
Lottery Scheduling for Flexible and Fine-grained
Bandwidth Management in Wireless LANs

Shravan Rayanchu Sharad Saha
Department of Computer Sciences, University of Wisconsin, Madison, WI 53706, USA

{shravan, sharad}@cs.wisc.edu

ABSTRACT
Emerging applications such as VoIP, Multimedia streaming
require certain Quality of Service(QoS) guarantees in order
to satisfy the requirements of their users. In today’s wire-
less LANs the administrator has little or no control over the
amount of bandwidth consumed by different flows or even
different traffic classes. Flow level control is beyond the ca-
pabilities of the current systems and is desirable in networks
which have multiple input flows with different QoS require-
ments. Towards this end, we propose a probabilistic solution
based on lottery scheduling between competing flows for a
proportional allocation of the wireless bandwidth. Lottery
scheduling when used in conjunction with policies (taken as
input) provides a simple and scalable solution for flexible
and fine-grained wireless bandwidth management. Our so-
lution works across across different protocols and takes into
account the traffic characteristics of the competing flows us-
ing the concept of ticket adjustments. We have implemented
a prototype lottery scheduler on the madwifi wireless driver
and found that it provides a flexible control over the wireless
bandwidth, achieving the desired throughput proportions be-
tween the flows in the network.

1. INTRODUCTION
Wireless bandwidth is a scarce resource. As users ex-

perience the convenience of wireless connectivity and as
wireless LANs seek to support advanced multimedia ap-
plications such as interactive lecture series, voice over
IP (VoIP) etc, Quality of Service (QoS) is becoming
increasingly important in 802.11 networks. In today’s
wireless LANs the administrator has little or no control
over the amount of bandwidth consumed by different
flows or even different traffic classes. Flow level control
is beyond the capabilities of the current systems and is
desirable in networks which have multiple input flows
with different QoS requirements. Packet scheduling is
one approach to address these requirements. However,
the scheduling algorithms chosen to multiplex the wire-
less medium can have a considerable impact on the net-
work throughput and the response time experienced by
the applications. Existing ’bandwidth share’ schedulers

for wireless networks try to provide QoS by dividing the
Internet traffic into broad classes with absolute priori-
ties schemes [1]. However this limits them to a coarse
control over the traffic i.e it is not possible to assign
dynamic policies on a per flow basis. Current appli-
cations like media streaming might require flexible and
dynamic control over scheduling policies. In the current
standards, the priorities are absolute for a given traf-
fic class and there is no concept of dividing the wire-
less bandwidth into desired proportions. The current
schemes are also oblivious to changing packet size in
a flow which might have a considerable impact on the
achieved throughputs for long running flows.

Internet

YouTube

Video Lectures

AP2

AP1

Client 2

Client 1

Figure 1: A Motivating Example.

Let us consider a motivating example in order to bet-
ter understand why such a control over the wireless
bandwidth is necessary. Consider the following use case
shown in Figure 1 where a client (Client 1) is connected
to Access point(AP) in an enterprise wireless LAN. The
client starts streaming a live lecture series and is ini-
tially satisfied with the quality of video. This is mainly
because the client does not have to share the wireless
medium. Now consider the situation where another
client (Client 2) associates to the same access point and
starts streaming a Youtube video. The quality of both
the video streams tends to degrade as a result of me-
dia contention in the wireless medium. Ideally, most of
the proportion of the bandwidth should be allocated to
Client 1 and if there is any residual bandwidth, it can

1

be allocated to Client 2. This is not possible to achieve
with existing systems; IEEE 802.11e for example would
classify all the video traffic into a single class, thus re-
moving the possibility of isolating the video lecture traf-
fic from the Youtube traffic. Only a solution based on
per-flow throughput allocation can possibly satisfy the
requirements of the network administrator in this case.
More specifically, we need a scheduling algorithm that
can provide a fine-grained, flexible, proportional share
of the wireless bandwidth of a per-flow basis.

To concurrently meet such varied quality of service
needs, many different scheduling policies have been pro-
posed in literature. For wireline networks, these policies
are generally referred to as Packet Fair Queuing (PFQ)
algorithms [8, 6, 13]. However a direct application of
these techniques in a wireless network does not result
in fairness guarantees as in the wireline network [11].

In this paper we take a probabilistic approach to
achieve proportional fairness for QoS provisioning. Our
implementation has two main components - packet sched-
uler and the flow classifier. To provide a fine grained,
proportional share of the wireless medium we imple-
ment lottery scheduling at the wireless driver. Lot-
tery scheduling at the driver schedules packets at the
granularity of flows and achieves throughputs propor-
tional to the relative shares that they are allocated.
The shares (or tickets) can be allocated based on the
policies of a given network. Our solution works across
multiple clients, different protocols and takes into ac-
count the traffic characteristics (e.g., changing packet
size) of a flow and adjusts the tickets of the flow accord-
ingly. We also have implemented Stride scheduling [17],
which is based on deterministic approach. To adminis-
ter the flows, we develop a policy classifier, which pro-
vides a flexible and dynamic allocation of the wireless
bandwidth. It provides ACL-like (Access Control Lists)
rules to assign dynamic policies and bandwidth shares
to different flows. The classifier also maintains per-flow
queues and assigns tickets to these different flows. Lot-
tery scheduling is then done amongst these competing
flows to decide the winner which gets to transmit its
packet. As the lottery scheduling is based on a very
simple approach and does not require any state to be
maintained at the software driver, the solution is also
scalable.

1.1 Roadmap
The rest of the paper is outlined as follows. Sec-

tion 2 describes the concept of lottery scheduling and
how it can be applied for scheduling packets in a wire-
less LAN. We describe the design and implementation
of our scheduling framework and also explain the con-
cept of ticket adjustments to account for traffic charac-
teristics of different flows in the network. In Section 3
we present a detailed evaluation of our implementation

and quantify its performance under different scenarios.
We present related work in Section 4 and then finally
conclude in Section 5.

2. DESIGN AND IMPLEMENTATION
We use a simple approach based on packet scheduling

in order to provide a flexible and fine-grained bandwidth
management in wireless LANs. Lottery scheduling [16]
was introduced in the context of processor scheduling
and provides a simple solution based on randomization
for proportional share of resources (the CPU) among
the contending processes. We adopt this approach for
proportional share of bandwidth among contending flows
in wireless network.

2.1 Overview of Approach
The wireless network administrator provides a pol-

icy file to the system which consists of a set of (flow :
ticket) pairs. We define a flow as an entity which can be
identified using parameters such as IP addresses, ports,
protocols etc. The corresponding ticket refers to the
proportion of bandwidth to be allocated for that flow.
This abstraction allows a flow to be very fine-grained –
for e.g. the pair (SRC IP 128.105.102.20, SRC PORT
80, PROTO TCP : 300) refers to giving a certain pro-
portion (300) to HTTP traffic arising from machine
with a specific IP address or it can be coarse-grained –
for e.g., the pair (PORT 5001: 50) refers to all traf-
fic using port 5001 to be allocated a certain proportion
(50). This policy file is input to an access point in the
wireless network and whenever a transmission opportu-
nity arises at the access point, the scheduler draws a
lottery among the contending flows based on their tick-
ets. The probability of winning a lottery is proportional
to the the value of the ticket a flow holds. The winner
of the lottery is then provided access to the wireless
medium and proceeds with transmitting a packet. We
refer the interested reader to [16] where more details
about lottery scheduling can be found.

2.2 Why Lottery ?
There were several issues that had to be addressed

when developing a solution for bandwidth management
in a wireless network. We now discuss what these issues
are, and how they were addressed by a solution based
on lottery scheduling:

• Fine-grained allocation: In our approach to
scheduling, we use flows as the contenders for the
resource (wireless bandwidth). Such an abstrac-
tion allows a flow to be fine-grained, for e.g., a flow
can refer to the traffic belonging to a specific in-
stance of an application running at a port on a par-
ticular IP Address. Thus, instead of coarsely di-
viding the traffic into small, fixed number of classes

2

as done IEEE 802.11e, using the general concept
of flows is used to achieve fine-grained allocation
of bandwidth.

• Flexibility: IEEE 802.11e divides the traffic into
four broad classes of traffic, the relative priorities
of which are fixed. We instead provide a flexible
approach to bandwidth management based on dy-
namic policies. The policies are input from a spe-
cial file which specifies the contending flows and
proportions that are to be allocated for a dura-
tion of a time. These policies can be changed by
the wireless network administrator as and when
required depending on the end user requirements.

• Proportions: There is no concept of providing
proportionally fair allocation of bandwidth in IEEE
802.11e. We assign tickets to the contending flows
based on the proportions specified in the policy
file. Using lottery scheduling based on these tick-
ets helps achieve the required proportion.

• Traffic characteristics: It is important to take
traffic characteristics such as packet size, bursty
nature of traffic etc into account when providing a
solution for fair share of bandwidth. The concept
of ticket adjustments in lottery scheduling provides
an elegant method to fit in these parameters in our
solution.

• Scalability: It is important to note that provid-
ing fine-grained allocation might limit the scala-
bility of a system. In particular, since we wanted
to provide a per-flow fair share of bandwidth, we
have to be careful about the memory and process-
ing overhead involved in maintaining a per-flow
state at the access point. This can prove to be
a considerable amount of overhead when there are
new flows joining the network and some flows leave
the network. Lottery scheduling provides a simple
and elegant solution which obviates the need for
any per-flow state, thus providing a scalable solu-
tion.

2.3 Ticket Adjustments
There are cases where adjustments might have to be

made to the initially assigned tickets. For example, traf-
fic characteristics might affect the throughput of each
flow and might have to be taken into account when
providing a mechanism for proportional share of band-
width. We consider two characteristics – (1) Packet size
and (2) Bursty nature of the flows and explore whether
they affect the throughputs and if so what adjustments
have to made in order to take these into account.

Packet Size: Let us first consider how the packet size

of a flow might affect the throughputs of the flows. Con-
sider the case where there are 2 flows flow1 and flow2

which are initially assigned 100 tickets each. The ad-
ministrator expects each of the flows to achieve similar
throughputs when the wireless medium is under con-
tention. Lottery scheduling ensures that this is indeed
the case when the packet sizes used in these flows are the
same. However, consider the case where flow1 uses a
packet size of 500 bytes whereas flow2 uses a packet size
of 1000 bytes. In this case, a scheduling scheme agnostic
of packet size would simply provide equal transmission
opportunities to both the flows. This would result in
effective throughput ratio of flow1 : flow2 = 1 : 2, this
is because flow2 sends twice the amount of data flow1

sends on every transmission opportunity. We use the
concept of ticket inflation [16] to account for this. That
is, we adopt an approach of per-packet ticket inflation
where we recalculate the tickets of a flow after every
transmission. This adjustment in tickets is based on
the size of the transmitted packet as is done as show in
Equation 1.

new ticket =
init ticket ∗ base size

pkt size
(1)

In Equation 1, init ticket refers to the value of the
initially assigned tickets (based on the required propor-
tion), base size refers to a constant used for ticket ad-
justments. In our implementation, we take base size
to be the Maximum Transmission Unit (MTU) of the
wireless link (1500 bytes). Finally, pkt size is the size
of the transmitted packet. Using this equation results
in flow1 to be allocated 300 tickets and flow2 to be
allocated 150 tickets, which effectively gives flow1 dou-
ble the number of transmission opportunities than that
of flow2. This results in the effective throughput ratio
of flow1 : flow2 = 1 : 1, thus resulting in the desired
proportions. However, it is important to note that the
overall network throughput would now be lesser com-
pared to the case where lottery scheduling is not used.
We explore this tradeoff between bandwidth efficiency
and fairness more in Section 3.

Bursty Traffic: Another aspect to consider is whether
the bursty nature of a flow might affect the resulting
proportion. Consider the case where there are two flows
flow1 and flow2 both of which send the traffic at the
same rate and are assigned equal proportion. How-
ever, flow1 is bursty in nature whereas flow2 sends the
traffic with constant inter-packet arrival times. Would
this affect the throughput proportions of the flows ?
This problem has been previously studied in [8], where
the authors propose a mechanism for per-flow share of
bandwidths among the flows traversing a router. Specif-
ically, they propose using per-flow queues and use a
mechanism based on bit-by-bit round robin for achiev-

3

ing fair share of bandwidth amongst the flows. They
consider the case where some flows might not utilize
the bandwidth for certain intervals in between (due to
bursty nature of the flows). They use a parameter δ
which accounts for the ’amount of history’ to be con-
sidered and give preference to the flows which under uti-
lize their share during that time. They show that when
queue size of the flows is not the limiting factor (i.e
when the packets are not being dropped) then the pro-
portional share of the bandwidth is achieved amongst
the flows even when the utilization of flows is not con-
sidered. That is, throughput of the flows is not affected
but the average delay encountered by the flows would be
affected. The delay for packets belonging to the bursty
flow would be reduced when preference is given to the
packets from that flow.

Linux Network Stack

dev_queue_xmit ()

Madwifi Driver

Firmware

Transmit queue

Packet

ath_hardstart_xmit ()

ATH_TXQ_INSERT_TAIL

Figure 2: Transmit Path of a Packet in the Cur-
rent Wireless Stack

A similar approach can be used in our scheduling,
where we could keep track of the utilization for each
flow and the inflate the tickets accordingly, thus giving
more priority to flows which under-utilize the medium:

new ticket = init ticket ∗ util (2)

Equation 2 shows how these adjustments can be made.
Here util refers to the fraction of utilization by a partic-
ular flow. We note that this would only affect the aver-
age delay encountered by the flows and not the through-
put proportion.

2.4 Implementation details
We implemented lottery scheduling on the Linux 2.6.17

kernel running the madwifi wireless driver [2]. The pol-
icy file was input using the standard proc file system.
Figure 2 shows the transmit path in the current im-
plementation of madwifi driver. When a packet (an
skb buffer) is available for transmission in the Linux
networking stack, the function dev queue xmit() is in-
voked. This in turn calls the transmit function of the
madwifi driver, ath hardstart xmit(). The driver en-
capsulates this packet with the IEEE 802.11 MAC header

and sets the transmission parameters for this packet
(e.g. transmit power, PLY data rate etc) and then
handles the packet to the firmware using the function
call ATH TXQ INSERT TAIL which simply enqueues the
packet in the firmware queue (FIFO) and returns. The
wait-time for a packet in the firmware queue (i.e. the
time spent in the firmware queue before the packet is
transmitted in the air) depends on the contention in
the wireless medium and whether there are any pack-
ets already enqueued in the firmware queue. Once the
packet is transmitted in the air, the callback function of
the driver (registered with the firmware) is called using
ath tx tasklet, where the necessary parameters to be
used for the next transmission are updated.

Linux Network Stack

dev_queue_xmit ()

Madwifi Driver

ath_hardstart_xmit_wrapper ()

Firmware

Transmit Queue

Virtual Queues

Packet

Scheduler

ath_hardstart_xmit ()

ath_tx_tasklet()

Classifier
Draw LotteryFQ and VQ

empty ?

/proc (Policies)

YES

NO

Figure 3: Lottery Scheduling Framework

It is important to note that currently all the queuing
happens in the firmware, which makes it difficult to im-
plement any form of scheduling at the driver. We there-
fore needed a mechanism where all the queuing happens
in the wireless driver and the firmware essentially acts as
a transmit buffer for the packet. Figure 3 illustrates our
approach to the problem. We essentially maintain per-
flow software queues at the driver. The flows and their
proportions are input to the driver based on a policy file
using the proc file system. We implement a classifier
module which takes the policy inputs and is responsible
for maintaining the per-flow queues. Whenever a packet
is received from the network layer, instead of calling
the transmit function of the driver, a wrapper function
(ath hardstart xmit wrapper) is invoked. The wrap-
per function then passes the packet to the classifier or
immediately calls the transmit function based on the
following: (1) If the firmware transmit queue and all
the software queues are empty, then the transmit func-
tion of the firmware is called and the usual procedure of
transmitting a packet follows (2) Otherwise the packet

4

is sent to the classifier which then enqueues the packet
into the appropriate queue based on the input policy.
In either case, the function immediately returns before
the packet is actually transmitted. Whenever a packet
is transmitted by the firmware, the callback function
invokes the scheduler module. The scheduler then se-
lects a packet from one of the per-flow software queues
and calls the transmit function of the firmware. Us-
ing this approach allows all the queuing to happen at
the software (driver) and the firmware essentially acts
as single transmit buffer. Since packets are handed to
the firmware only one after the another, there would
be delays introduced in the process. We quantify the
performance degradation due to this in Section 3.

We have implemented a generic scheduling framework
in order to provide flexibility in implementing schedul-
ing decisions. We have implemented (1) Lottery sched-
uler and (2) Stride scheduler [17] as examples. Stride
scheduler basically adopts a deterministic approach to
achieve a proportional share of the available resource
whereas lottery adopts a randomized approach. We
compare the performance of both these approaches in
Section 3.

3. EVALUATION
In this section, we evaluate the performance of lot-

tery scheduling in presence of multiple clients, differ-
ent protocols, varying packet sizes, for different traf-
fic types and under lossy wireless links. We also com-
pare the performance of lottery scheduling with that of
stride scheduling. Further, we also quantify the over-
head due to our implementation of lottery scheduling
at the driver level and that due to the maintenance of
software queues of packets at the driver.
(a) Single AP - Single Client: We first demonstrate
the effectiveness of our approach in a simplistic setting
which consists of a single access point (AP) and single
client. We set up 2 UDP flows from the AP to client,
each using a packet size of 1000 bytes. We use iperf to
measure the throughput achieved by each of the flows.
The rate at which each of the flows send packets is more
than the amount that can be sent by the AP, thus re-
sulting in building up of queues at the AP. The tickets
are allocated in the ratio of flow1 : flow2 = 1 : 2.
Figure 4 shows the throughputs of both the flows. Lot-
tery scheduling is initially turned off and therefore both
the flows achieve equal amount of throughputs. At
t = 10 seconds, we turn on lottery scheduling (using
proc filesystem interface) which results in flow2 achiev-
ing double the throughput. Lottery is turned off again
at t = 45 seconds which results in both the flows shar-
ing the throughputs in equal proportion. Figure 5 shows
the ratio of achieved throughputs when lottery is turned
on. We observe that using lottery results in a propor-
tion of 1 : 2.018.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

flow1
flow2

Figure 4: Performance of Lottery Scheduling
(Single AP - Single Client)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50

R
at

io
 o

f T
hr

ou
gh

pu
ts

Time (Seconds)

Figure 5: Ratio of Achieved Throughputs

(b) Multiple Clients: We now use a set up with a
single AP and two clients. As before we set up UDP
flows from the AP to both of the clients. For client1, we
set up 2 flows (flow1 and flow2) and for client2 we set
up one flow (flow3). The desired proportion between
the flows is set to flow1 : flow2 : flow3 = 1 : 2 : 4.
Figure 6 shows the achieved throughputs when lottery
scheduling is turned on at the AP. Initially, only flow1

is active and hence it consumes the entire bandwidth.
The second flow flow2 is activated at t = 20 seconds
and thus it results in the throughput being shared by
both flows in ratio of 1 : 2. At t = 50 seconds, flow3

for client2 is activated, this results in the throughputs
being shared in the desired proportion. The measured
throughput proportions for this experiment was 3.98 :
2.01 : 1.
(c) Different Protocols: In this experiment we
demonstrate the effectiveness of scheduling in presence

5

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

Client1 (flow1)
Client1 (flow2)
Client2 (flow3)

Figure 6: Performance of Lottery Scheduling
(Multiple Clients)

of different protocols. We set up 2 flows: flow1 which
is a UDP flow from AP to client1 and flow2, a TCP
flow from AP to client2. The desired throughputs to
be flow1 : flow2 = 1 : 2. Figure 7 plots the achieved
throughputs for this experiment. We observe that ini-
tially when lottery scheduling is turned off, flow1 (UDP)
takes up most of the bandwidth. This is because, on
seeing delays and wireless losses, TCP performs con-
gestion control and backsoff, whereas UDP does not.
However, when lottery scheduling is turned on, we see
that the desired proportion is achieved. This is mainly
because of the maintenance of per-flow queues which
isolates the UDP flow and hence does not increase the
RTT as perceived by the TCP sender. We observe that
the measured throughputs are in the ratio of 1 : 1.93.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

UDP
TCP

Figure 7: Performance for TCP and UDP

(d) Effect of Packet Size: In this experiment we
demonstrate how packet size can affect the throughput

proportions of the flows. We set up 2 UDP flows, flow1

from AP to client1 and flow2 from AP to client2. The
packet size for flow1 was set to be 600 bytes and the
packet size for flow2 was set to be 1200 bytes. The
desired proportion given to the lottery scheduler was
flow1 : flow2 = 2 : 1. We plot the measured the
throughputs for 3 cases: (a) No scheduling (b) Lottery
scheduling without ticket adjustments and (c) Lottery
scheduling with ticket adjustments. Figure 8 plots the
achieved throughputs in all these cases. Initially when
lottery scheduling in turned off, we see that the through-
put of flow2 is almost double the throughput of flow1.
This is because of the difference in the packet sizes of
both these flows. At t = 40 seconds, lottery scheduling
(without ticket adjustments) is turned on. This results
in lottery scheduling giving flow1 double the number
of transmission opportunities when compared to that
of flow2. However, since this approach is agnostic of
the packet sizes, the effective throughput ratios turn out
to be 1 : 1. At t = 80 seconds, ticket adjustments (in-
flation) are turned on which results in recalculation of
tickets based on the packet size. This results in lottery
giving flow1 four times the number of transmission op-
portunities of what flow2 receives. This results in the
desired throughput ratio of 2 : 1.

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

flow1
flow2

Figure 8: Ticket Inflation: Effect of Packet Size

(e) Efficiency Vs. Fairness: Although, we achieve
the required throughput proportion it is important to
understand the tradeoff between bandwidth efficiency
and fairness. We observe that the aggregate through-
put in case (a) is 6.94 Mbps whereas the aggregate
throughput for case (c) is 5.83 Mbps. From an effi-
ciency perspective, overall aggregate network through-
put increases when flow2 gets more transmission op-
portunities, because flow2 sends double the amount of
data sent by flow1. In case (a) both the flows get equal
number of transmission opportunities, however in case
(c), flow2 receives much lesser transmission opportuni-

6

flowi 1 2 3 4 5 6 7 8 9 10
Ratio 1 1.92 2.94 3.98 4.97 6.02 6.95 8.03 8.97 9.93

Table 1: Ratio of throughputs achieved for 10 flows using lottery scheduling. The desired ratio
of throughputs was set to be flow1 : flow2 : flow3.. : flow10 = 1 : 2 : 3 : .. : 10

ties which results in a decrease in the aggregate network
throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 80 90 100 110 120 130 140 150

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

flow1
flow2

Figure 9: Performance of Lottery Scheduling in
presence of Bursty Flows.

(f) Effect on Bursty Traffic: In this experiment, we
understand the performance of lottery in presence of
bursty traffic. We set up 2 bursty UDP flows from the
AP to 2 clients (one flow each). We vary the burst size
and the burst inter-arrival times at random. We set the
desired proportion to be flow1 : flow2 = 1 : 2. Figure 9
shows the performance of lottery scheduling in presence
of bursty flows. As described in Section 2, ticket ad-
justments can be used to account for the utilization of
flows. However, as noted before, this would only result
in change in the average delays experienced by both the
flows. The achieved throughputs would not be affected
in the presence of backlogged flows where queue size is
not the limiting factor (i.e. packets are not dropped).
As shown in Figure 9, we see that whenever both the
flows contend for the medium (i.e. packets from both
the flows are queued up at the AP), lottery scheduling
achieves the desired proportion of 1 : 2, whereas when
the flows are not contending, then either of the flows is
free to take up the entire medium.
(g) TCP and Lossy Links: We now investigate the
performance of lottery scheduling when using TCP in
presence of lossy wireless links. In this experiment we
set up 2 TCP flows from AP to 2 clients. The desired
throughput proportion is set to flow1 : flow2 = 2 : 1.
Figure 10 shows the performance of lottery scheduling
in presence of lossy wireless links. We observe that

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

TCP flow1
TCP flow2

Figure 10: Performance of Lottery when using
TCP in Presence of Lossy Links

before (t = 35) seconds, lottery performs pretty well
achieving the throughputs in desired proportion. How-
ever, when the clients are moved farther (thus increasing
the losses in the medium) at t = 35 seconds, we observe
that the desired proportion is no longer maintained. On
measuring the queue sizes at these instants, we observed
that the packets were no longer being queued up at the
software queues. This is because TCP on seeing wire-
less losses reduces its sending rate under high losses (i.e.
after t = 35 seconds).
(h) Scalability and Fine-grained allocation: In
this experiment we demonstrate the effectiveness of lot-
tery scheduling in achieving a fine-grained allocation of
wireless bandwidth. We set up 10 UDP flows from the
AP to 2 clients (i.e. 5 flows each). We set desired pro-
portion of throughputs to be flow1 : flow2 : flow3.. :
flow10 to be 1 : 2 : 3.. : 10. Table 1 shows that the flows
indeed share the wireless bandwidth in the desired pro-
portion. This shows that the solution based on lottery
scales well and achieves the required fine-grained pro-
portions.
(i) Lottery Vs. Stride: We now measure the per-
formance of lottery scheduling against that of stride
scheduling. As before we set up 2 flows with the de-
sired ratio of throughput proportions as 1 : 2. Figure 11
shows the ratio of throughputs achieved for both the
scheduling approaches. We observe that stride schedul-
ing, being deterministic in nature, achieves better through-
put proportions when compared to that achieved by

7

 1.92

 1.94

 1.96

 1.98

 2

 2.02

 2.04

 2.06

 2.08

 0 20 40 60 80 100 120

R
at

io
 (

C
um

ul
at

iv
e

T
hr

ou
gh

pu
t)

Time (Seconds)

Stride
Lottery

Figure 11: Performance of Lottery Scheduling
and Stride Scheduling.

lottery scheduling which gives probabilistic guarantees.
However, stride scheduling requires more state to be
maintained per flow and involves a considerable amount
of processing overhead. This is especially true when new
flows are added and old flows leave the network. This
constant churn requires stride to update the ’pass’ as-
signed to each flow and result in a considerable amount
of overhead when the number of flows are high. Lottery
on the other requires almost no state and needs minimal
processing. This however comes at the cost of reduced
accuracy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

 Delay (in CPU Cycles)

Figure 12: CDF of per-packet delay due to im-
plementation overhead of maintaining software
queues.

(j) Implementation Overhead: As explained in Sec-
tion 2, we maintain per-flow software queues and for-
ward the next packet to the firmware only after the
previous packet is transmitted. This would result in

delays in transmitting the next packet as it is not read-
ily available in the firmware queue, but is buffered in the
software queue and has to be forwarded to the firmware
after drawing a lottery. We measure this delay over a
set of 50, 000 packets which are transmitted using lot-
tery scheduling. We measure the resulting delay using
rdtscl in CPU cycles. Figure 12 plots the CDF of this
delay in CPU cycles across the set of packets considered
in our measurements. We observe that the average de-
lay encountered is 3030 CPU cycles. On a 433 Mhz
machine (Soekris net4826 [3]), this results in a delay of
7 microseconds per packet.
Summary: Our implementation of lottery scheduling
works across multiple clients, different protocols and is
scalable. Ticket adjustments help take into account dif-
ferent traffic characteristics of flows under considera-
tion. Scheduling approach does not give desired pro-
portions when TCP is used in presence of lossy links
because of TCP congestion control mechanisms. We
observed that stride scheduling achieves a better per-
formance over lottery scheduling in terms of accuracy,
but requires more state and processing at the access
point. Overhead of maintaining software queues in our
implementation results in a delay of about 7 microsec-
onds per packet.

4. RELATED WORK
Packet scheduling algorithms have gained importance

since the weighted fair queuing (WFQ) algorithm was
proposed in [8]. Several modifications have been pro-
posed to improve the computational complexity and
performance of this algorithm. Self clocked fair queu-
ing (SCFQ) [9] algorithm and WF 2Q [6] for example
have been significant improvements. However though
these algorithms have extensively been researched in
the wireline domain, wireless fair scheduling is an un-
charted territory.

Recently, there has been work which focuses towards
providing performance guarantees in the presence of
channel contention in wireless [7, 10]. The underlying
idea is to combine the best features of CSMA which is
a contention based scheme and contention free schemes
like TDMA. There has been work on scheduling proto-
cols that take priorities into account, when performing
medium access control in wireless [5, 14, 15, 12]. For
instance, Aad and Castellucia [5] present service dif-
ferentiation mechanisms for wireless networks. Their
mechanisms allow a host to pick a backoff interval as a
function of its priority, larger backoff intervals used for
lower priority. However it involves changing the wire-
less MAC. We tend to achieve the same results using a
probabilistic approach without changing the MAC. In
[4], the authors propose a MAC protocol for wireless
networks to support prioritized scheduling along with
a weighted fair sharing of the bandwidth amongst the

8

users belonging to the same priority levels. There has
also been some interesting work for scheduling on a real
time traffic in a wireless LAN [15]. This work, however
assumes that a flow transmits packets with a constant
rate. Such assumption cannot be made when perform-
ing proportional fair scheduling.

IEEE 802.11e is a proposed enhancement to the 802.11a
and 802.11b wireless LAN (WLAN) specifications. It
offers quality of service(QoS) features, including the pri-
oritization of data, voice, and video transmissions.802.11e
also enhances the 802.11 Media Access Control layer
(MAC layer) with a coordinated time division multi-
ple access (TDMA) construct, and adds error-correcting
mechanisms for delay-sensitive applications such as voice
and video. Classification of the whole traffic into four
levels however provides a very coarse level control.

5. CONCLUSIONS
We have shown that Lottery Scheduling can be used

to achieve a flexible and fine-grained bandwidth alloca-
tion in a wireless LAN. The approach is simple, state-
less and is scalable. It works across multiple clients and
different protocols. The concept of ticket adjustments
help take into account different traffic characteristics of
flows under consideration (packet sizes, bursty nature
etc) and help achieve the desired throughput propor-
tions. Better performance in terms of accuracy can be
achieved using stride scheduling, however, it requires
more state and processing at the access point. Fur-
ther, we observed that when used with TCP in pres-
ence of lossy links, the desired proportion may be dif-
ficult to achieve because of the TCP congestion con-
trol mechanisms. Overall, it is interesting to note that
lottery scheduling although being very simple achieves
proportional-share bandwidth allocations in a wireless
network with minimal overhead at the access points.

6. REFERENCES
[1] IEEE 802.11 wireless lan medium access control

(mac) and physical layer (phy) specifications:
Amendment 8: Medium access control (mac)
quality of service enhancements.
http://standards.ieee.org/getieee802/
download/802.11e-2005.pdf.

[2] Madwifi wireless driver.
http://www.madwifi.org.

[3] Soekris engineering.
http://www.soekris.com/net4826.htm.

[4] P. B. A. Dugar, N. Vaidya. Priority and fair
scheduling in a wireless lan. In nternational.
Conference. on Mobile. Computing. and
Networking, 2000.

[5] I. Aad and C. Castellucia. Differentiation
mechanism for ieee 802.11. In IEEE INFOCOM,
2001.

[6] J. C. R. Bennett and H. Zhang. Wf2 q:
Worst-case fair weighted fair queueing. In
INFOCOM, 1996.

[7] k. C. C. Chang, J. Chang and M. You.
Gauranteed quality-of-service wireless access to
atm. In preprint, 1996.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis
and simulation of a fair queueing algorithm. In
ACM SIGCOMM, 1989.

[9] S. Golestani. A self-clocked fair queueing scheme
for broadband applications. In IEEE INFOCOM,
1994.

[10] A. Muir and J. Garcia-Luna-Aceves. Supporting
real-time multimedia traffic in a wireless lan. In
Proc. SPIE, 1997.

[11] P. Ramanathan and P. Agarwal. Adapting packet
fair queueing algorithms to wireless networks. In
International Conference on Mobile Computing
and Networking, 1998.

[12] K. Ramanritham and W. Zhao. Virtual time csma
protocols for hard real-time communications. In
IEEE trans. Software eng., 1987.

[13] H. Sariowan, R. L. Cruz, and G. C. Polyzos.
Scheduling for quaity of service guarantees via
service curves. In ICCCN, 1995.

[14] S. Sharrock and D. Du. Efficient csma/cd based
protocols for multiple priority classes. In IEEE
Trans. Computers, 1989.

[15] J. Sobrinho and A. KrishnaKumar. Real-time
traffic over the ieee 802.11 medium access control
layer. In Bell Labs Technical J., 1996.

[16] C. A. Waldspurger and W. E. Wiehl. Lottery
scheduling: Flexible proportional-share resource
management. In OSDI, 1994.

[17] C. A. Waldspurger and W. E. Wiehl. Stride
scheduling: Deterministic proportional-share
resource management. In MIT/LCS/TM-528,
1995.

9

