A FastFile System for CachingWeb Objects

Matthew McCormick Jonathan Ledlie
{mattmcc Jedlie}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706, U.SA.

Abstract

Given the increasing performance of network connections and the slow nature of disk drives, the authors
propose a new file system for web proxy servers that cache files on a local disk. This file system, referred
to as the cache file system (CFS), utilizes the facts that cached web pages do not change in size once they
are cached, do not have changing permissions, and do have a back-up version at the original server.
Immutable files allow all data in a file to be written in contiguous blocks on disk. Reading and writing to
contiguous blocks allows the best utilization of a disk’s bandwidth and results in the lowest possible seek
times. The fact that all data is backed up on remote disks allows CFS to stoegtaihformation in

memory and not checkpoint. Should the system crash and this data be lost, users will still get the correct
data — it will just be coming from the remote server until the cache is reloaded. By taking advantage of
these invariants, CFS is able to out perform a Unix file system by at least 50% on several benchmarks.

1 Introduction

Cacheable internet files embody certain characteristics which enable — and demand —
rapid access. Some web files, like search queries are not easily cacheable without
knowing the query's schema. Others, like relatively static images and text files, are, and
need to be, cached to reduce both local and server-side workloads. These files may have
owners back at their servers, but, once out, they are anonymous, non-volatile, and easily
recoverable. These cacheable web files only consist of a URL, some data, and an
expiration time. Their most important requirement is quick transfer to the client. Storing
these files in the UNIX file system gives them more generality than they need and this
flexibility makes their access slower than it should be. Other file system work has shown
that by taking advantage ofvariants, a much faster solution is often possible.[1] By
optimizing on several constants peculiar to web files, our prototype provides strong
evidence that a faster solution exists.

Most research in the web caching field ties closely with that of networking. Huge strides
have been made in the thickness and latency of network pipes. Other research has helped
develop effective cache hierarchies [2]. In the near future, the time to pull cached data
off of disk will become a large bottleneck in its overall retrieval. Our research in a fast
file system for web objects seeks to minimize this bottleneck.

Our central tenants are rapid lookup and rapid retrieval: the upper levels of the cache
need to know quickly if a file is cached and need to be able to inject its data into the
network as rapidly as it can come off the platters. All file descriptors live in memory and
do not need to be backed up -- a crash and recovery just entails more misses, not lost
data. All of a file's data can reside contiguously and when its data does change it is
merely deleted and recreated.

Figure 1 below portrays that in the sphere where the Caching File System (CFS)
competes with UNIX (ext2 ohinux), it is doing well:

Table 1: Normalized Comparison

1.2

Ocfs

1 create
B unix
0.8
Ocfs
0.6
read
0.4 H unix
0.27 Ocfs
delete
0 T T T T T M unix

cfs unix ck unix cfs unix

time

create read delete

This shows ext2 normalized to 1 and CFS's relative time on the same number of
contiguous creates, reads, and deletes of 1000 byte files. These results will hopefully
encourage the reader to press on through the following sections: related work,
implementation, experiments, future work, and conclusions.

2 Related Wak

Data General’'s Nova computers supported contiguous file operations as did the original
IBM VM/CMS operating system. While contiguous disk operations are very fast —
almost zero seek time for a single read or write — there are several major problems with
this type of file system. These include external fragmentation of the disk and
determining how many blocks to initially allocate to a file [3].

These are two very significant problems with contiguous storage and explain why so little
research has been done in this area. However, some substantial work on such a system
was done by the researchers who developedAtieeba distributed operating system [4].

Their system included files that were not allowed to change in size once they were
written. This eliminates the allocation problem mentioned earlier. Application programs
were only allowed to create, read, and delete files. Writing to an existing file was not
allowed. To also enhance performance, this system stored administrative tables in
memory. The result was a very high-performance file server called Bullet [5].

While this is very similar to CFS, the designers of Amoeba still had to be concerned with
access rights to files and preserving file system data in the event of a crash. These issues

were addressed by using a Directory Service. This system stored the capabilities for files
on disk. Every file operation required that this capability be obtained first, then use this
to index into the in-memory administrative table, and then access the files data from disk
(or create the file, or delete it). This requires one extra disk access per file operation and
interaction between two different entities (Bullet and the Directory Service). CFS,
however, does not need to worry about these reliability issues or about getting a user’'s
access rights. All files in a web caching system have a backup at the original file server.
Also, only one program will ever be allowed to access the files on disk, so having to
retrieve a files permissions list is not necessary. CFS is also a simpler system because it
is a single entity.

3 Current State of Caching Web Objects

Squid is a commonly used and highly regarded web file cache. Most of its focus has
gone into making its networking fast. Squid uses the operating system's default file
system to store files (it runs on many platforms). Squid can sit on either end of the
Internet: at an Internet Service Provider or corporation gateway or just in front of a web
server.

Like our implementation, Squid keeps its records of files in memory. If CFS were
incorporated into Squid, our additional data structures, like start block and byte length
would merge into this structure. According to Squid’s online documentation:

Every object saved in the cache is allocated a StoreEntry structure.... Squid can quickly locate
cached objects because it keeps (in memory) a hash tableSobr@Entry's. The keys for the hash

table are MD5 checksums of the objects URI. In addition there is also a doubly-linked list of
StoreEntry's used for the LRU replacement algorithm. When an entry is accessed, it is moved to the
head of the LRU list. When Squid needs to replace cached objects, it takes objects from the tail of
the LRU list.... Objects are saved to disk in a two-level directory structure [6].

In Squid's source code, it clearly does make the syscalls that we are testing our system
against (in its disk.c in particular). As conveyed in the experimentation section, ext2 is
really slow at deleting files. It takes almost five times as long to delete the files as read
them in our tests. To help remedy this, Squid has an unlink daemon. Unfortunately, the
daemon does not work when the system is very busy; to keep file usage consistent, it has
to resort to calling unlink directly "when the cache swap size is over the high water
mark.” [7]

4 Implementation

4.1 Motivation

All files in a web cache share several characteristics. First, they never change size once
they are written. This is probably CFS’s most crucial invariant. It is intended to only
work with files that can never be modified after the first file write operation. In fact, this
system only provides three operations to perform on files. These are create, read, and
delete. Each of these calls is discussed in more detail in section 4.4. In addition to being
immutable, all files never change permissions and there exists a backup copy for every
file at the original web server that provided the file. Of these last two points, the former
means less metadata needs to be stored about the file. Givemtlzegmnts, the CFS

file system is able to provide substantially superior performance to the Unix file system
currently used on many caching web proxies.

4.2 Object Design

CFS was designed with the intention of allowing a higher level process to run multiple
threads and have all of them asynchronously access the file system. This is accomplished
by queuing up all requests that require either reading or writing to disk. A separate disk
thread, provided by CFS, then processes each of these requests. The higher level thread
that submitted the request is notified once the disk thread has completed the request.
Using this mechanism, the higher level threads can submit a variety of requests without
having to wait for its previous request to finish. A sync() call is provided so a thread can
assure that its requests have been completed before it moves on. This mechanism is
discussed in sections 4.4.5. Figure 1 below shows the basic layout of this system.

Main FPocess

CacleDisk

SingleThrea

getNeWEach@bJef:/t// Disk
e

X N\
[\Cache) [\Cache [\Cache ‘ FileTable ‘ RequstQuee ‘ ‘ BitMap
(

Multiple Wer Leel Threads

Figure 1 - Object Dagram

4.3 Directory Structure

CFS utilizes an in-memory data structure to keep track of all necessary information about
a file on disk. The size of a file, its starting location on disk, an integer key for faster
searches of the hash table, and the MD5 hash of the file’s name, are all stored in a file
descriptor element. All name lookups require only memory accesses. There is no
reference to disk to find out information about where the file’s actual data resides on disk.
This saves at least one lookup over Unix. Unix must first check a ihede
information.

One main drawback to these in-memory file descriptors is that all the data about file
locations will be lost in the event of a system crash. However, unlike a traditional file
system that has the original and possibly only version of the file stored on its disk, all of
files cached in a web proxy have their originals stored at a server somewhere on the
Internet. All of these files can then be retrieved as requests are made to the web proxy.
There would be a period of time where the browser would see a small performance
degradation as the cache is reloaded. The data given to the browser, however, would be
completely up to data and accurate. To allow planned server maintenance or shutdown, it

would be a trivial matter to write this in-memory data to disk at an administrator’s
request. Then the system could be shutdown and re-booted without having to reload the
cache.

4.4 User Level Requests
CFS provides a total of five different calls for a higher level application running as a
proxy server. The following is a list of the five operations and a brief description of each.

int create(charurl, char* buffer, int size);
int read(charurl, char* buffer);

int remove(char* url);

int length(char* url);

int sync();

4.4.1 create

Create takes in the URL of a new file, the buffer in memory that stores all the data for the
file, and the number of bytes in the buffer. The URL is converted into a different string
using an MD5 hash. By requiring that all data to be placed in the file be first placed in
memory, the largest file this system can store is limited by the size of virtual memory.

The first action of create is to find a location on disk to put the file. The disk thread
provides a function to find an appropriate location on disk to store the file. It also
provides another function to mark the necessary locations in a bit map as being full.
Currently, CFS does not support writing data from multiple files to the same block. A
single block on disk is completely allocated to a single file.

Create does not actually wait for the data to be written to disk. Instead, a request is
generated and placed into a queue for the disk. ciidage function then returns and the
thread can continue on doing other operations. When the disk thread actually services
this request (actually writes the data out to disk), it signals the thread that generated the
request if it is sync’ing. See Figure 2.

4.4.2 read

The first actiorread performs is to search the directory hash table for the appropriate file
descriptor. Finding this, it then has the file’'s starting block on disk and the total length of
the file. As withcreate, read does not wait for the data to actually be read from disk.
Instead, it generates a request and places this into a queue for the disk. It then returns and
the calling thread continues on. When the disk services the request, the thread that
generated the request is notified.

4.4.3 remove
The remove operation is very simple — and very fast. The only thing that needs to be
done to delete a file from disk is to remove the proper file descriptor from the directory

and to modify the disk bit map to show the necessary blocks as now being free. Since all
of this information is contained only in memory, these operations are very fast. Hence,
unlike create andread, remove returns only after it has completed its operation. As the
testing results in sections 5 will show, tieenove operation is orders of magnitude faster
than an unlink operation in the ext2 file system. This makes sense since ext2 must go to
disk to delete a file.

4.4.4 length

This is a simple function provided to help the higher level threads in determining how
much memory to allocate for a buffer to be used in a read call. It simply returns the
length of an existing file (or an error if it does not exist). As wéhove, this is a very
quick operation and returns only after the necessary operations are performed.

4.4.5 sync

The purpose of this function is to allow a thread that has been submitting read and write
requests to guarantee that all of its requests have been finished. The disk thread keeps
track of how many outstanding requests each cache thread has. When this number goes
to zero, thesync call returns and the thread is allowed to continue on.

Thread. Thread2
Geneate Requst

Thread1Regues

“‘(Plaxe Requstin Qeue

Finished Reqles
Threadl Reqles
Thread2 Reqles
Grab Rejuest

Disk Thread

Figure 2— create and read files

4.5 Physical Disk Interaction

Unlike other file systems that allow a file’s data to be written to different parts of the
disk, CFS requires that the entire file be placed on contiguous blocks on disk. Reading
and writing from contiguous blocks utilizes the highest percentage of the disks
bandwidth. The Log-Structured File System is an example of another file system that
utilizes this feature [8].

Originally, CFS was to utilize a raw 1/O patch from SGI to write directly to disk and
completely bypass the Linux kernel. The first design of the system, however, used the
Linux kernel buffers for all of its reads and writes. When the raw 1/O patch was
implemented, CFS sees a performance drop of about 6 to 7 times. The reason for this is
that the system was not buffering any reads and writes in memory. This proves the
obvious — buffering works. Given the time constraints in developing our system, we
were not able to implement buffering. Hence, all of our results in section 5 are shown
using the Linux kernel buffers for reads and writes.

5 Expaimental Setup and Results

5.1 Experimental Environment

The Cache File System was implemented on a 500 MHz Pentium Il dual processor with
1 GB of RAM, and 8.5 GB of disk space. Our initial tests and those presented in this
report were run on a Linux 2.2.12 kernel using the ext2 file system. CFS uses the disk as
a buffered block device (e.g. /dev/sde).

We ran a total of four benchmarks on each file system: three micro-benchmarks and one
workload. Eachmicrobenchmark (creates, reads, and deletes) consists of 50,000
operations with 1K files filled with random data. We produce on data point per 1000
operations.

The last test uses a trace file of actual browser requests [9]. It tracks all of the HTTP
requests made to a proxy server over the course of one day: over 18,000 requests. Each
of these requests is marked as a cache hit, a cache miss, or stale data that needed to be
replaced. Our benchmark goes through this trace file one entry at a time and creates the
file if it is not already on the disk or reads it from disk if it is there. If the trace entry
indicates that the data to read was stale, we delete the file just read and create a new file.
Our tests simply generate random data for the file instead of actually going out to a server
and getting the real data. The data for all of these tests are graphed on the following
pages. Section 5.2 discusses these results.

5.2 CFS verses ext2

The end result of all tests between the cache file system and ext2 was that CFS is faster in
every test — even reads with our speedups. This should be no surprise considering that
for every file that is created, read, or deleted, the CFS system makes at most only one
access to disk. Thenux file system, ext2, however, will generally make two accesses

to disk and maybe more. Of course, cachimgyles and file data in memory will help

Linux perform better, but caching files will also help CFS. Considering that the files
being accessed are based on browser requests from users and are fairly random, the
benefits of caching files in memory are going to be substantially reduced.

Of all the system calls made, delete has by far the greatest performance increase over
ext2. Table 2 shows an increase of over 95% for CFS over ext2. This is due to the fact
that a delete in CFS requires o accesses to disk. Ext2 requires a minimum of at least
one disk access. This is to remove the file entry from the direicioady that references

it and make sure this update is stored on disk:

Table 2: Deletes

80000

£ 70000 -
S 20000 -
(5] -1 .
2 20000 1 m total tlr_nefor 50,000
© 30000 - operations
£ 20000 -
€ 10000 |
O T T T
> N
e}‘v‘o/ .Q& Sz}o N QO‘\Q &S’J
S 4@ & o
£ R <

Creates also show a significant performance increase. Again, this is primarily because
CFS has no structures on disk to update when a file is created. It simply writes the files
data to disk and update the in-memory data structure describing the file. As with delete,
ext2 must update anode indicating where the start of the file is located on disk and

where all of the other blocks are located. It must also add an entry to the direateary

that contains the file. This means two more accesses to disk for creating a file. Because
of inode caching in ext2 and because writes in CFS require an access to disk, we do not
see nearly the speedup that was seen in delete, but CFS is still over 60% faster than ext2
in this micro-benchmark. Table 3 shows this performance increase:

Table 3: Creates

6000
5000
4000 -
3000 -
2000 -

0

[total time for 50,000
operations

microseconds

The read tests were a bit surprising. They show that for long stretches of time, ext2
performs equally as fast as CFS. This is almost to be expected because Unix like file
systems have been highly tuned for sequential reads and they are very good at this type of
file access [10]. However, for brief instances, the ext2 file system performs much worse
than CFS. This short burst of poor performance appeared in every test we ran. One
theory is that at certain times the buffers holding the data to be written to disk fill up and
the file system temporarily has a significant slow down as these buffers are written out to
disk. After this time, the file system again performs for a long stretch at a pace very
similar to CFS. Table 4 shows one of these ext2 anomalies occurring. It also portrays
that CFS’s reads did get faster once we added in two of our optimizations:

Table 4: Reads (Data Points)

16000
14000 —
12000 .

3
S 10000 ext2
5] |
§ 8000 / original
f
é 6000 // elevator and md5

4000 J’ 7
2000 R

O X 29 e PR e © R

operaias (x1000)

A close-up of one of these ext2 hiccups occurring reveals that it is not one read which
chokes, but that all of the read system calls slow down for a brief period:

Table5: Read Anamaly(Zoom in

14000

12000

10000 Hf

8000 f_‘rH
J

6000 ﬁ_[
4000

2000

microseconds

{7 ' O O ' ' VN ' I ¥ N ¥ O O O R 'R 'R YR Y

v ¥ ¥ ¥w w w w W w w w w w w w w9

W T S T N M T O W =% e T N MW

w @ & T & & @ @ T T T > o S o o o

MMM MM M M M M M M M Y W o
read operatians

A second hypothesis is that the cached directory inodes storing information on where
each of these files are located on disk are all “used up” and a new set of directory inodes
need to be brought in from disk. This extra disk access would also explain the huge jump
in read time at set intervals. Again, due to time constraints we were unable to verify
either of these theories or explore other possibilities. Table 5 shows this anomaly. If this
anomaly is considered, CFS runs about 65% faster than ext2. If this anomaly is taken
out, CFS runs marginally faster.

Table 6: Trace Benchmark

450

40
35O Zant

30

250 — cfs

200 — ext 2

microseconds

150 —

100 —

N

50 —f

0
s003
12008
15008
2400
2000
2600
4200
4500
5400
60003
6600
72008
7500
£400r
9000
9600
102000
103000
11400r
120003
12600
132000
13300
144000

Operations

The final benchmark was the trace file. This was intended to simulate a real world
workload for a proxy server. This benchmark randomly tests creates, reads, and deletes
of each file system. In this benchmark, CFS runs approximately 50% faster than ext2.
This is for all the reasons described above for each of the micro-benchmarks. Table 6
illustrates these performance differences.

5.3 CFS Tweaks

After our initial tests revealed that CFS was performing well, we decided to isolate the
bottlenecks in the system. We also wanted to try character 1/O, as this was one of the
initial goals of the project. Using gprof, we found three primary bottlenecks: searching
the bitmap for free space, probing the file table, and hashing URLs to MD5 digests.
Additionally we believed we could reduce seek times and speed up read performance
with a one-way elevator algorithm, although this surprisingly showed no performance
benefit. Table 3 (creataicrobenchmark) even shows that sometimes the elevator
algorithm’s queuing overhead can slow operation as compared to the original system’s
FIFO. Speeding up bitmap access was left unresolved.

To improve searching the file table (a hash of file descriptors), we added an integer key
to the file descriptor. This key is just a small chunk of the MD5 string. Traversing each
chain of the hash table now involves an integer comparison insteadeoicanp. If the

integer key of the file matches the integer key being requested, thencanp is

performed to verify that the right element was indeed found. In other words, the integer
key acts as a hint and themcmp operation is then used to do an absolute verification.

If we zoom in on our original delete microbenchmark (Table 2), the reader can verify that
this hint makes lookups faster:

-10 -

Table 7: Deletes (Zoom in)

58

56

540

520

Ototd tme fa 2,0 0 operatbns

50

micrarscunds

480

460

440
orignd md5 speedup

Because gprof revealed that about 15% of our CPU times were spent doing MD5
transformations, we decided to pull this out and do a simpler hash. The speedup is visible
in tables 2 and 3. Unfortunately taking the MD5 hash out results in more skew in the file
table and more complicated file descriptors, because they now need to hold strings of
variable size.

5.3.1 Raw I/O: Buffers are speedy

Unbuffered character 1/0 proved surprisingly to be an anchor. Our microbenchmarks
were repeatedly writing to disk instead of appending to an in memory buffer. To see how
much slower these repeated writes were as opposed to one long one, we wrote a program
to write out 512000 bytes as one large file and as 1000 512 byte files. The small files
took 6 seconds as compared to the large file’s 36 microseconds. An improved CFS

would buffer data and use raw 1/O.

6 Future Work

The most substantial part of research not included in this paper is how to handle the
possible fragmentation of the disk over time. This fragmentation will arise as files in the
cache are deleted. This is not a trivial problem to solve but there are a few properties of
web files that may lead to fairly simple solutions. First of all, one reason for deleting a
file is because the copy on disk has expired and needs to be re-retrieved from a server.
There is a good possibility that this new version of the file is going to be very similar in
size to that of the version just deleted. If this is the case, the new file can go directly into
the spot on disk just vacated by its predecessor.

The most common method of dealing with the external fragmentation problem is to do a
periodic compaction on the disk. The current version of CFS implements a very simple
method of doing this. Every time a file is read, the bit map describing the disk is
examined. If the area around the file just read contains a certain percentage of free
blocks, the file is moved as close to the front of the disk as possible. This will obviously
provide some performance degradation as the entire file must be read off of disk and re-

-11 -

written to disk. This transfer could be done lazily to make the decrease in performance
seem as low as possible to the browser. Another option is to simply delete the file. This
would mean the next time the file was requested, it would have to be fetched from the
server instead of the cache. The advantage to this method is that the new version of the
file retrieved from the server would not only be more current, but it could be put in a
location on disk that would make things more compact.

It would also be beneficial to provide an interface for a higher level process to find out
which files on disk are old and ripe for replacement. This would be needed when the disk
becomes full and a new object needs to be placed in the cache.

Research into using CFS in an actual proxy server implementation would be of great
benefit in analyzing its performance. It would also be useful to run the above tests with
more than one thread generating requests to the disk. Lastly, research into using a raw
I/O patch with buffering could produce a system with even better performance.

7 Conclusions

The most important conclusion from all of this research is that specialization works when
it comes to caching web pages. By taking advantage of immutable files, constant
permissions, and back-ups of all files at an original server, the cache file system
presented here is able to achieve speeds at least twice that of a Unix style file system
doing the same operations. This cache file system is not nearly as flexible as other types
of file systems, but it does not need to be. Its sole intent is to provide high speed
operations on cached web pages. While work still remains to be done in dealing with
fragmentation and providing an interface to higher-level programs so they can determine
replacement policies, the core work presented here achieves the goals it set out to
accomplish — creating, reading, and deleting files — substantially faster than Unix can.

References

[1] CaltonPu,Tito Autrey, Andrew Black, Charles Consel, Crisgiowan, Jorinouye, LakshmKethana,
JonathatWalpole, anKe ZhangOptimistic Incremental Specialization: Sreamlining a Commercial
Operating System. Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP'95), December 3-6, 1995, Copper Mountain, Colorado.

[2] L. Fan, PCao, J. Almeida, ABroder, Summary Cache: A Scalable Wide- Area Web Cache Sharing
Protocol, ACM SIGCOMM '98, pp. 254-265.

[3] AbrahamSilberschatz, Peter Galvi@perating System Concepts, fourth edition. Addison-Wesley
Publishing Company, January 1995.

[4] Sape JMullender, Guido varRossum, Andrew S. Tanenbaum, Robbert R@messe, and Hans van
StaverenAmoeba A Distributed Operating System for the 1990s. Computer, Vol. 23, No. 5, May 1990.

[5] Robbert varRenesse, Andrew S. Tanenbaum, and AnMiiachut, The Design of a High-Performance
File Server, IR-178, Vrije Universiteit Amsterdam, November 1988.

[6] http://www.squid-cache.org/Doc/Prog-Guide/

[7] http://www.squid-cache.org/Doc/FAQ

[8] Rosenblum, M. and Ousterhout, The Design and Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992, pp. 26-52.

[9]http://mww.ircache.net/Cache/ - sanitized access logs in section on Statistics Data and Visualization

[10] McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, RSFast File System for UNIX. ACM

Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 181-197.

-12-

