first and last elements).
We realized that this route could be more ef-
ficient already toward the end of our modifi-
cations to disksim, therefore we never had the
chance to run it. We do believe, however, that
it could simplify a great deal of our calclua-
tions and communication. We would also like
to investigate the effect of other scheduling al-
gorithms like SPTF etc. with Range Writes and
observe the improvements they provide as com-
pared to FCSF or C-Scan.

8 Conclusions

Disks are the slowest part of a computer mem-
ory sub-system, and rotational delays is one of

9



the causes of their slowness. It tends to delay the
disk’s total head positioning time, and opearting
systems are generally unable to fight these de-
lays as effectively as the seek delays. this is
especially a problem in workloads with many
small writes. To solve this problem, we have
proposed an implementation of Range Writes,
which allows for the operating system to provide
multiple blocks to disk, and let the disk choose
which one to write to, based on the smallest ro-
tational delay. This provides improvements in
rotational delay up to30% in the simplest case,
and more in the more complicated set ups. Are
these results meaningful? They certainly apply
for mainly a specific narrow workload - many
smal new file writes, where the rotational delay
takes as much time as the actual write to disk.
However even in general we can conclude that
by making the OS more disk aware, we can re-
duce the rotational delays. And while the re-
sults of the total positioning time delay seem not
so effective for older disks, we conjecture that
modern disks, where the seek time on average is
lower than rotational delay, Range Writes would
provide even further improved performance.

References

[1] Marshall K. McKusick, William N. Joy,
Samuel J. Leffler, Robert S. Fabry A Fast
File System for UNIX.ACM Trans. Comput.
Syst. (TOCS) 2(3):181-197 (1984).

[2] Disksim Simulation Environment V3 man-
ual http://www.pdl.cmu.edu/DiskSim/ (in
Dec. 2007).

[3] Bruce L. Worthington, Gregory R. Ganger,
Yale N. Patt Scheduling Algorithms for Mod-
ern Disk Drives. SIGMETRICS 1994: 241-
252.

[4] Florentina I. Popovici , Andrea C. Arpaci-
Dusseau , Remzi H. Arpaci-Dusseau Ro-
bust, Portable I/O Scheduling with the Disk
Mimic. Proceedings of the USENIX Annual
Technical Conference (USENIX ’03) pages
297–310 June 2003 San Antonio, Texas.

10


