
Implementing Range Writes in DiskSim Simulator

Zhenxiao Luo
Department of Computer Sciences, University of Wisconsin Madison

zhenxiao@cs.wisc.edu

ABSTRACT
Writing to disk in a rotationally-optimal manner is challeng-
ing. Much of the problem arises from the traditional inter-
face, which demands an exact address for each write. In this
project, I change this traditional interface by building what
we call Range Writes. A range write takes a data block and
a list of possible destination addresses; the disk then inter-
nally chooses the best possible address and writes the data
to it, returning the address to the caller when finished. In
this project, I explore range writes via a system level stor-
age subsystem simulator – DiskSim. I introduce two types
of Range Writes: Continuous Range Writes and Discrete

Range Writes. I also implement Anticipatory Scheduling in
DiskSim. Experimental results show that, with my manually
generated workload, Range Write always outperforms Com-
mon Write, and with carefully chosen parameters, Range

Write could achieve more than 40% improvement over Com-
mon Write.

Keywords
Range Writes, Rotational Latency, DiskSim Simulator, An-
ticipatory Scheduling

1. INTRODUCTION
The performance of the input/output (I/O) subsystem plays
a large role in determining overall system performance in
many environments. The relative importance of this role has
increased steadily for the past years and should continue to
do so for two reasons. First, the components that comprise
the I/O subsystem have improved at a much slower rate
than other system components. For example, microproces-
sor performance grows at a rate of 35-50 percent per year[3],
while disk drive performance grows at only 5-20 percent per
year[6]. As this trend continues, applications that utilize
any quantity of I/O will become more and more limited
by the I/O subsystem[1]. Second, advances in technology
enable new applications and expansions of existing applica-
tions, many of which rely on increased I/O capability.

In response to the growing importance of I/O subsystem per-
formance, a number of research are focusing on optimizing
Disk Access. Typically, Disk Access Time consists of three
components: Seek Time, Rotational Latency, and Transfer

Time. In my project, I focus on minimizing Rotational La-
tency in Disk Write.

A common disk write has the interface:

write data address

Using this interface, lots of time is spent on positioning disk
head to the exact address.

The basic idea of Range Writes is to make a new interface
for disk write:

write data {address list}

Using this new interface, disk head could internally chooses
the best possible address from address list and writes the
data to it. In this way, Rotational Latency will be reduced.
In my project, I implement two types of Range Writes, say,
Continuous Range Writes and Discrete Range Writes. Ex-
perimental results show that, with my manually generated
workload, both of these two types of Range Writes outper-
form the common write interface. When the range varies
from 0 to one track, disk write benefits significantly and at
last its positioning time reached 0.

When incorporating Range Writes into the DiskSim[4] sim-
ulator, I implemented Anticiparoty Scheduling [5]: Before
choosing a Disk Access for service, the scheduler introduces
a short, controlled delay period, during which it waits for
additional Disk Accesses to arrive. In the experiment, I
varied the delay, and found the optimal delay that could
minimize Rotational Latency. Results show that with An-

ticipatory Scheduling, Range Writes’s performance could be
further improved by about 40%.

Section 2 is related work. After an exposition of the new
Disk Write interface in Section 3, I describe the implemen-
tation issues and Anticipatory Scheduling in Section 4, and
delve into a detailed experimental evaluation in Section 5. I
will talk about my conclusion and experience in Section 6.

2. RELATED WORK
A number of previous storage systems were designed to op-
timize disk access performance. MimdRAID[10] is a proto-
type which uses disk head position prediction to increase the



performance of a disk array.

In MimdRAID[10], Xiang Yu et al. proposes an analytical
model that can guide a designer how to design disk arrays
that can flexibly and systematically reduce seek and rota-
tional delay in a balanced manner. Given a fixed budget
of disks, MimdRAID could intelligently choose a combina-
tion of techniques(striping, mirroring, and rotational data
replication) to have best performance.

MimdRAID mainly focuses on how to employ performance-
enhancing techniques in a large disk array scenario. It does
nothing with the traditional write interface. Using the tradi-
tional interface, performance improvement is rather expen-
sive. Usually, we have to pay lots of extra disk space for
striping and replication.

Dishon and Liu[2] consider latency reduction on either syn-
chronized or unsynchronized D-way mirrors. A synchronized
mirror can reduce foreground propagation latency because
the multiple copies can be written at nearly the same time if
we insist that the replicas are placed at rotationally identical
positions.

The distorted mirror [7] provided an alternative way of im-
proving the performance of writes in a mirror. It performed
writes initially to rotationally optimal but variable locations
and propagated them to fixed locations later.

Both [2] and distorted mirror focus on rotational latency
reduction, but they does not change the traditional write
interface. Their performance advantage comes at the cost of
extra disk space for mirroring.

Disk Mimic[8] proposed a simple table-based approach, us-
ing a shortest-mimicked-time-first(SMTF) for I/O schedul-
ing that performs on-line simulation of the underlying disk.
To reduce the prohibitively large input space, Disk Mimic
used two input parameters, say, the logical distance tetween
two requests and the request type, to predict the positioning
time. At the first step of my project, I read this paper and
got the fundamental knowledge for disk simulation.

In [4], Greg Ganger et al. defines three distinct classes of
request criticality and points out the weakness of conven-
tional disk simulator. In order to simulate disk system ac-
curately, simulator must have all the modules of a computer
system and individual request response time could affect sys-
tem behavior. DiskSim[4] is implemented with these guid-
ance. Unlike the conventional approach which evaluate the
performance of a subsystem based on standalone subsystem
models, DiskSim is a system level disk simulator which in-
cludes modules that simulate disks, intermediate controllers,
buses, device drivers, request schedulers, disk block caches
and disk array data organizations. My project is to imple-
ment Range Writes in DiskSim simulator. I will introduce
its internal structure in the experiment section.

Anticipatory Scheduling[5] makes the assumption that there
is likely to be locality in a stream of requests from a given
process. It suggests that instead of choosing a request for
service, the scheduler could introduce a short, controlled de-
lay period, during which it could waits for additional re-

quests to arrive. I implement Anticipatory Scheduling when
I incorporate Range Writes in DiskSim.

3. RANGE WRITES
Traditionally, disk write has the interface:

write data address

Using this interface, lots of time is spent on positioning disk
head to the exact address.

The basic idea of Range Writes is to make a new interface
for disk write:

write data {address list}

Using this new interface, disk head could internally chooses
the best possible address from address list and writes the
data to it. In this way, Rotational Latency will be reduced.
In my project, I implement two types of Range Writes, say,
Continuous Range Writes and Discrete Range Writes.

3.1 Continuous Range Writes
Continuous Range Writes has continuous addresses in {ad-
dress list}, which starts with startBlk(start block number)
and ends with endBlk(end block number). Using this inter-
face, a disk write could write to any of the blocks that lie
within range: [startBlk .. endBlk].

The write interface is:

write data [startBlk .. endBlk]

If the head position(head block number) of the current disk
is headBlk. Using this new interface, instead of moving to
an exact block number, the head could move to the nearest
block number in order to reduce rotational latency. Take
optimalBlk as the nearest block number:

optimalBlk =

8

<

:

startBlk if (headBlk < startBlk)
headBlk if (startBlk <= headBlk <= endBlk)
startBlk if (headBlk > endBlk)

Note: Since disk could only rotate in one direction, when
headBlk > endBlk, disk head could not rotate backward to
endBlk(though endBlk has the minimum disktance with disk
head). It has to rotate forward and move to headBlk.

3.2 Discrete Range Writes
Discrete Range Writes has discrete addresses in {address
list}.

The write interface is:

write data {addrBlk1, addrBlk2 .. addrBlkN}

Using this interface, a disk write could write to any of the
blocks that lie in the address list {addrBlk1, addrBlk2 ..
addrBlkN}.

Definition 1. If there are M blocks in a track, and N

addresses in {address list}: {addrBlk1, addrBlk2 ..



addrBlkN}, then by di we mean the disktance between addressi

and addressi+1:

di =



|addrBlki+1 − addrBlki| if (1 <= i <= N - 1)
|addrBlk1 − addrBlkN | if (i = N)

And,

N
X

i=1

di = M

If the head position of a disk is random, we have the follow-
ing theorem:

Theorem 1. A disk write has the minimum rotational

delay if and only if:

d1 = d2 = d3 = · · · = dN

Proof. Since the head position of a disk is random, headBlk

could be any number within the range [1 .. M ]. The prob-
ability of headBlk being i(1 <= i <= M) is: 1

M
.

If the minimum address that is greater than headBlk is
addressk, then the rotational delay for this head position
is:

rk = |addressk − headBlk|

Taking all the possible headBlk together, the rotational de-
lay is:

rotational delay =
M

X

k=1

rk

M

=
1

M

N
X

i=1

di
X

j=1

(di − 1)

=
1

2M

N
X

i=1

di(di − 1)

=
1

2M
(

N
X

i=1

d
2
i − M)

>=
1

4M
(

N
X

i=1

di)
2 −

1

2
(1)

=
1

4M
M

2 −
1

2

=
M

4
−

1

2

For any positive numbers, their Quadratic Mean is no less
than Arithmetic Mean. The two means are equal if and only
if all the numbers are of the same value. So, for equation
(1), rotational delay reaches its minimum if and only if:

d1 = d2 = d3 = · · · = dN

This proves the Theorem.

Figure 1: Block Diagram of DiskSim

From theorem 1, we could see that we only need to specify
a start address(startAddr) and an address number(N) for
Discrete Range Writes. Since the distance between each
neighbouring address is the same: M

N
(there are M blocks in

a track). Knowing these two values, disk could internally
set the address list.

The new interface is:

write data startAddr addrNumber

For example, if addrNumber = 3, disk could set the three
address as following:

addressi =

8

<

:

startAddr if (i = 1)
startAddr + M

3
if (i = 2)

startAddr + 2M

3
if (i = 3)

4. IMPLEMENTATION
I implemented Range Writes in DiskSim simulator. DiskSim
simulator is a system level storage subsystem simulator. Rather
than focusing on the storage subsystem in a vacuum, DiskSim
is expanded to include all major system components, so as
to incorporate the complex performance/workload feedback
effects.



Figure 2: Block Diagram of Storage Subsystem

4.1 DiskSim
DiskSim consists of modules for each major system compo-
nent and interfaces to the outside world(e.g., users and other
systems). Processes execute within a system-level simulator
in a manner that imitates the behavior of the corresponding
system. Also, external interrupts may arrive at the inter-
faces, triggering additional work for the system.

Figure 1 shows DiskSim simulator’s structure. It includes
processors, main memory, applications, operating system
software, buses, a bus adapter that also handles interrupt
control activities, storage sybsystem components and some
other I/O devices(network and user interface). The appli-
cations are the inputs to the simulator(together with ex-
ternally generated interrupts and data), dictating the tasks
performed. An application consists of one or more processes.
In DiskSim, process refers to any instruction stream other
than an interrupt service routine, independent of the virtual
memory context. So, multiple threads that share a common
context are each processes. System call and exception ser-
vice routines are part of the process, because they are gen-
erally executed within the context and flow of the process.
A process is modeled as a sequence of events separated by
computation times. An interrupt controller tracks the pend-
ing interrupts in the system and routes them to the CPUs
for service. The state of the interrupt controller is updated
when new interrupts are generated and when a CPU begins

handling an interrupt.

4.2 Request Queue Scheduler
In DiskSim, request queues and the corresponding sched-
ulers can be present in several different storage subsystem
components (e.g., device drivers, intelligent controllers and
disk drives), so the request queue scheduler functionality
is implemented as a separate module that is incorporated
into various components as appropriate. New requests are
referred to the queue module by queue-containing compo-
nents. When such a component is ready to initiate an ac-
cess, it calls the queue module, which selects (i.e., schedules)
one of the pending accesses according to the configured poli-
cies. When an access completes, the component informs the
queue module. In response, the queue module returns a list
of requests that are now complete. This list may contain
multiple requests because some scheduling policies combine
sequential requests into a single larger storage access. The
queue module collects a variety of useful statistics (e.g., re-
sponse times, service times, inter-arrival times, idle times,
request sizes and queue lengths), obviating the need to repli-
cate such collection at each component.

4.3 Storage Subsystem
Figure 2 shows the structure of DiskSim’s Disk module. The
disk module includes disk drives, a small disk array, and in-
telligent cached I/O controller, a simple bus adapter, several
buses, a device driver and an interface to the rest of the sys-
tem. Requests are issued to the disk module via the interface
and are serviced in a manner that imitates the behavior of
the corresponding storage subsystem.

The interface between the storage subsystem and the re-
mainder of the system is very simple. Requests are issued
by the system and completion is reported for each request
when appropriate. A request is defined by five values:

• Device Number: the logical storage device to be ac-
cessed. The device number is from the system’s view-
point and may be remapped several times by different
components as it is routed to the final physical storage
device. This field is unnecessary if there is only one
device.

• Starting Block Number: the logical starting ad-
dress to be accessed. The starting block number is
from the system’s viewpoint and may be remapped
several times by different components as it is routed
to the final physical storage device.

• Size: the number of bytes to be accessed.

• Flags: control bits that define the type of access re-
quested and related characteristics. The most impor-
tant request flag component indicates whether the re-
quest is a read or a write. Other possible components
might indicate whether written data should be re-read
(to verify correctness), whether a process will immedi-
ately block and wait for the request to complete, and
whether completion can be reported before newly writ-
ten data are safely in non-volatile storage.

• Main Memory Address: the physical starting ad-
dress in main memory acting as the destination (or



source). The main memory address may be repre-
sented by a vector of memory regions in systems that
support gather/scatter I/O. This field is often not in-
cluded in request traces and is only useful for extremely
detailed simulators.

4.4 Continuous Range Writes Implementation
To implement Continuous Range Writes in DiskSim, I add
two more values to the request interface:

• Ending Block Number: the logical ending address
to be accessed for continues range writes. Having the
Ending Block Number, request could write to any block
that falls in range [Starting Block Number .. Ending
Block Number].

• Range Write Signal: a control bit that define whether
the current request is a range write.

4.5 Discrete Range Writes Inplementation
To implement Continuous Range Writes in DiskSim, I add
two more values to the request interface:

• Address Number: The number of addresses in {ad-
dress list}. Having the Address Number, disk will
internally set the appropriate address for Continuous

Range Writes(as discussed in section3.2).

• Range Write Signal: a control bit that define whether
the current request is a range write.

4.6 Anticipatory Scheduling
To further improve the performance of Range Writes, I im-
plement Anticipatory Scheduling in DiskSim’s Request Queue

Scheduler. Before choosing a request for service, the Request

Queue Scheduler waits for additional requests to arrive. Af-
ter waiting, it chooses the request that has the minimum
rotational delay to service.

I implement two types of Anticipatory Scheduling in my
project:

• Think Time: Before selecting the next request, the
scheduler will think for some time(Think Time), and
then choose the request with minimum rotational de-
lay from the queue. Within Think Time, a number
of requests may arrive. Selecting from a larger num-
ber of requests will definitely increase the possibility
of choosing a request with less rotational delay.

• Wait Number: Before selecting the next request,
the scheduler will wait for a number of requests to ar-
rive(Wait Number), and then choose the request with
minimum rotational delay from the queue. The in-
creased number of requests will definitely increase the
possibility of choosing a request with less rotational
delay.

5. EXPERIMENTAL RESULTS
This section evluates Range Writes’s performance on DiskSim
simulator. Firstly, I vary the range and show the perfor-
mance of Continuous Range Writes. Secondly, I vary the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600  700  800

av
er

ag
e 

ro
ta

tio
na

l l
at

en
cy

range

Continuous Range Writes: Rotational Latency

Common Write
Continuous Range Writes

Figure 3: Continuous Range Writes: Rotational La-

tency

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0  100  200  300  400  500  600  700  800

av
er

ag
e 

se
ek

 ti
m

e

range

Continuous Range Writes: Seek Time

Common Write
Continuous Range Writes

Figure 4: Continuous Range Writes: Seek Time

address number and show the performance of Discrete Range

Writes. Finally, I implement the two types of Anticipatory

Scheduling on both types of Range Writes and show the
performance improvement.

In DiskSim, each track has 765 blocks. The workload for my
experiment is 30 manually generated disk writes, with their
Starting Block Number spans from 0 to 730. Since Range

Writes does not change Transfer Time, I simply set all the
writes’ Size equal to 10 blocks. All experimental results
measuring rotational latency and seek time are reported in
millisenconds.

5.1 Continuous Range Writes: Varying Range
In this experiment, I vary the range for Continuous Range

Writes, and collect the 30 writes’ average rotational latency
and seek time. When range varies from 1 block to 100 blocks,
I set the step to 10 blocks. When range varies from 100
blocks to 700 blocks, I set the step to 100 blocks. Finally, I
collect data when range comes to the whole track(there are
756 blocks in a track).



 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

ro
ta

tio
na

l l
at

en
cy

address number

Discrete Range Writes: Rotational Delay

Common Write
Discrete Range Writes

Figure 5: Discrete Range Writes: Rotational La-

tency

Figure 3 compares the rotational latency of Continuous Range

Writes and that of Common Writes as range becoming larger
and larger. Intuitively, Continuous Range Writes should
have better performance with larger ranges. Since with a
larger range, the possibility that disk head has a smaller
rotational latency will be increased.

The results show that when range varies from 1 block to 100
blocks, rotational latency decreases rapidly. While, after
100 blocks, rotational latency will decrease at a much slower
speed untill 600 blocks, and then it will decrease sharply to-
wards 0. Here we see Continuous Range Writes outperforms
Common Writes, and their performance difference increases
as range increases. The results match our intuition.

The results also implies that for small ranges(range less than
100 blocks) and big ranges(range bigger than 600 blocks), a
small range increase will cause a big difference in rotational
latency. While, for medium ranges(between 100 blocks and
600 blocks), rotational latency does not change much when
range increases.

Figure 4 illustrates that, with Continuous Range Writes,
the seek time of disk writes does not change. This is ex-
actly what we expected, for Range Writes only focusing on
reducing rotational latency.

5.2 Discrete Range Writes: Varying Address
Number

In this experiment, I vary the address number for Discrete

Range Writes, and collect the 30 writes’ average rotational
latency and seek time. When address number increases from
1 to 10, I collect data for each address number.

Figure 5 compares the rotational latency of Discrete Range

Writes and that of Common Writes as adress number be-
coming larger and larger. Intuitively, Discrete Range Writes

should have better performance with larger address num-
bers. Since having a larger address number, it is easier for
disk head to find a nearer address to write.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

se
ek

 ti
m

e

address number

Discrete Range Writes: Seek Time

Common Write
Discrete Range Writes

Figure 6: Discrete Range Writes: Seek Time

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  2  4  6  8  10

av
er

ag
e 

ro
ta

tio
na

l l
at

en
cy

think time

Continuous Range Writes: Think time

Continuous Range  Writes: No Think Time
Continuous Range Writes: With Think Time

Figure 7: Continuous Range Writes: Think Time

The results show that when address number varies from
1 to 10, rotational latency decreases almost at the same
speed. As we expected, figure 6 illustrates that, with Dis-

crete Range Writes, the seek time of disk writes does not
change.

Practically, I think Discrete Range Writes is better. Al-
though Continuous Range Writes could achieve smaller ro-
tational latency, it is highly impossible for a disk to have
continuous free space for disk write. While, Discrete Range

Writes could make good use of disk fragments, which is more
economical.

5.3 Anticipatory Scheduling: Think Time
In this experiment, I try one type of Anticipatory Schedul-

ing, Think Time, on both Continuous Range Writes and
Discrete Range Writes. For Continuous Range Writes, I
use the result with range 100 as baseline. The reason why I
choose range 100 is that the rotational latency will stay stat-
ically and decrease at a smaller speed between range 100 and
range 600. For Discrete Range Writes, I use the result with
address number 3 as baseline. This is just for simplicity. For
each experiment, I vary the think time from 1 millisecond to



 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10

av
er

ag
e 

ro
ta

tio
na

l l
at

en
cy

think time

Discrete Range Writes: Think time

Discrete Range  Writes: No Think Time
Discrete Range Writes: With Think Time

Figure 8: Discrete Range Writes: Think Time

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  2  4  6  8  10

ro
ta

tio
na

l l
at

en
cy

wait number

Continuous Range Writes: Wait Number

Continuous Range  Writes: No Wait Number
Continuous Range Writes: With Wait Number

Figure 9: Continuous Range Writes: Wait Time

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10

av
er

ag
e 

ro
ta

tio
na

l l
at

en
cy

wait time

Discrete Range Writes: Wait Number

Discrete Range  Writes: No Wait Number
Discrete Range Writes: With Wait Number

Figure 10: Discrete Range Writes: Wait Time

10 milliseconds, and collect the 30 writes’ average rotational
latency.

Figure 7 compares the rotational latency of Continuous Range

Writes without Think Time and that with Think Time.
From the results, we could see that when think time in-
creases from 0 milliseconds to 2 milliseconds, rotational la-
tency for the two are almost the same. While after 2 millisec-
onds, the rotational latency with Think Time will decrease
rapidly. And when Think Time reaches 7 milliseconds, Con-

tinuous Range Writes with Think Time gets its minimum
rotational latency. After 7 milliseconds, surprisingly, its ro-
tational latency will increase. This implies that waiting for
a longer time does not always guarantee better performance.
Sometimes, the scheduler may switch frequently, which will
increase its rotational latency. While, in general, we could
see that Anticipatory Scheduling is effective for Continuous

Range Writes. It could improve its performance by more
than 40 percentage.

Figure 8 compares the rotational latency of Discrete Range

Writes without Think Time and that with Think Time.
Here we could see that rotational latency decreases at a con-
stant speed when Think Time varies from 1 millisecond to
8 milliseconds. And after than, it will remain the same.
Compared with figure 7, I think Anticipatory Scheduling is
more effective for Discrete Range Writes. With Anticipa-

tory Scheduling, Discrete Range Writes decreases at a larger
speed and it could improve its performance by almost 40
percentage.

5.4 Anticipatory Scheduling: Wait Number
In this experiment, I try another type of Anticipatory Schedul-

ing, Wait Number, on both Continuous Range Writes and
Discrete Range Writes. I use the same baseline as that of
Think Time. For each experiment, I vary the wait number
from 0 to 10, and collect the 30 writes’ average rotational
latency.

Figure 9 compares the rotational latency of Continuous Range

Writes without Wait Number and that with Wait Number.
From the results, we could see that rotational latency de-
crease rapidly when Wait Number varies from 0 to 3. After
3, rotational latency will remain at a constant level. This
implies that if we wait for more than three additional re-
quests, the performance will be almost the same.

Figure 10 compares the rotational latency of Discrete Range

Writes without Wait Number and that with Wait Number.
From the results, we could see that rotational latency de-
crease rapidly when Wait Number varies from 0 to 4. When
Wait Number varies from 4 to 6, rotational latency will re-
main at a constant level. Then it will increase a little bit.
This implies that if we wait for more than six additional
requests, the performance will be penalized.

The effects of Think Time and Wait Number are similar.
While, I think Think Time is better in practice. For realistic
workloads, it is highly possible that some request will arrive
after a long time. If the scheduler insist doing nothing un-
til that request comes, its performance will be significantly
penalized.



6. CONCLUSION AND EXPERIENCE
In this project, I explored the issue of implementing Range

Writes in DiskSim simulator. In particular, I focused on
whether the new write interface could reduce rotational la-
tency, and how I could further improve its performance.
From the experimental results, I think Range Writes has
a promising future. The new interface could reduce rota-
tional latency significantly. The results also show that using
Anticipatory Scheduling in DiskSim could further improve
Range Writes’ performance.

There are some lessons I learned during the implementation
of Range Writes:

• If the experiment is based on others’ system, make
good preparation for it. I spent almost 3 weeks on
learning how DiskSim works. I learned a lot of lessions
during that time. Now I see that before implementing
my own idea, I should read the paper which introduces
the system, and use a debugger to see what’s going on
inside the system.

• Focus on one experiment, and do it as good as I can.
Do not dream to do many things at the same time. I re-
membered when I gave my presentation, I even havn’t
finished the Vary Range experiment. While working
on some other problems. If there is not an additional
week after presentation, I may fail this project. Next
time, focus on the most important experiment.

• If I would like to do a project myself, make sure it is
within my ability. Working on one project alone is a
good experience, but it has a big risk. Were I have
a partner, I may do more things and do things more
quickly. How I wish I could ask someone for advice
during the hard old days.

For future work, I think firstly I should run some realistic
workloads. Someone suggested me to do Range Writes on
RAID system. I think that is a good idea.

7. ACKNOWLEDGMENTS
I would like to thank Prof. Remzi for his advising and en-
couragement during all the semester. Many times I came
to his office just having no experiemntal results. His good
words and encouragement helped me a lot.

This is my first semester in Wisconsin Madison. And CS736
is my first graduate course. The hard old days have gone
away, but I will always remember them.

8. REFERENCES
[1] G. Amdahl. Validity of the single processor approach

to achieving large scale computing capabilities. In
AFIPS Spring Joint Computing Conference, pages
483–485, 1967.

[2] L. T. Dishon Y. Disk dual copy methods and their
performance. In Eighteenth International Symposium

on Fault-Tolerant Computing. IEEE, 1988.

[3] D. H. G. Myers, A. Yu. Microprocessor technology
trends. In IEEE. Vol. 74, pages 1605–1622. IEEE,
1986.

[4] G. Ganger. System-oriented evaluation of i/o
subsystem performance. Ph.D. Dissertation, Report

number CSE-TR-243-95 by the University of

Michigan, Ann Arbor, 1995.

[5] S. Iyer and P. Druschel. Anticipatory scheduling: A
disk scheduling framework to overcome deceptive
idleness in synchronous I/O. In 18th ACM Symposium

on Operating Systems Principles, Oct. 2001.

[6] E. Lee. Performance modeling and analysis of disk
arrays. Ph.D. Dissertation, University of California,

Berkeley, 1993.

[7] C. U. Orji and J. A. Solworth. Doubly distorted
mirrors. In SIGMOD ’93: Proceedings of the 1993

ACM SIGMOD international conference on

Management of data, pages 307–316, New York, NY,
USA, 1993. ACM.

[8] F. Popovici, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. Robust, portable i/o scheduling
with the disk mimic, 2003.

[9] S. Salas and E. Hille. Calculus: One and Several

Variable. John Wiley and Sons, New York, 1978.

[10] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li,
A. Krishnamurthy, and T. E. Anderson. Trading
capacity for performance in a disk array. In OSDI’00:

Proceedings of the 4th conference on Symposium on

Operating System Design & Implementation, pages
17–17, Berkeley, CA, USA, 2000. USENIX
Association.


