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Abstract 
Reductions in network latencies and the availability 
of inexpensive processor are affecting the location 
and access of non-volatile storage by permitting 
efficient use of standalone storage devices attached to 
the network.  Low latency networks have enabled 
clusters of workstations to access information stored 
in another machines memory faster than reading the 
information off of a local (or remote disk).  This 
enables a cluster of workstations to cache information 
read from a network attached storage device globally 
resulting in both lower latency to user applications 
and fewer requests that the network attached disk 
must fulfill. 

This paper examines the design and 
implementation of an in memory cooperative disk 
caching system/simulator, attempts to improve 
existing cooperative caching algorithms through 
simulation and examines the performance of each 
simulated scheme.  
 
1. Introduction 
Traditional computers have used local disks for 
providing non-volatile storage for information. The 
time to read data from a disk, or write data to a disk 
relative to the speed of the processor has increased 
greatly.  In an attempt to amortize the cost of disk 
accesses, machines often store recently accessed data 
in main memory.  On the first request for data off of 
the disk, the information is read from the disk into 
main memory and read from main memory into the 
processor.  Subsequent requests to read the same 
information from the disk can be fulfilled by reusing 
the data from the first access that is still held in main 
memory. 

As computer networks have enabled a disks to be 
shared among a group of computers, local caching of 
disk reads enabled the performance cost of a network 
disk access to be amortized across subsequent 
accesses by the local node. A machine that acting as 
a server, forwarding requests between the network 
and its local disk, was able to cache data read from 
its local disk to respond more quickly to subsequent 
requests from the network.  By caching the data at 
both the disk’s server and each node accessing the 

data, the average time to access data decreases and 
the number of nodes that can be supported by a disk 
server increases since it receives fewer requests. 

Since accessing data on disk requires 
considerable time, a new type of disk was created to 
eliminate the strain caused by remote accesses to a 
machine that was acting as a server for its local disk, 
the network attached storage device (NASD) 
[Gibson 96].  A NASD is a disk with a built in 
processor and memory that handles requests from 
machines on the network.  A NASD may work in 
conjunction with another file manager node, which 
will supply a remote process with a key to access 
particular information on the NASD.  A NASD, a 
kind of smart disk, can support a variety of different 
services. 

In the traditional disk sharing and caching 
environment, frequent accesses by each machine to 
common data, perhaps a system configuration file, 
cause information to be cached in memory on each 
node.  Since network latencies have made accessing 
data in another computer’s memory faster than 
reading information from disk, it may be sub-optimal 
to replicate data. For instance a machine that only 
accesses a very small number of bytes will have 
infrequently used data in its cache, while another 
machine accessing a large range of bytes might not 
be able to cache all of the information it repetitively 
accesses. If the machine with older information in its 
cache caches information for the machine with a 
large working set, the throughput of the system may 
increase and the number of requests sent to the disk 
server or NASD would be decreased. 

Similarly, if accessing data from another 
machine’s memory is fast, there is no need for every 
node to cache information.  By sharing the memory 
of other machines in the cluster, each machine 
effectively has a memory the size of the sum of all 
the nodes on the cluster.  

Section 2 discusses various approaches to 
sharing memory, focusing on caching disk accesses, 
in a cluster of workstations.  

In Section 3, we describe the design and 
implementation of our system.  Section 4 focuses on 
our simulations of various approaches.  Section 5 
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discusses the simulation results and their 
implications. 
 
2. Global Cooperation Schemes 

Several previous studies have examined 
cooperatively sharing global memory resources 
among a cluster of workstations.  [Wang93] provides 
a good description of some basic implementation 
issues, from the xFS projects implementation of a 
distributed file system.  In [Dahlin94a], a wide 
variety of cooperative caching protocols are 
discussed, four schemes are simulated and compared 
to an optimal solution (using forward knowledge) 
and normal operations.  Dahlin and Wang propose a 
near optimal solution called N-Chance.  One 
shortcoming of the N-Chance algorithm is that it 
involves the use of a centralized server to coordinate 
the status of the cache, which limits the scalability of 
the system. 

[Feeley95] describes and evaluates the insertion 
of a globally memory management scheme into the 
operating system at a low level, so that the whole 
system will benefit from sharing.  Memory-intensive 
programs are able to perform 1.5-3.5 times faster 
when transparently using a globally managed 
memory.  The implementation of this system 
requires the use of many global data structures that 
must be kept current so those local portions of the 
scheme can explicitly determine which machines are 
idle.  This can cause multiple machines to locally 
reach the same decision about which nodes are idle, 
causing them to flood a node with concurrent 
requests. 

We propose two schemes that attempt to 
combine the low complexity of the N-Chance scheme 
with the distributed nature of the global memory 
management scheme, without added complexity and 
load-balancing issues.  The first of schemes is a 
distributed version of N-Chance, N-Chance-Dist.  
This scheme modifies the N-Chance algorithm by 
dividing the global object space amongst the 
managers (selected nodes). Each manager acts as an 
N-Chance server, keeping track of global state 
information for the objects that it is responsible for.  
In this paper, an object refers to a physical block in 
the NASD, typically 8KB, which is the granularity of 
caching that we chose for simplicity. 

In the N-Chance scheme, when a non-replicated 
object (singleton) is evicted from a node’s cache it is 
forwarded to random node.  The receiving node will 
cache this object. If the cache is full an eviction must 
take place. If this cache contains any replicated 
objects, a replicated object will be evicted to make 
room. Otherwise, the least-recently-used object will 
be removed, but not forwarded to another node. In 
order to determine if an object is a singleton the 

server must be contacted or some type of callback 
system must be used to maintain accurate singleton 
status information.  N-Chance-Dist forwards an 
evicted object to its manager, which discards it if it is 
replicated. If the object is a singleton, the manager 
checks to see if it manages any replicated objects, if 
so it forwards the singleton to a node with a replica 
and notifies the node to replace it. If it does not 
manage any duplicated pages it forwards the 
singleton to another manager (and decrements a 
hops-to-live field to prevent infinite page 
replacement).  The node can choose whether or not to 
replace it (perhaps it’s cache is not full, so it would 
prefer to simply add the singleton to its cache without 
evicting the other object), and notifies the server that 
it chose to cache both of objects (it must cache the 
singleton).  This optimization would unfairly bias the 
comparison with normal N-Chance so the version of 
N-Chance we simulated uses this short-cut method. 
[Dahlin94] contains a description of the unmodified 
N-Chance Algorithm. 

The second scheme that we propose, SeDa,  
modifies N-Chance two additional ways. First we 
used a least-often-used object replacement policy and 
second we forward an evicted singleton page to 
multiple nodes before evicting a page to make room 
for it. 

Our proposed schemes focus on creating a 
distributed caching policy that works approximately 
as well as N-Chance forwarding.  This is a reasonable 
goal since [Dalhin94a] show their approach to be 
near optimal.  It is important to note that their 
approach achieves near optimality by offsetting the 
cost of randomly chosen suboptimal decisions by 
randomly chosen, locally superoptimal decisions. For 
example, an object may already reside in a local 
cache, on the first local access, partially offsetting the 
cost of not optimally placing the object on another 
node.  This suggests that our approach may be able to 
use a distributed heuristic making fewer suboptimal 
decisions, or at least not perform considerably worse. 

 
3. NASD Caching System 

The network attached storage device framework 
typically involves 3 major components: server 
(device), file manager (issues keys to access the 
device), client (interface between NASD framework 
and normal file system).  Our system integrates the 
cache into the NASD client, requiring no changes to 
the interface between the file system and the client.  
A typical NASD server does not require any 
changes.  Although, we made significant changes to 
the NASD server the network interface and 
functionality supported was predefined and was not 
changed to reflect our cache.  Our framework does 
not use a File Manager, however, integrating support 
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for the use of a File Manager can be done in a few 
ways depending on the functionality that the NASD 
supports.  One solution is to have the File Manager 
generate an extra key that the cache uses to verify if 
a request is authorized. Any functionality that is 
supported by the NASD server, can be easily 
integrated into the cache, by adding a translation 
layer, and may require a similar translation layer at 
the File Manager, similar to the above description. 
 
3.1 System Design 

The following diagram provides a general 
overview of our system design.  The system is 
composed of three major parts: NASDs, a high speed 

network (Ethernet) and nodes in the cluster of 
workstations.  In general, there need not be a 
distinction between Manager and Client nodes.  In 
our simulations all of the nodes in the cluster are 
homogeneous and therefore all nodes benefiting from 
the use of cooperative cache should share the cost.  If 
it is desired that a node only act as a client, it need 
not register itself as manager.  Each node is 
comprised of  a communication agent (CommAgent), 
a cache/manager (Cache) and a client (Simulator). In 
the diagram above the client was omitted from the 
manager is omitted from one node for illustration 
purposes.  Each NASD is comprised of both a NASD 
server and a physical disk drive.  Typically, these are 
collocated inside of one physical device.  In our 
simulations the server and disk were contained within 
one dedicated node in the cluster.  The Ethernet 

displayed must be a low latency, high throughput 
connection.  [Dahlin94a] suggests that 10Mps 
Ethernet switched Ethernet may be marginally 
acceptable, but focused on 155Mbps ATM.  For the 
purposes of our discussion and simulations we 
assume a 100Mbps switched Ethernet is used. 

An arbitrary number of nodes and NASDs can be 
supported by the cache, however, under heavy usage 
the network may become congested leading to poor 
performance, possibly worse than without the 
cooperative caching scheme.  In a well-balance 
system, a system without such bottlenecks, this is a 
non-issue. 

 

3.2 Detailed Design and Implementation 
The NASD portion of system is comprised of a 

server and disk.  This is based on an in kernel device 
driver implementation, which was ported to the user 
level, extended to support sequential accesses from 
multiple nodes.  The server portion of the NASD, 
actually a C++ object, waits for requests from the 
network (via the CommAgent), calls the appropriate 
functions of the disk and sends the result back to the 
original requester.  Since we are running the NASD 
as a user level process, defined a Disk C++ class 
which acts as a translation layer between the server 
and the underlying file system.  The disk contains a 
group of objects that encapsulate the filename used 
by the underlying file system, and metadata about of 
the object that is retained in memory. 

Client

Client

Client Manager

NASD NASD

Server D isk

Mgmr

CommAgent

 Cache

S imulator

CommAgent

--- ---
--- ---

Ethernet
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The main functionality of system is encapsulated 

inside of the cache.  The Cache is a C++ class that 
interacts via an API with the clients.  The Cache’s 
API is the same as the Disk’s API enabling the Cache 
to replace the Disk easily in user level code. The 
diagram above shows a conceptual view of how the 
cache works.  The cache is composed of three 
threads: 

1. Client thread: the execution of public 
functions that are called by the client 

2. Cache thread: gets requests from the client 
thread, handles local hits and forwards local 
misses to the appropriate party via the 
CommAgent 

3. Manager (Mgmr) thread: waits for events to 
come from the network and acts 
appropriately, sending replies and 
forwarding requests through the network. 

 
The request and answer queues are implemented 

as synchronized classes in C++.  They use condition 
variables and mutexes to provide mutual exclusion 
between two threads accessing a variety of shared 
memory locations.  All of the cache API function 

calls are blocking, which ensures that at most two 
threads will attempt to access these queues.  Our 
design is generalized to allow extension to a 
multithreaded client accessing the cache.  At this 
stage each instance of the Cache class can only be 
accessed by one thread, i.e. it is not thread-safe. 
 The cache also contains a variety of objects 
handling various functions.  The mapping of <drive, 
object> pairs to their appropriate managers in 
handled by function class to the DirDir object which 
keeps track of all the managers and hashes the 
<drive, object> pair to the IPv4 address of the node 
that manages the pair.  Currently, the manager 
function does not support dynamic changes.  To 
handle a dynamic change currently, requires 
notifying all nodes of the change, and flushing the 
global cache.  Our design supports gracefully, 
dynamically changing the hashing function based on 
network load, however, this functionality has not be 
implemented. 

The cache contains a data store denoted Cache 
in the diagram that maintains a least- recently-used 
(LRU) or least-often-used (LOU) list of objects 
currently in the cache.  Our simulator uses both of 
these modes for various simulations.  This object is 
synchronized to provide safe access between both the 
manager and the client thread. Internally objects are 
stored in a C++ STL map which provides efficient 
access to data and a C++ STL vector is used for 
maintaining the LRU and LOU lists.  

Client Thread Execution: 
 
  Put request information into the Request- Q. 
  Wait for the answer to come into the Answer-Q. 

Cache

Object
Object

Data

Client
Thread Cache

Thread
M gmr

Thread

 Req. & Ans Directory

Comm
Agent

D irD ir

Req-Q

Ans-Q
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The CommAgent is a thread safe C++ object 

that encapsulates packet marshalling/demarshalling, 
and network transport.  Our implementation currently 
supports reliable TCP transfers and unreliable UPD 
transfers. We plan to implement reliable transmission 
over UDP in the future to increase the scalability of 
the system.  We use TCP while running all of our 
simulations.  The TCP connection setup/tear down 
overhead is also unacceptable in operational 
implementation of this system.  The need for 
persistent TCP connections to avoid the setup/tear 
down costs is why TCP is not scalable, since each 
connection is defined by a file descriptor and only a 
limited number of file descriptors are allowed per 
process.  

 
The last thread that runs inside of the Cache 

object is the Manager thread.  This thread listens for 
events from the network (via CommAgent) and takes 
appropriate actions depending on the event.  It 
accesses the Directory keeping track of which nodes 

are caching objects that it manages.  This directory is 
only contains information about currently cached 
objects, not all objects in general.  This supports an 
arbitrary number of drives and objects (actually, the  
96-bit globally unique object identifier limits this).  
Just as the Cache is the most considerable part of the 

overall, the manager thread is the most considerable 
part of the cache.  

 
The general algorithms described above vary 

depending upon the type of caching scheme in use.  
The Cache object and its component objects support 
4 modes of operation: no cache, N-Chance cache, N-
Chance distributed caching, and SeDa caching (the 
second variant of N-Chance caching). 

The Simulator is a modified client that 
dynamically varies the kinds of requests made on the 
caching system.  It reads setup data from 
configuration files and writes trace information to 
result files.  It allows the specification of working set 
size, the range of the initial working set, what 
percentage of requests lie outside of the initial 
working set (if random > 0, then the working set 
changes over time),  what percentage of requests 
should be writes, how often to log summary data to 
result files on disks.  Another configuration file 
specifies what drives exist in the system and what 
objects already exist on that drive.  We also have 
created a manual simulator which allows us to 

Cache Thread Execution: 
 
 Wait for the answer to come into the Request-Q. 
 
 If read: get object from the local data store and  

place it into the Answer-Q (hit) 
 lookup manager and forward request (miss) 
 If write: update* the cache to contain the object 
 lookup manager and forward data  
 If other: take local action* and forward request  

 
* includes notifying appropriate managers of changes 
concerning where and object is cached 

Manager Thread Execution < continued >: 
 
 If write: update the local data store if it contains the 
   object. 
  send an write packet to each node that 

currently is caching the object and 
send a write packet & data to the 
drive (manager) 

 
 If add:  add the corresponding <object, node> pair 
  to the list of pages (manager) 
 lookup and forward the add to the correct 

manager (not manager) 
 

If evict: remove source from list of nodes caching 
  the object (manager) 

if the object is a singleton ignore it 
if there is room here add it and notify 

  manager of object. If no room run 
  page replacement algorithm 

if this the evict_N_to_make_room flag is 
  set, evict object N (not manager) 
 if it manages any duplicated objects then 
  send evict_to_make_room to the 
  node and remove from cache list 

 if only manages singletons then choose a 
  random node and send to node 
  (all manager nodes) 
when evicting a page from the data store at any time 
 decrease the nchance value by one and send 
 to the manager. 
  

Manager Thread Execution: 
 
 Wait for an event to come from the network. 
 If read: get object from the local data store and  

place it into the Answer-Q (hit) 
  lookup to see if it is cached elsewhere and 

forward request (semi-hit) 
 send the request to drive (miss) 
 

<continued in next column> 
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specify the type of cache to use, what other nodes are 
running and to interactively send read requests, write 
requests, and dump the status of the cache (all the 
current objects cached and run time statistics).  We 
used the manual simulator to do initial verifications 
that our schemes were working as described. 
 
4.  Simulation Methodology 

On a cluster of 36 Linux workstations (dual 
Pentium III-550, 1 GB RAM ) connected by 
100Mbps switched Ethernet. The cluster of 
workstations was concurrently used to run a variety 
of scientific applications and database functionality.  
After initially running our simulations using 16 nodes 
and 5 drives, we scaled our simulations down to 6 
nodes and 3 drives to make the amount of data easier 
to analyze.  Our simulations were designed to help us 
compare the 4 different caching schemes, and 
analyze the performance of the two new caching 
schemes that we are testing, namely N-Chance-Dist 
and SeDa caching.  

In our approach we ran four synthetic workloads 
under each of the four caching schemes.  The 
workloads that had the following characteristics: 

1. Local Reuse: Each node accesses objects 
that no other node accesses.  

2. Global Reuse: All nodes access the same set 
of objects. 

3. Random Reuse: Each node randomly 
accesses objects. 

4. Mixed Workload:  Each node accesses a 
different combination of objects, some 
random, some globally shared, some locally 
shared. 

 
For each simulation run we traced various 

information concerning how each node performed.  
We kept track of how long each request took based 
on simulated times, the actual amount of time it took, 
where the read requests were filled from (local hit, 
manager hit, global hit, disk hit or a disk hit based on 
stale manager information) as well as, how many 
reads request were made.  We made use of simulated 
times and actual times to account for variances 
caused by other jobs running on the cluster other than 
our simulator. 

Our simulated times are similar to those used in 
[Dahlin94a].  We changed a few of the times to 
account for running over 100Mbps switched 
Ethernet. The times described in [Dahlin94a] for 
Ethernet were very optimistic, our values are less 
optimistic for network transport time but are 
optimistic.  We reused the memory access times from 
[Dahlin94a] but we found that our memory access 
times had improved twenty percent in some cases.  In 
the local reuse simulation it was noticeable when data 

was stored in a memory cache as opposed to main 
memory. 
 
4.1 Simulation Results 

After running each simulation, we combined the 
results from each of the six nodes and calculated the 
average times that each read request required.  This 
provides with a view of how total system 
performance is affected by each scheme.  We ignored 
write requests since all request complete in constant 
time and the affects of writes show up in the read 
request times. 

Figure 1: Average Read Times under N-Chance,  
 N-Chance-Dist, SeDa and No Caching 

 
In Figure 1 it is apparent that under all each of 

the caching schemes there is a very large 
improvement in access time compared to not caching. 
Figure 2 is the same data without scaling to show No 
Cache. 

Figure 2: Average Read Times under N-Chance,  
           N-Chance-Dist and SeDa Caching  

 Without showing the No Cache option it 
appears that there is a significant difference between 
the average times, however, one should note the there 
is only a 5% variation in the times spent.  We 
attribute the difference between N-Chance and N-
Chance-Dist to be the distributed management nature.  
With distributed control, more pages are cached at 

615

620

625
630

635

640
645

650
655

660

N-Chance N-Chance-Dist SEDA

Local Reuse

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N-Chance N-Chance-Dist SEDA No Cache

Local Reuse



7 

the server which reduces the access time by one 
network hop.  SeDa caching’s slightly worse 
performance is partially attributable to it object 
eviction policy, since objects were accessed 
randomly within the working set it and attempting to 
find an idle node. The latter would cause pages to 
migrate away from its manager more than either of 
the N-Chance strategies. 

Figure 3: Average Read Times for Global Reuse 
 
In Figure 3 we see that under a global reuse 

workload N-Chance performs much better than other 
two works loads.  This is because of N-Chance’s 
centralized server.  The centralized server caches 
most of the data since requests are repeatedly set for 
the same data.  In the N-Chance-Dist and SeDa 
schemes data is moved throughout the cluster and 
managed with only local knowledge, by evicting 
pages that haven’t been used recently (or used often) 
these schemes force data away from the server.  
Unfortunately, the global working set was not large 
enough to determine whether or not this was truly the 
case.  Further testing would helps us to verify this 
fairly large difference. 

 

Figure 4: Average Read Times for Random Reuse 
Under a random reuse workload SeDa outperforms 
the other two schemes.  This is expected because 
SeDa does a better job of keeping pages alive, by 
migrating pages until finding an idle node. In both N-
Chance strategies when a singleton page evicts 
another singleton page, the new singleton page is 

evicted.  N-Chance-Dist likewise N-Chance-Dist 
outperforms normal N-Chance since more pages are 
evicted at the server in N-Chance.  Unfortunately, 
this problem is particular to our optimization of N-
Chance which reduces control traffic on the network. 
By forwarding all objects to the manager, which then 
randomly selects a node, we cause the server in N-
Chance to discard more objects. 

 
Figure 5: Average Read Times for Mixed Reuse  

 Actual workloads running on the cluster will 
probably not fall into one of the previous categories 
of data locality.  The mixed simulation combines 
nodes running each of the previous workloads and 
runs them together on the cluster.  We see in this 
example that all three schemes perform fairly well. 
SeDa outperforms the other two schemes because 
under a mixed workload environment it keeps 
singleton objects alive longer and takes usage into 
account.  So one node accessing a small number of 
objects, will not have its objects evicted for recently, 
infrequently used objects.  These results are not 
surprising given the previous data.  Although, N-
Chance out performs N-Chance-Dist in terms of 
global throughput, the node running the centralized 
server becomes swamped with only 13 nodes 
running.  

 
Figure 6: Average Read Times for N-Chance 

Figure 6 shows the performance of N-Chance of each of the 
workloads.  The relative performance on each workload 
makes sense given the centralized nature and the crippling 
affects that our optimization has.  Further testing without 
the optimization is required to determine how N-Chance 
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proposed in [Dahlin94a] would compare under our 
simulation loads. 

 
Figure 7: Average Read Times for N-Chance-Dist 
Figure 7 illustrates the performance of N-

Chance-Dist under each of the workloads. The 
performance under Global Reuse is surprising. In 
order to determine why global reuse does not perform 
better we will have to conduct addition testing.  

 
Figure 8: Average Read Times for SeDa Caching 
 

Figure 8 shows the performance of SeDa caching 
over each of the workloads.  The performance of 
SeDa caching is what we had expected, with the 
exception of the global case, since forwarding evicted 
singleton objects and basing the eviction policy on 
how often an object is accessed causes better 
performance under heterogeneous workloads and 
poor performance under random reuse.  It is 
surprising that SeDa performs better in a wholly 
random environment than in an environment with 
global reuse.  To determine how SeDa cache can be 
improved to take this into account will require more 
simulations to be run. 
 
5. Conclusions and Future Work 
 We feel that we have successfully shown 
that a simple distributed version of the N-Chance 
algorithm with a optimized object migration policy, 
performs fairly well in some cases.  However, our 

results are mixed concerning which caching scheme 
is more likely result is better performance on real 
workloads.  Running more simulations will help us to 
better understand how each of the algorithms will be 
affected by real workloads. 

The main contributions of our research is that 
although N-Chance performs fairly close to an off-
line optimal global caching policy, there are certain 
workloads under which a different policy can 
perform significantly better. 

Our research questions that claim made in 
[Dahlin94a] that LRU is not much different than a 
usage based scheme.  Further research into how each 
replacement policy performs under real workloads is 
warranted to quantify the improvements. We feel that 
further simulation and analysis will help to clear up 
the questions that various results generated. 

In the future, we plan to run more simulations 
using our simulator to fully understand the SeDa and 
N-Chance-Dist cases that were hard to analyze.  We 
would like to run the [Dahlin94a] N-Chance 
algorithm without our optimizations to see how they 
affect the overall performance of the system.  We 
would like to analyze our results on a per node basis 
to see how each caching scheme affects individual 
nodes. We feel that simulations are no replacement 
for real workload data.  We plan to implement our 
simulator fully so that we can integrate it as a device 
driver at kernel level.   

Although further research is needed to determine 
how the NASD environment will affect cooperative 
caching schemes, we feel that our cache can easily be 
extended to accommodate more complex drives. 
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