
1

Design of Implementation of a Cooperative Cache in a Cluster Based, Network Attached
Storage Device Environment

Se-Chang Son Davin Sannes

University of Wisconsin, Madison University of Wisconsin, Madison
sschang@cs.wisc.edu davin@cs.wisc.edu

Abstract
Reductions in network latencies and the availability
of inexpensive processor are affecting the location
and access of non-volatile storage by permitting
efficient use of standalone storage devices attached to
the network. Low latency networks have enabled
clusters of workstations to access information stored
in another machines memory faster than reading the
information off of a local (or remote disk). This
enables a cluster of workstations to cache information
read from a network attached storage device globally
resulting in both lower latency to user applications
and fewer requests that the network attached disk
must fulfill.

This paper examines the design and
implementation of an in memory cooperative disk
caching system/simulator, attempts to improve
existing cooperative caching algorithms through
simulation and examines the performance of each
simulated scheme.

1. Introduction
Traditional computers have used local disks for
providing non-volatile storage for information. The
time to read data from a disk, or write data to a disk
relative to the speed of the processor has increased
greatly. In an attempt to amortize the cost of disk
accesses, machines often store recently accessed data
in main memory. On the first request for data off of
the disk, the information is read from the disk into
main memory and read from main memory into the
processor. Subsequent requests to read the same
information from the disk can be fulfilled by reusing
the data from the first access that is still held in main
memory.

As computer networks have enabled a disks to be
shared among a group of computers, local caching of
disk reads enabled the performance cost of a network
disk access to be amortized across subsequent
accesses by the local node. A machine that acting as
a server, forwarding requests between the network
and its local disk, was able to cache data read from
its local disk to respond more quickly to subsequent
requests from the network. By caching the data at
both the disk’s server and each node accessing the

data, the average time to access data decreases and
the number of nodes that can be supported by a disk
server increases since it receives fewer requests.

Since accessing data on disk requires
considerable time, a new type of disk was created to
eliminate the strain caused by remote accesses to a
machine that was acting as a server for its local disk,
the network attached storage device (NASD)
[Gibson 96]. A NASD is a disk with a built in
processor and memory that handles requests from
machines on the network. A NASD may work in
conjunction with another file manager node, which
will supply a remote process with a key to access
particular information on the NASD. A NASD, a
kind of smart disk, can support a variety of different
services.

In the traditional disk sharing and caching
environment, frequent accesses by each machine to
common data, perhaps a system configuration file,
cause information to be cached in memory on each
node. Since network latencies have made accessing
data in another computer’s memory faster than
reading information from disk, it may be sub-optimal
to replicate data. For instance a machine that only
accesses a very small number of bytes will have
infrequently used data in its cache, while another
machine accessing a large range of bytes might not
be able to cache all of the information it repetitively
accesses. If the machine with older information in its
cache caches information for the machine with a
large working set, the throughput of the system may
increase and the number of requests sent to the disk
server or NASD would be decreased.

Similarly, if accessing data from another
machine’s memory is fast, there is no need for every
node to cache information. By sharing the memory
of other machines in the cluster, each machine
effectively has a memory the size of the sum of all
the nodes on the cluster.

Section 2 discusses various approaches to
sharing memory, focusing on caching disk accesses,
in a cluster of workstations.

In Section 3, we describe the design and
implementation of our system. Section 4 focuses on
our simulations of various approaches. Section 5

2

discusses the simulation results and their
implications.

2. Global Cooperation Schemes

Several previous studies have examined
cooperatively sharing global memory resources
among a cluster of workstations. [Wang93] provides
a good description of some basic implementation
issues, from the xFS projects implementation of a
distributed file system. In [Dahlin94a], a wide
variety of cooperative caching protocols are
discussed, four schemes are simulated and compared
to an optimal solution (using forward knowledge)
and normal operations. Dahlin and Wang propose a
near optimal solution called N-Chance. One
shortcoming of the N-Chance algorithm is that it
involves the use of a centralized server to coordinate
the status of the cache, which limits the scalability of
the system.

[Feeley95] describes and evaluates the insertion
of a globally memory management scheme into the
operating system at a low level, so that the whole
system will benefit from sharing. Memory-intensive
programs are able to perform 1.5-3.5 times faster
when transparently using a globally managed
memory. The implementation of this system
requires the use of many global data structures that
must be kept current so those local portions of the
scheme can explicitly determine which machines are
idle. This can cause multiple machines to locally
reach the same decision about which nodes are idle,
causing them to flood a node with concurrent
requests.

We propose two schemes that attempt to
combine the low complexity of the N-Chance scheme
with the distributed nature of the global memory
management scheme, without added complexity and
load-balancing issues. The first of schemes is a
distributed version of N-Chance, N-Chance-Dist.
This scheme modifies the N-Chance algorithm by
dividing the global object space amongst the
managers (selected nodes). Each manager acts as an
N-Chance server, keeping track of global state
information for the objects that it is responsible for.
In this paper, an object refers to a physical block in
the NASD, typically 8KB, which is the granularity of
caching that we chose for simplicity.

In the N-Chance scheme, when a non-replicated
object (singleton) is evicted from a node’s cache it is
forwarded to random node. The receiving node will
cache this object. If the cache is full an eviction must
take place. If this cache contains any replicated
objects, a replicated object will be evicted to make
room. Otherwise, the least-recently-used object will
be removed, but not forwarded to another node. In
order to determine if an object is a singleton the

server must be contacted or some type of callback
system must be used to maintain accurate singleton
status information. N-Chance-Dist forwards an
evicted object to its manager, which discards it if it is
replicated. If the object is a singleton, the manager
checks to see if it manages any replicated objects, if
so it forwards the singleton to a node with a replica
and notifies the node to replace it. If it does not
manage any duplicated pages it forwards the
singleton to another manager (and decrements a
hops-to-live field to prevent infinite page
replacement). The node can choose whether or not to
replace it (perhaps it’s cache is not full, so it would
prefer to simply add the singleton to its cache without
evicting the other object), and notifies the server that
it chose to cache both of objects (it must cache the
singleton). This optimization would unfairly bias the
comparison with normal N-Chance so the version of
N-Chance we simulated uses this short-cut method.
[Dahlin94] contains a description of the unmodified
N-Chance Algorithm.

The second scheme that we propose, SeDa,
modifies N-Chance two additional ways. First we
used a least-often-used object replacement policy and
second we forward an evicted singleton page to
multiple nodes before evicting a page to make room
for it.

Our proposed schemes focus on creating a
distributed caching policy that works approximately
as well as N-Chance forwarding. This is a reasonable
goal since [Dalhin94a] show their approach to be
near optimal. It is important to note that their
approach achieves near optimality by offsetting the
cost of randomly chosen suboptimal decisions by
randomly chosen, locally superoptimal decisions. For
example, an object may already reside in a local
cache, on the first local access, partially offsetting the
cost of not optimally placing the object on another
node. This suggests that our approach may be able to
use a distributed heuristic making fewer suboptimal
decisions, or at least not perform considerably worse.

3. NASD Caching System

The network attached storage device framework
typically involves 3 major components: server
(device), file manager (issues keys to access the
device), client (interface between NASD framework
and normal file system). Our system integrates the
cache into the NASD client, requiring no changes to
the interface between the file system and the client.
A typical NASD server does not require any
changes. Although, we made significant changes to
the NASD server the network interface and
functionality supported was predefined and was not
changed to reflect our cache. Our framework does
not use a File Manager, however, integrating support

3

for the use of a File Manager can be done in a few
ways depending on the functionality that the NASD
supports. One solution is to have the File Manager
generate an extra key that the cache uses to verify if
a request is authorized. Any functionality that is
supported by the NASD server, can be easily
integrated into the cache, by adding a translation
layer, and may require a similar translation layer at
the File Manager, similar to the above description.

3.1 System Design

The following diagram provides a general
overview of our system design. The system is
composed of three major parts: NASDs, a high speed

network (Ethernet) and nodes in the cluster of
workstations. In general, there need not be a
distinction between Manager and Client nodes. In
our simulations all of the nodes in the cluster are
homogeneous and therefore all nodes benefiting from
the use of cooperative cache should share the cost. If
it is desired that a node only act as a client, it need
not register itself as manager. Each node is
comprised of a communication agent (CommAgent),
a cache/manager (Cache) and a client (Simulator). In
the diagram above the client was omitted from the
manager is omitted from one node for illustration
purposes. Each NASD is comprised of both a NASD
server and a physical disk drive. Typically, these are
collocated inside of one physical device. In our
simulations the server and disk were contained within
one dedicated node in the cluster. The Ethernet

displayed must be a low latency, high throughput
connection. [Dahlin94a] suggests that 10Mps
Ethernet switched Ethernet may be marginally
acceptable, but focused on 155Mbps ATM. For the
purposes of our discussion and simulations we
assume a 100Mbps switched Ethernet is used.

An arbitrary number of nodes and NASDs can be
supported by the cache, however, under heavy usage
the network may become congested leading to poor
performance, possibly worse than without the
cooperative caching scheme. In a well-balance
system, a system without such bottlenecks, this is a
non-issue.

3.2 Detailed Design and Implementation
The NASD portion of system is comprised of a

server and disk. This is based on an in kernel device
driver implementation, which was ported to the user
level, extended to support sequential accesses from
multiple nodes. The server portion of the NASD,
actually a C++ object, waits for requests from the
network (via the CommAgent), calls the appropriate
functions of the disk and sends the result back to the
original requester. Since we are running the NASD
as a user level process, defined a Disk C++ class
which acts as a translation layer between the server
and the underlying file system. The disk contains a
group of objects that encapsulate the filename used
by the underlying file system, and metadata about of
the object that is retained in memory.

Client

Client

Client Manager

NASD NASD

Server D isk

Mgmr

CommAgent

 Cache

S imulator

CommAgent

--- ---
--- ---

Ethernet

4

The main functionality of system is encapsulated

inside of the cache. The Cache is a C++ class that
interacts via an API with the clients. The Cache’s
API is the same as the Disk’s API enabling the Cache
to replace the Disk easily in user level code. The
diagram above shows a conceptual view of how the
cache works. The cache is composed of three
threads:

1. Client thread: the execution of public
functions that are called by the client

2. Cache thread: gets requests from the client
thread, handles local hits and forwards local
misses to the appropriate party via the
CommAgent

3. Manager (Mgmr) thread: waits for events to
come from the network and acts
appropriately, sending replies and
forwarding requests through the network.

The request and answer queues are implemented

as synchronized classes in C++. They use condition
variables and mutexes to provide mutual exclusion
between two threads accessing a variety of shared
memory locations. All of the cache API function

calls are blocking, which ensures that at most two
threads will attempt to access these queues. Our
design is generalized to allow extension to a
multithreaded client accessing the cache. At this
stage each instance of the Cache class can only be
accessed by one thread, i.e. it is not thread-safe.
 The cache also contains a variety of objects
handling various functions. The mapping of <drive,
object> pairs to their appropriate managers in
handled by function class to the DirDir object which
keeps track of all the managers and hashes the
<drive, object> pair to the IPv4 address of the node
that manages the pair. Currently, the manager
function does not support dynamic changes. To
handle a dynamic change currently, requires
notifying all nodes of the change, and flushing the
global cache. Our design supports gracefully,
dynamically changing the hashing function based on
network load, however, this functionality has not be
implemented.

The cache contains a data store denoted Cache
in the diagram that maintains a least- recently-used
(LRU) or least-often-used (LOU) list of objects
currently in the cache. Our simulator uses both of
these modes for various simulations. This object is
synchronized to provide safe access between both the
manager and the client thread. Internally objects are
stored in a C++ STL map which provides efficient
access to data and a C++ STL vector is used for
maintaining the LRU and LOU lists.

Client Thread Execution:

 Put request information into the Request- Q.
 Wait for the answer to come into the Answer-Q.

Cache

Object
Object

Data

Client
Thread Cache

Thread
M gmr

Thread

 Req. & Ans Directory

Comm
Agent

D irD ir

Req-Q

Ans-Q

5

The CommAgent is a thread safe C++ object

that encapsulates packet marshalling/demarshalling,
and network transport. Our implementation currently
supports reliable TCP transfers and unreliable UPD
transfers. We plan to implement reliable transmission
over UDP in the future to increase the scalability of
the system. We use TCP while running all of our
simulations. The TCP connection setup/tear down
overhead is also unacceptable in operational
implementation of this system. The need for
persistent TCP connections to avoid the setup/tear
down costs is why TCP is not scalable, since each
connection is defined by a file descriptor and only a
limited number of file descriptors are allowed per
process.

The last thread that runs inside of the Cache

object is the Manager thread. This thread listens for
events from the network (via CommAgent) and takes
appropriate actions depending on the event. It
accesses the Directory keeping track of which nodes

are caching objects that it manages. This directory is
only contains information about currently cached
objects, not all objects in general. This supports an
arbitrary number of drives and objects (actually, the
96-bit globally unique object identifier limits this).
Just as the Cache is the most considerable part of the

overall, the manager thread is the most considerable
part of the cache.

The general algorithms described above vary

depending upon the type of caching scheme in use.
The Cache object and its component objects support
4 modes of operation: no cache, N-Chance cache, N-
Chance distributed caching, and SeDa caching (the
second variant of N-Chance caching).

The Simulator is a modified client that
dynamically varies the kinds of requests made on the
caching system. It reads setup data from
configuration files and writes trace information to
result files. It allows the specification of working set
size, the range of the initial working set, what
percentage of requests lie outside of the initial
working set (if random > 0, then the working set
changes over time), what percentage of requests
should be writes, how often to log summary data to
result files on disks. Another configuration file
specifies what drives exist in the system and what
objects already exist on that drive. We also have
created a manual simulator which allows us to

Cache Thread Execution:

 Wait for the answer to come into the Request-Q.

 If read: get object from the local data store and

place it into the Answer-Q (hit)
 lookup manager and forward request (miss)
 If write: update* the cache to contain the object
 lookup manager and forward data
 If other: take local action* and forward request

* includes notifying appropriate managers of changes
concerning where and object is cached

Manager Thread Execution < continued >:

 If write: update the local data store if it contains the
 object.
 send an write packet to each node that

currently is caching the object and
send a write packet & data to the
drive (manager)

 If add: add the corresponding <object, node> pair
 to the list of pages (manager)
 lookup and forward the add to the correct

manager (not manager)

If evict: remove source from list of nodes caching
 the object (manager)

if the object is a singleton ignore it
if there is room here add it and notify

 manager of object. If no room run
 page replacement algorithm

if this the evict_N_to_make_room flag is
 set, evict object N (not manager)
 if it manages any duplicated objects then
 send evict_to_make_room to the
 node and remove from cache list

 if only manages singletons then choose a
 random node and send to node
 (all manager nodes)
when evicting a page from the data store at any time
 decrease the nchance value by one and send
 to the manager.

Manager Thread Execution:

 Wait for an event to come from the network.
 If read: get object from the local data store and

place it into the Answer-Q (hit)
 lookup to see if it is cached elsewhere and

forward request (semi-hit)
 send the request to drive (miss)

<continued in next column>

6

specify the type of cache to use, what other nodes are
running and to interactively send read requests, write
requests, and dump the status of the cache (all the
current objects cached and run time statistics). We
used the manual simulator to do initial verifications
that our schemes were working as described.

4. Simulation Methodology

On a cluster of 36 Linux workstations (dual
Pentium III-550, 1 GB RAM) connected by
100Mbps switched Ethernet. The cluster of
workstations was concurrently used to run a variety
of scientific applications and database functionality.
After initially running our simulations using 16 nodes
and 5 drives, we scaled our simulations down to 6
nodes and 3 drives to make the amount of data easier
to analyze. Our simulations were designed to help us
compare the 4 different caching schemes, and
analyze the performance of the two new caching
schemes that we are testing, namely N-Chance-Dist
and SeDa caching.

In our approach we ran four synthetic workloads
under each of the four caching schemes. The
workloads that had the following characteristics:

1. Local Reuse: Each node accesses objects
that no other node accesses.

2. Global Reuse: All nodes access the same set
of objects.

3. Random Reuse: Each node randomly
accesses objects.

4. Mixed Workload: Each node accesses a
different combination of objects, some
random, some globally shared, some locally
shared.

For each simulation run we traced various

information concerning how each node performed.
We kept track of how long each request took based
on simulated times, the actual amount of time it took,
where the read requests were filled from (local hit,
manager hit, global hit, disk hit or a disk hit based on
stale manager information) as well as, how many
reads request were made. We made use of simulated
times and actual times to account for variances
caused by other jobs running on the cluster other than
our simulator.

Our simulated times are similar to those used in
[Dahlin94a]. We changed a few of the times to
account for running over 100Mbps switched
Ethernet. The times described in [Dahlin94a] for
Ethernet were very optimistic, our values are less
optimistic for network transport time but are
optimistic. We reused the memory access times from
[Dahlin94a] but we found that our memory access
times had improved twenty percent in some cases. In
the local reuse simulation it was noticeable when data

was stored in a memory cache as opposed to main
memory.

4.1 Simulation Results

After running each simulation, we combined the
results from each of the six nodes and calculated the
average times that each read request required. This
provides with a view of how total system
performance is affected by each scheme. We ignored
write requests since all request complete in constant
time and the affects of writes show up in the read
request times.

Figure 1: Average Read Times under N-Chance,
 N-Chance-Dist, SeDa and No Caching

In Figure 1 it is apparent that under all each of

the caching schemes there is a very large
improvement in access time compared to not caching.
Figure 2 is the same data without scaling to show No
Cache.

Figure 2: Average Read Times under N-Chance,
 N-Chance-Dist and SeDa Caching

 Without showing the No Cache option it
appears that there is a significant difference between
the average times, however, one should note the there
is only a 5% variation in the times spent. We
attribute the difference between N-Chance and N-
Chance-Dist to be the distributed management nature.
With distributed control, more pages are cached at

615

620

625
630

635

640
645

650
655

660

N-Chance N-Chance-Dist SEDA

Local Reuse

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N-Chance N-Chance-Dist SEDA No Cache

Local Reuse

7

the server which reduces the access time by one
network hop. SeDa caching’s slightly worse
performance is partially attributable to it object
eviction policy, since objects were accessed
randomly within the working set it and attempting to
find an idle node. The latter would cause pages to
migrate away from its manager more than either of
the N-Chance strategies.

Figure 3: Average Read Times for Global Reuse

In Figure 3 we see that under a global reuse

workload N-Chance performs much better than other
two works loads. This is because of N-Chance’s
centralized server. The centralized server caches
most of the data since requests are repeatedly set for
the same data. In the N-Chance-Dist and SeDa
schemes data is moved throughout the cluster and
managed with only local knowledge, by evicting
pages that haven’t been used recently (or used often)
these schemes force data away from the server.
Unfortunately, the global working set was not large
enough to determine whether or not this was truly the
case. Further testing would helps us to verify this
fairly large difference.

Figure 4: Average Read Times for Random Reuse
Under a random reuse workload SeDa outperforms
the other two schemes. This is expected because
SeDa does a better job of keeping pages alive, by
migrating pages until finding an idle node. In both N-
Chance strategies when a singleton page evicts
another singleton page, the new singleton page is

evicted. N-Chance-Dist likewise N-Chance-Dist
outperforms normal N-Chance since more pages are
evicted at the server in N-Chance. Unfortunately,
this problem is particular to our optimization of N-
Chance which reduces control traffic on the network.
By forwarding all objects to the manager, which then
randomly selects a node, we cause the server in N-
Chance to discard more objects.

Figure 5: Average Read Times for Mixed Reuse

 Actual workloads running on the cluster will
probably not fall into one of the previous categories
of data locality. The mixed simulation combines
nodes running each of the previous workloads and
runs them together on the cluster. We see in this
example that all three schemes perform fairly well.
SeDa outperforms the other two schemes because
under a mixed workload environment it keeps
singleton objects alive longer and takes usage into
account. So one node accessing a small number of
objects, will not have its objects evicted for recently,
infrequently used objects. These results are not
surprising given the previous data. Although, N-
Chance out performs N-Chance-Dist in terms of
global throughput, the node running the centralized
server becomes swamped with only 13 nodes
running.

Figure 6: Average Read Times for N-Chance

Figure 6 shows the performance of N-Chance of each of the
workloads. The relative performance on each workload
makes sense given the centralized nature and the crippling
affects that our optimization has. Further testing without
the optimization is required to determine how N-Chance

0

2000
4000

6000
8000

10000
12000

14000

16000
18000

N-Chance N-Chance-Dist SEDA No Cache

Global Reuse

0
2000

4000

6000
8000

10000

12000

14000
16000

18000

N-Chance N-Chance-Dist SEDA No Cache

Random Reuse

0

2000

4000

6000

8000

10000

12000

14000

Global Reuse Mix Reuse Local Reuse Random
Reuse

N-Chance

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N-Chance N-Chance-Dist SEDA No Cache

Mix Reuse

8

proposed in [Dahlin94a] would compare under our
simulation loads.

Figure 7: Average Read Times for N-Chance-Dist
Figure 7 illustrates the performance of N-

Chance-Dist under each of the workloads. The
performance under Global Reuse is surprising. In
order to determine why global reuse does not perform
better we will have to conduct addition testing.

Figure 8: Average Read Times for SeDa Caching

Figure 8 shows the performance of SeDa caching
over each of the workloads. The performance of
SeDa caching is what we had expected, with the
exception of the global case, since forwarding evicted
singleton objects and basing the eviction policy on
how often an object is accessed causes better
performance under heterogeneous workloads and
poor performance under random reuse. It is
surprising that SeDa performs better in a wholly
random environment than in an environment with
global reuse. To determine how SeDa cache can be
improved to take this into account will require more
simulations to be run.

5. Conclusions and Future Work
 We feel that we have successfully shown
that a simple distributed version of the N-Chance
algorithm with a optimized object migration policy,
performs fairly well in some cases. However, our

results are mixed concerning which caching scheme
is more likely result is better performance on real
workloads. Running more simulations will help us to
better understand how each of the algorithms will be
affected by real workloads.

The main contributions of our research is that
although N-Chance performs fairly close to an off-
line optimal global caching policy, there are certain
workloads under which a different policy can
perform significantly better.

Our research questions that claim made in
[Dahlin94a] that LRU is not much different than a
usage based scheme. Further research into how each
replacement policy performs under real workloads is
warranted to quantify the improvements. We feel that
further simulation and analysis will help to clear up
the questions that various results generated.

In the future, we plan to run more simulations
using our simulator to fully understand the SeDa and
N-Chance-Dist cases that were hard to analyze. We
would like to run the [Dahlin94a] N-Chance
algorithm without our optimizations to see how they
affect the overall performance of the system. We
would like to analyze our results on a per node basis
to see how each caching scheme affects individual
nodes. We feel that simulations are no replacement
for real workload data. We plan to implement our
simulator fully so that we can integrate it as a device
driver at kernel level.

Although further research is needed to determine
how the NASD environment will affect cooperative
caching schemes, we feel that our cache can easily be
extended to accommodate more complex drives.

0

1000

2000

3000

4000

5000

6000

7000

8000

Global Reuse Mix Reuse Local Reuse Random
Reuse

N-Chance-Dist

0

1000

2000

3000

4000

5000

6000

7000

8000

Global Reuse Mix Reuse Local Reuse Random
Reuse

SEDA

9

Bibliography

Cooperative Caching
[Voelker98] Geoff Voelker, Eric Anderson, et al.
“Implementing Cooperative Prefetching and Caching
in a Global Memory System”. Proc. of the 1998
ACM Sigmetrics Conference on Performance
Measurement, Modeling, and Evaluation, June 1998.

 [Voelker97] Geoffrey Voelker, Herve Jamrozik,
Mary Vernon, et al. “Managing Server Load in
Global Memory Systems”. Proc. of the 1997 ACM
Sigmetrics Conference on Performance
Measurement, Modeling, and Evaluation, June 1997.

 [Dahlin94a] Michael Dahlin, Randolph Y. Wang,
Thomas E. Anderson and David A. Patterson.
“Cooperative Caching: Using Remote Client Memory
to Improve File System Performance”. Proceedings
of the USENIX Conference on Operating Systems
Design and Implementation, November 1994.

[Feeley95] Michael J. Feeley, Wiliam E. Morgan et
al. “Implementing Global Memory Management in a
Workstation Cluster”. Proceedings of the 15th ACM
Symposium on Operating Systems Principles,
December 1995.

[Jamrozik96] H.A. Jamrozik, M.J. Feeley, G.M.
Voelker, J. Evans II, A.R. Karlin, H.M. Levy and
M.K. Vernon. “Reducing Network Latency Using
Subpages in a Global Memory Environment”. Proc.
of the Seventh ACM Conference on Architectural
Support for Programming Languages and Operating
Systems, October 1996.

[Anderson95] Tom Anderson, Michael Dahlin,
Jeanna Neefe, David Patterson, Drew Roselli, Randy
Wang. “Serverless Network File Systems”.
Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 1995.

[Neefe97] Jeanna Neefe Matthews, Drew Roselli,
Adam M. Costello, Randy Wang, Tom Anderson.
“Improving the Performance of Log-Structured File
Systems with Adaptive Methods”. Proceedings of
the 16th ACM Symposium on Operating Systems
Principles, October 1997.

[Dahlin94b] Michael Dahlin, Clifford Mather,
Randolph Wang, Thomas Anderson, David Patterson.
“A Quantitative Analysis of Cache Policies for
Scalable Network File Systems”. SIGMETRICS '94 ,
1994.

[Wang93] Randolph Y. Wang, Thomas E. Anderson.
“xFS: A Wide Area Mass Storage File System”.
White Paper, University of California, Berkeley,
1993.

Network Attached Storage Devices
[Gobioff99] Howard Gobioff, "Security for a High
Performance Commodity Storage Subsystem", PhD
Dissertation, CMU-CS-99-160, July 1999.

[Gibson99] Garth A. Gibson, et al. "NASD Scalable
Storage Systems". USENIX99, June 1999.

[Gobioff98] Howard Gobioff, David F. Nagle*,
Garth A. Gibson. "Integrity and Performance in
Network Attached Storage". CMU SCS Technical
Report, CMU-CS-98-182, December 1998.

[Gibson97] Garth A. Gibson, et al. "File Server
Scaling with Network-Attached Secure Disks," Proc.
of the ACM International Conference on
Measurement and Modeling of Computer Systems
(Sigmetrics '97), June, 1997.

[Gibson96] Garth A. Gibson, et al. "A Case for
Network-Attached Secure Disks". CMU SCS
technical report, CMU-CS-96-142, September 1996.

