
1

ABSTRACT

This paper describes the Network-Attached Secure Disk
(NASD) storage architecture, prototype implementations of
NASD drives, array management for our architecture, and
three filesystems built on our prototype. NASD provides scal-
able storage bandwidth without the cost of servers used
primarily for transferring data from peripheral networks
(e.g. SCSI) to client networks (e.g. ethernet). Increasing
dataset sizes, new attachment technologies, the convergence
of peripheral and interprocessor switched networks, and the
increased availability of on-drive transistors motivate and
enable this new architecture. NASD is based on four main
principles: direct transfer to clients, secure interfaces via
cryptographic support, asynchronous non-critical-path
oversight, and variably-sized data objects. Measurements of
our prototype system show that these services can be cost-
effectively integrated into a next generation disk drive ASIC.
End-to-end measurements of our prototype drive and filesys-
tems suggest that NASD can support conventional distrib-
uted filesystems without performance degradation. More
importantly, we show scalable bandwidth for NASD-special-
ized filesystems. Using a parallel data mining application,
NASD drives deliver a linear scaling of 6.2 MB/s per client-
drive pair, tested with up to eight pairs in our lab.

Keywords

D.4.3 File systems management, D.4.7 Distributed systems,
B.4 Input/Output and Data Communications.

1. INTRODUCTION
Demands for storage bandwidth continue to grow due to
rapidly increasing client performance, richer data types such
as video, and data-intensive applications such as data
mining. For storage subsystems to deliver scalable band-

width, that is, linearly increasing application bandwidth with
increasing numbers of storage devices and client processors,
the data must be striped over many disks and network links
[Patterson88]. With 1998 technology, most office, engineer-
ing, and data processing shops have sufficient numbers of
disks and scalable switched networking, but they access stor-
age through storage controller and distributed fileserver
bottlenecks. These bottlenecks arise because a single
“server” computer receives data from the storage (periph-
eral) network and forwards it to the client (local area)
network while adding functions such as concurrency control
and metadata consistency. A variety of research projects
have explored techniques for scaling the number of
machines used to enforce the semantics of such controllers
or fileservers [Cabrera91, Hartman93, Cao93, Drapeau94,
Anderson96, Lee96, Thekkath97]. As Section 3 shows, scal-
ing the number of machines devoted to store-and-forward
copying of data from storage to client networks is expensive.

This paper makes a case for a new scalable bandwidth stor-
age architecture, Network-Attached Secure Disks (NASD),
which separates management and filesystem semantics from
store-and-forward copying. By evolving the interface for
commodity storage devices (SCSI-4 perhaps), we eliminate
the server resources required solely for data movement. As
with earlier generations of SCSI, the NASD interface is
simple, efficient and flexible enough to support a wide range
of filesystem semantics across multiple generations of tech-
nology. To demonstrate how a NASD architecture can
deliver scalable bandwidth, we describe a prototype imple-
mentation of NASD, a storage manager for NASD arrays,
and a simple parallel filesystem that delivers scalable band-
width to a parallel data-mining application. Figure 1 illus-
trates the components of a NASD system and indicates the
sections describing each.

We continue in Section 2 with a discussion of storage system
architectures and related research. Section 3 presents
enabling technologies for NASD. Section 4 presents an over-
view of our NASD interface, its implementation and perfor-
mance. Section 5 discusses ports of NFS and AFS
filesystems to a NASD-based system, our implementation of
a NASD array management system, a simple parallel filesys-
tem, and an I/O-intensive data mining application that
exploits the bandwidth of our prototype. This section reports
the scalability of our prototype compared to the performance
of a fast single NFS server. Section 6 discusses active disks,
the logical extension of NASD to execute application code.
Section 7 concludes with a discussion of ongoing research.

A Cost-Effective, High-Bandwidth Storage Architecture

Garth A. Gibson*, David F. Nagle†, Khalil Amiri†, Jeff Butler†, Fay W. Chang* ,
Howard Gobioff* , Charles Hardin†, Erik Riedel†, David Rochberg* , Jim Zelenka*

School of Computer Science*
Department of Electrical and Computer Engineering†

Carnegie Mellon University, Pittsburgh, PA 15213

garth+asplos98@cs.cmu.edu

Proceedings of the 8th Conference on Architectural Support for Programming Languages and Operating Systems, 1998.

Copyright © 1998 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1
(212) 869-0481, or permissions@acm.org.

2

2. BACKGROUND AND RELATED WORK
Figure 2 illustrates the principal alternative storage architec-
tures: (1) a local filesystem, (2) a distributed filesystem
(DFS) built directly on disks, (3) a distributed filesystem
built on a storage subsystem, (4) a network-DMA distrib-
uted filesystem, (5) a distributed filesystem using smart
object-based disks (NASD) and (6) a distributed filesystem
using a second level of objects for storage management.

The simplest organization (1) aggregates the application,
file management (naming, directories, access control, con-
currency control) and low-level storage management. Disk
data makes one trip over a simple peripheral area network
such as SCSI or Fibrechannel and disks offer a fixed-size
block abstraction. Stand-alone computer systems use this
widely understood organization.

To share data more effectively among many computers, an
intermediate server machine is introduced (2). If the server
offers a simple file access interface to clients, the organiza-
tion is known as a distributed filesystem. If the server pro-
cesses data on behalf of the clients, this organization is a
distributed database. In organization (2), data makes a sec-
ond network trip to the client and the server machine can
become a bottleneck, particularly since it usually serves
large numbers of disks to better amortize its cost.

The limitations of using a single central fileserver are
widely recognized. Companies such as Auspex and Net-
work Appliance have attempted to improve file server per-
formance, specifically the number of clients supported,
through the use of special purpose server hardware and
highly optimized software [Hitz90, Hitz94]. Although not

the topic of this paper, the NASD architecture can improve
the client-load-bearing capability of traditional filesystems
by off-loading simple data-intensive processing to NASD
drives [Gibson97a].

To transparently improve storage bandwidth and reliability
many systems interpose another computer, such as a RAID
controller [Patterson88]. This organization (3) adds another
peripheral network transfer and store-and-forward stage for
data to traverse.

Provided that the distributed filesystem is reorganized to
logically “DMA” data rather than copy it through its server,
a fourth organization (4) reduces the number of network
transits for data to two. This organization has been exam-
ined extensively [Drapeau94, Long94] and is in use in the
HPSS implementation of the Mass Storage Reference
Model [Watson95, Miller88]. Organization (4) also applies
to systems where clients are trusted to maintain filesystem
metadata integrity and implement disk striping and redun-
dancy [Hartman93, Anderson96]. In this case, client cach-
ing of metadata can reduce the number of network transfers
for control messages and data to two. Moreover, disks can
be attached to client machines which are presumed to be
independently paid for and generally idle. This eliminates
additional store-and-forward cost, if clients are idle, without
eliminating the copy itself.

As described in Section 4, the NASD architecture (5)
embeds the disk management functions into the device and
offers a variable-length object storage interface. In this
organization, file managers enable repeated client accesses
to specific storage objects by granting a cachable capability.

Figure 1: An overview of a scalable bandwidth NASD system. The major components are annotated with the layering of their logical
components. The innermost box shows a basic NASD drive as described in Section 4. The larger box contains the essentials for a
NASD-based filesystem, which adds a file manager and client as detailed in Section 5.1. Finally, the outer box adds a storage manager
to coordinate drives on which parallel filesystem is built as discussed in Section 5.2.

Net Protocol Controller

Net Hardware HDA

NASD Object SystemFilesystem

Access Control
Namespace
Consistency

Net Protocol

Net Hardware

File Manager

Switch

Client

NASD

Storage Manager

Striping FS

Concurrency Control
Mapping

Redundancy

Net Protocol

Net Hardware

Management

Read/Write

Access Control

Section 5.2

Section 5.1

Section 4

Security Layout

NASDNASD

NASD

NASD

NASD Driver

Net Protocol

Net Hardware

Application

Filesystem

3

Hence, all data and most control travels across the network
once and there is no expensive store-and-forward computer.

The idea of a simple, disk-like network-attached storage
server as a building block for high-level distributed filesys-
tems has been around for a long time. Cambridge’s Univer-
sal File Server (UFS) used an abstraction similar to NASD
along with a directory-like index structure [Birrell80]. The
UFS would reclaim any space that was not reachable from a
root index. The successor project at Cambridge, CFS, also
performed automatic reclamation and added undoable (for a
period of time after initiation) transactions into the filesys-
tem interface [Mitchell81]. To minimize coupling of file
manager and device implementations, NASD offers less
powerful semantics, with no automatic reclamation or trans-
action rollback.

Using an object interface in storage rather than a fixed-
block interface moves data layout management to the disk.
In addition, NASD partitions are variable-sized groupings
of objects, not physical regions of disk media, enabling the
total partition space to be managed easily, in a manner simi-
lar to virtual volumes or virtual disks [IEEE95, Lee96]. We
also believe that specific implementations can exploit
NASD’s uninterpreted filesystem-specific attribute fields to
respond to higher-level capacity planning and reservation
systems such as HP’s attribute-managed storage
[Golding95]. Object-based storage is also being pursued for
quality-of-service at the device, transparent performance
optimizations, and drive supported data sharing
[Anderson98a].

ISI’s Netstation project [VanMeter96] proposes a form of

object-based storage called Derived Virtual Devices (DVD)
in which the state of an open network connection is aug-
mented with access control policies and object metadata,
provided by the file manager using Kerberos [Neuman94]
for underlying security guarantees. This is similar to
NASD’s mechanism except that NASD’s access control pol-
icies are embedded in unforgeable capabilities separate from
communication state, so that their interpretation persists (as
objects) when a connection is terminated. Moreover, Netsta-
tion’s use of DVD as a physical partition server in VISA
[VanMeter98] is not similar to our use of NASD as a single-
object server in a parallel distributed filesystem.

In contrast to the ISI approach, NASD security is based on
capabilities, a well-established concept for regulating access
to resources [Dennis66]. In the past, many systems have
used capabilities that rely on hardware support or trusted
operating system kernels to protect system integrity
[Wulf74, Wilkes79, Karger88]. Within NASD, we make no
assumptions about the integrity of the client to properly
maintain capabilities. Therefore, we utilize cryptographic
techniques similar to ISCAP [Gong89] and Amoeba
[Tanenbaum86]. In these systems, both the entity issuing a
capability and the entity validating a capability must share a
large amount of private information about all of the issued
capabilities. These systems are generally implemented as
single entities issuing and validating capabilities, while in
NASD these functions are done in distinct machines and no
per-capability state is exchanged between issuer and valida-
tor.

To offer disk striping and redundancy for NASD, we layer
the NASD interface. In this organization (6), a storage man-

Figure 2: Evolution of storage architectures for untrusted networks and clients. Boxes are computers, horizontal lines are
communication paths and vertical lines are internal and external interfaces. LAN is a local area network such as Ethernet or FDDI.
PAN is a peripheral area network such as SCSI, Fibrechannel or IBM’s ESCON. SAN is an emerging system area network such as
ServerNet, Myrinet or perhaps Fibrechannel or Ethernet that is common across clients, servers and devices. On the far right, a disk is
capable of functions such as seek, read, write, readahead, and simple caching. The object store binds blocks into variable-length
objects and manages the layout of these objects in the storage space offered by the device(s). The file manager provides naming,
directory hierarchies, consistency, access control, and concurrency control. In NASD, storage management is done by recursion on
the object interface on the SAN.

1. Local filesystem.

2. Distributed FS.

3. Distributed FS
with RAID controller

4. DMA-based DFS.

5. NASD - based DFS.

file manager disk

2

3

4

3/4

LAN

LAN PAN

LAN

PAN

PAN

PAN

PAN

bulk data transfer

2/2+
SANSAN

read, write

computers in
data/control

path
application

6. NASD-Cheops-based DFS. 2/2++

read, write

object store

SAN SAN

LAN

4

ager replaces the file manager’s capability with a set of
capabilities for the objects that actually make up the high-
level striped object. This costs an additional control mes-
sage but once equipped with these capabilities, clients again
access storage objects directly. Redundancy and striping are
done within the objects accessible with the client’s set of
capabilities, not the physical disk addresses.

Our storage management system, Cheops, differs from other
storage subsystems with scalable processing power such as
Swift, TickerTAIP and Petal [Long94, Cao93, Lee96] in that
Cheops uses client processing power rather than scaling the
computational power of the storage subsystem. Cheops is
similar to the Zebra and xFS filesystems except that client
trust is not required because the client manipulates only
objects it can access [Hartman93, Anderson96].

3. ENABLING TECHNOLOGY
Storage architecture is ready to change as a result of the syn-
ergy between five overriding factors: I/O bound applica-
tions, new drive attachment technologies, an excess of on-
drive transistors, the convergence of peripheral and inter-
processor switched networks, and the cost of storage sys-
tems.

I/O-bound applications: Traditional distributed filesystem
workloads are dominated by small random accesses to small
files whose sizes are growing with time, though not dramat-
ically [Baker91, TPC98]. In contrast, new workloads are
much more I/O-bound, including data types such as video
and audio, and applications such as data mining of retail
transactions, medical records, or telecommunication call

records.

New drive attachment technology: The same technology
improvements that are increasing disk density by 60% per
year are also driving up disk bandwidth at 40% per year
[Grochowski96]. High transfer rates have increased pres-
sure on the physical and electrical design of drive busses,
dramatically reducing maximum bus length. At the same
time, people are building systems of clustered computers
with shared storage. For these reasons, the storage industry
is moving toward encapsulating drive communication over
Fibrechannel [Benner96], a serial, switched, packet-based
peripheral network that supports long cable lengths, more
ports, and more bandwidth. One impact of NASD is to
evolve the SCSI command set that is currently being encap-
sulated over Fibrechannel to take full advantage of the
promises of that switched-network technology for both
higher bandwidth and increased flexibility.

Excess of on-drive transistors: The increasing transistor
density in inexpensive ASIC technology has allowed disk
drive designers to lower cost and increase performance by
integrating sophisticated special-purpose functional units
into a small number of chips. Figure 3 shows the block dia-
gram for the ASIC at the heart of Quantum’s Trident drive.
When drive ASIC technology advances from 0.68 micron
CMOS to 0.35 micron CMOS, they could insert a 200 MHz
StrongARM microcontroller, leaving 100,000 gate-equiva-
lent space for functions such as onchip DRAM or crypto-
graphic support. While this may seem like a major jump,
Siemen’s TriCore integrated microcontroller and ASIC
architecture promises to deliver a 100 MHz, 3-way issue,

(b) Next-generation ASIC (0.35 micron technology)

Figure 3: Quantum’s Trident disk drive features the ASIC on the left (a). Integrated onto this chip in four independent clock domains are
10 function units with a total of about 110,000 logic gates and a 3 KB SRAM: a disk formatter, a SCSI controller, ECC detection, ECC
correction, spindle motor control, a servo signal processor and its SRAM, a servo data formatter (spoke), a DRAM controller, and a
microprocessor port connected to a Motorola 68000 class processor. By advancing to the next higher ASIC density, this same die area
could also accommodate a 200 MHz StrongARM microcontroller and still have space left over for DRAM or additional functional units
such as cryptographic or network accelerators.

(a) Current Trident ASIC (74 mm2 at 0.68 micron)

.35 micron frees 40 mm2

Insert.35 micron StrongArm RISC µP

fits in 27 mm2 with 8K+8K cache

at 200 MHz, 230 Dhrystone MIPS

frees 100 Kgates
? cryptography
? network support

5

32-bit datapath with up to 2 MB of onchip DRAM and cus-
tomer defined logic in 1998 [TriCore97].

Convergence of peripheral and interprocessor networks:
Scalable computing is increasingly based on clusters of
workstations. In contrast to the special-purpose, highly reli-
able, low-latency interconnects of massively parallel pro-
cessors such as the SP2, Paragon, and Cosmic Cube,
clusters typically use Internet protocols over commodity
LAN routers and switches. To make clusters effective, low-
latency network protocols and user-level access to network
adapters have been proposed, and a new adapter card inter-
face, the Virtual Interface Architecture, is being standard-
ized [Maeda93, Wilkes92, Boden95, Horst95, vonEicken95,
Intel97]. These developments continue to narrow the gap
between the channel properties of peripheral interconnects
and the network properties of client interconnects [Sachs94]
and make Fibrechannel and Gigabit Ethernet look more
alike than different

Cost-ineffective storage servers: In high performance dis-
tributed filesystems, there is a high cost overhead associated
with the server machine that manages filesystem semantics
and bridges traffic between the storage network and the cli-
ent network [Anderson96]. Figure 4 illustrates this problem
for bandwidth-intensive applications in terms of maximum
storage bandwidth. Based on these cost and peak perfor-
mance estimates, we can compare the expected overhead
cost of a storage server as a fraction of the raw storage cost.
Servers built from high-end components have an overhead
that starts at 1,300% for one server-attached disk! Assuming
dual 64-bit PCI busses that deliver every byte into and out
of memory once, the high-end server saturates with 14
disks, 2 network interfaces, and 4 disk interfaces with a
115% overhead cost. The low cost server is more cost effec-
tive. One disk suffers a 380% cost overhead and, with a 32-
bit PCI bus limit, a six disk system still suffers an 80% cost
overhead.

While we can not accurately anticipate the marginal
increase in the cost of a NASD over current disks, we esti-
mate that the disk industry would be happy to charge 10%
more. This bound would mean a reduction in server over-

head costs of at least a factor of 10 and in total storage sys-
tem cost (neglecting the network infrastructure) of over
50%.

4. NETWORK-ATTACHED SECURE DISKS
Network-Attached Secure Disks (NASD) enable cost-effec-
tive bandwidth scaling. NASD eliminates the server band-
width bottleneck by modifying storage devices to transfer
data directly to clients and also repartitions traditional file
server or database functionality between the drive, client
and server as shown in Figure 1. NASD presents a flat name
space of variable-length objects that is both simple enough
to be implemented efficiently yet flexible enough for a wide
variety of applications. Because the highest levels of distrib-
uted filesystem functionality—global naming, access con-
trol, concurrency control, and cache coherency—vary
significantly, we do not advocate that storage devices sub-
sume the file server entirely. Instead, the residual filesystem,
the file manager, should define and manage these high-level
policies while NASD devices should implement simple
storage primitives efficiently and operate as independently
of the file manager as possible.

Broadly, we define NASD to be storage that exhibits the fol-
lowing four properties:

Direct transfer: Data is transferred between drive and cli-
ent without indirection or store-and-forward through a file
server machine.

Asynchronous oversight: We define asynchronous over-
sight as the ability of the client to perform most operations
without synchronous appeal to the file manager. Frequently
consulted but infrequently changed policy decisions, such as
authorization decisions, should be encoded into capabilities
by the file manager and subsequently enforced by drives.

Cryptographic integrity: By attaching storage to the net-
work, we open drives to direct attack from adversaries. Thus,
it is necessary to apply cryptographic techniques to defend
against potential attacks. Drives ensure that commands and
data have not been tampered with by generating and verifying
cryptographic keyed digests. This is essentially the same
requirement for security as proposed for IPv6 [Deering95].

Disk
Interface

Network

System
Memory

$1000 / $7000

$100 / $400

$300 / $600
10 MB/s / 18MB/s

100 Mb/s / 1 Gb/s

Processor Unit

Interface

Figure 4: Cost model for the traditional server architecture. In
this simple model, a machine serves a set of disks to clients
using a set of disk (wide Ultra and Ultra2 SCSI) and network
(Fast and Gigabit Ethernet) interfaces. Using peak bandwidths
and neglecting host CPU and memory bottlenecks, we
estimate the server cost overhead at maximum bandwidth as
the sum of the machine cost and the costs of sufficient
numbers of interfaces to transfer the disks’ aggregate
bandwidth divided by the total cost of the disks. While the
prices are probably already out of date, the basic problem of a
high server overhead is likely to remain. We report pairs of
costs and bandwidth estimates. On the left, we show values
for a low cost system built from high-volume components. On
the right, we show values for a high-performance reliable
system built from components recommended for mid-range
and enterprise servers [Pricewatch98].

40 MB/s / 80 MB/s

Ethernet

Seagate

Ultra SCSI

Medallist / Cheetah

133 MB/s / 532 MB/s

$50 / $650

6

Object-based interface: To allow drives direct knowledge
of the relationships between disk blocks and to minimize
security overhead, drives export variable length “objects”
instead of fixed-size blocks. This also improves opportuni-
ties for storage self-management by extending into a disk an
understanding of the relationships between blocks on the
disk [Anderson98a].

4.1 NASD Interface
For the experiments presented in this paper, we have con-
structed a simple, capability-based, object-store interface
(documented separately [Gibson97b]). This interface con-
tains less than 20 requests including: read and write object
data; read and write object attributes; create and remove
object; create, resize, and remove partition; construct a
copy-on-write object version; and set security key. Figure 5
diagrams the components of a NASD request and illustrates
the layering of networking and security.

Based loosely on the inode interface of a UNIX
filesystem [McKusick84], our interface provides soft parti-
tions, control objects, and per-object attributes for prealloca-
tion, clustering, and capability revocation. Resizeable
partitions allow capacity quotas to be managed by a drive
administrator. Objects with well-known names and struc-
tures allow configuration and bootstrap of drives and parti-
tions. They also enable filesystems to find a fixed starting
point for an object hierarchy and a complete list of allocated
object names. Object attributes provide timestamps, size,
and allow capacity to be reserved and objects to be linked
for clustering [deJonge93]. A logical version number on the
object may be changed by a filesystem to immediately
revoke a capability (either temporarily or permanently).
Finally, an uninterpreted block of attribute space is available
to the file manager to record its own long-term, per-object
state such as filesystem access control lists or mode bits.

NASD security is based on cryptographic capabilities which
are documented in an earlier publication [Gobioff97]. Capa-
bilities are protected by a small number of keys organized
into a four-level hierarchy. The primary use of the keys is to
manage the key hierarchy and construct capabilities for use
by clients. Clients obtain capabilities from a file manager
using a secure and private protocol external to NASD. A

capability contains a public and a private portion. The pub-
lic portion is a description of what rights are being granted
for which object. The private portion is a cryptographic key
generated via a keyed message digest [Bellare96] from the
public portion and drive’s secret keys. A drive verifies a cli-
ent’s right to perform an operation by confirming that the
client holds the private portion of an appropriate capability.
The client sends the public portion along with each request
and generates a second digest of the request parameters
keyed by the private field. Because the drive knows its keys,
receives the public fields of a capability with each request,
and knows the current version number of the object, it can
compute the client’s private field (which the client cannot
compute on its own because only the file manager has the
appropriate drive secret keys). If any field has been
changed, including the object version number, the access
fails and the client is sent back to the file manager.

These mechanisms ensure the integrity of requests in the
presence of both attacks and simple accidents. Protecting
the integrity and/or privacy of the data involves crypto-
graphic operations on all the data which is potentially very
expensive. Software implementations operating at disk rates
are not available with the computational resources we
expect on a disk, but schemes based on multiple DES func-
tion blocks in hardware can be implemented in a few tens of
thousands of gates and operate faster than disk data
rates [Verbauwhede87, Knudsen96]. For the measurements
reported in this paper, we disabled these security protocols
because our prototype does not currently support such hard-
ware.

4.2 Prototype Implementation
We have implemented a working prototype of the NASD
drive software running as a kernel module in Digital UNIX.
Each NASD prototype drive runs on a
DEC Alpha 3000/400 (133 MHz, 64 MB,
Digital UNIX 3.2g) with two Seagate ST52160 Medallist
disks attached by two 5 MB/s SCSI busses. While this is
certainly a bulky “drive”, the performance of this five year
old machine is similar to what we predict will be available
in drive controllers soon. We use two physical drives man-
aged by a software striping driver to approximate the
10 MB/s rates we expect from more modern drives.

Because our prototype code is intended to operate directly
in a drive, our NASD object system implements its own
internal object access, cache, and disk space management
modules (a total of 16,000 lines of code) and interacts mini-
mally with Digital UNIX. For communications, our proto-
type uses DCE RPC 1.0.3 over UDP/IP. The implementation
of these networking services is quite heavyweight. The
appropriate protocol suite and implementation is currently
an issue of active research [Anderson98b, Anderson98c,
VanMeter98]

Figure 6 shows the disks’ baseline sequential access band-
width as a function of request size, labeled raw read and
write. This test measures the latency of each request.
Because these drives have write-behind caching enabled, a

Figure 5: Packet diagram of the major components of a NASD
request in our current prototype. The details of NASD objects,
requests, and security are documented in separate papers
[Gibson97b, Gobioff97].

Request Digest

Nonce

Request Args

Capability

Security Header

RPC Header
Network Header Indicates key and security

options to use when handling
request

Includes approved logical ver-
sion number, access rights,
expiration time and accessible
object region

Protects against replayed and
delayed requests

Overall Digest

Data

7

write’s actual completion time is not measured accurately,
resulting in a write throughput (~7 MB/s) that appears to
exceed the read throughput (~5 MB/s). To evaluate object
access performance, we modified the prototype to serve
NASD requests from a user-level process on the same
machine (without the use of RPC) and compared that to the
performance of the local filesystem (a variant of Berkeley’s
FFS [McKusick84]). Figure 6 shows apparent throughput as
a function of request size with NASD and FFS being
roughly comparable. Aside from FFS’s strange write-behind
implementation, the principle differences are that NASD is
better tuned for disk access (~5 MB/s versus ~2.5 MB/s on
reads that miss in the cache), while FFS is better tuned for
cache accesses (fewer copies give it ~48 MB/s versus
~40 MB/s on reads that hit in the memory cache).

4.3 Scalability
Figure 7 demonstrates the bandwidth scalability of our
NASD prototype satisfying requests from cache. In this
experiment there are 13 NASD drives, each linked by OC-3
ATM to 10 client machines, each a DEC AlphaStation 255
(233 MHz, 128 MB, Digital UNIX 3.2g). Each client issues
a series of sequential 2 MB read requests striped across four
NASDs. From Figure 6, we know that each NASD can
deliver 32 MB/s from its cache to the RPC protocol stack.
However, DCE RPC cannot push more than 80 Mb/s
through a 155 Mb/s ATM link before the receiving client
saturates. While commodity NASD drives must have a less
costly RPC mechanism, this test does show a simple access
pattern for which a NASD array can deliver scalable aggre-
gate bandwidth.

4.4 Computational Requirements
Using our prototype drive software as a baseline, we can
estimate the computational power needed in a drive micro-
controller to support the basic NASD functions. We used the
ATOM code annotation tool [Srivastava94] and the Alpha

on-chip counters to measure the code paths of read and
write operations. These measurements are reported in the
Total Instructions columns of Table 1. For the one byte
requests, our measurements with DCPI [Anderson97] also
show that the prototype consumes 2.2 cycles per instruction
(CPI). There are many reasons why using these numbers to
predict drive performance is approximate. Our prototype
uses an Alpha processor (which has different CPI properties
than an embedded processor), our estimates neglect poorer
CPI during copying (which would have hardware assist in a
real drive), and our communications implementation is
more expensive than we believe to be appropriate in a drive
protocol stack. However, these numbers are still useful for
broadly addressing the question of implementing NASD in
a drive ASIC.

Table 1 shows that a 200 MHz version of our prototype

Figure 6: NASD prototype bandwidth comparing NASD, the local filesystem (FFS) and the raw device during sequential reads (a) and
writes (b). The raw device stripes data in 32 KB units over two disks each on a separate 5 MB/s SCSI bus. Response timing is done by a
user-level process issuing a single request for the specified amount of data. Raw disk readahead is effective for requests smaller than
about 128 KB. In the “miss” cases, not even metadata is cached. For cached accesses, FFS benefits from doing one less data copy than
does the NASD code. Both exhibit degradation as the processor’s L2 cache (512 KB) overflows, though NASD’s extra copy makes this
more severe. The strange write performance of FFS occurs because it acknowledges immediately for writes of up to 64 KB (write-
behind), and otherwise waits for disk media to be updated. In this test, NASD has write-behind (fully) enabled as do the disks.

(a) (b)

128 256 384 512
Request Size (KB)

0

8

16

24

32

40

48

56

A
pp

ar
en

t B
an

dw
id

th
 (

M
B

/s
)

128 256 384 512
Request Size (KB)

0

8

16

24

32

40

48

56

A
pp

ar
en

t B
an

dw
id

th
 (

M
B

/s
)

NASD read miss
FFS read miss

FFS read

Raw read

NASD read

NASD write miss
FFS write miss

FFS write

Raw write

NASD write

Figure 7: Prototype NASD cache read bandwidth. Read
bandwidth obtained by clients accessing a single large cached
file striped over 13 NASD drives with a stripe unit of 512 KB.
As shown by the client idle values, the limiting factor is the CPU
power of the clients within this range.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

B
an

dw
id

th
 (

M
B

/s
)

Average client idle

Average NASD CPU idle

Aggregate bandwidth

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 C
P

U
 Id

le

of Clients

8

should take 0.4-0.5 msecs for a small request, 70-90% of
which is spent in the communications codepath. For 64 KB
requests, we estimate 2.5-3.0 msec would be used with 90-
97% of the work in communications. For comparison, we
examined a Seagate Barracuda drive executing sequential
reads. Because this is the most important operation for cur-
rent drives, a large fraction of each operation is directly han-
dled in hardware. For single sector reads the Barracuda
takes only 0.3 msecs and for 64 KB reads it takes only
2.2 msecs.

We conclude that NASD control is not necessarily too
expensive but that workstation-class implementations of
communications certainly are [VanMeter98].

5. FILESYSTEMS FOR NASD
As shown in the previous section, NASD drives attached to
clients by a high-bandwidth switched network are capable
of scalable aggregate bandwidth. However, most client
applications do not access data directly – they access data
through higher-level distributed filesystems. To demonstrate
the feasibility of NASD, we have ported two popular dis-
tributed filesystems, NFS and AFS [Sandberg85,
Howard88], to our NASD environment. We have also
implemented a minimal distributed filesystem structure that
passes the scalable bandwidth of network-attached storage
on to applications.

Scalability in file managers has traditionally meant increas-
ing the number of clients supported as the total amount of
storage is increased. This topic is outside the scope of this
paper and has been addressed elsewhere [Howard88,
Anderson96, Gibson97a, Thekkath97]. To scale achievable
bandwidth with increasing storage capacity, however,
requires more than simply attaching storage to the network.
For example, even if the application issues sufficiently large
requests, NFS and AFS break these requests into small

transfer units and limit the number of requests that are con-
currently issued to storage.

Pragmatically, a new class of disk devices that requires high
sales volumes for cost effectiveness and new filesystems for
effective performance will likely fail unless there is a strat-
egy for evolving existing systems to the new architecture. If
NASD drives can be used in traditional distributed filesys-
tems without penalty, then customers must be moved to new
NASD-optimized filesystems only when bandwidth is the
primary concern.

5.1 NFS and AFS in a NASD environment
In a NASD-adapted filesystem, files and directories are
stored in NASD objects. The mapping of files and directo-
ries to objects depends upon the filesystem. For our NFS
and AFS ports, we use a simple approach: each file and each
directory occupies exactly one NASD object, and offsets in
files are the same as offsets in objects. This allows common
file attributes (e.g. file length and last modify time) to corre-
spond directly to NASD-maintained object attributes. The
remainder of the file attributes (e.g. owner and mode bits)
are stored in the object’s uninterpreted attributes. Because
the filesystem makes policy decisions based on these file
attributes, the client may not directly modify object meta-
data; commands that may impact policy decisions such as
quota or access rights must go through the file manager.

The combination of a stateless server, weak cache consis-
tency, and few filesystem management mechanisms make
porting NFS to a NASD environment straightforward. Data-
moving operations (read, write) and attribute reads
(getattr) are directed to the NASD drive while all other
requests are handled by the file manager. Capabilities are
piggybacked on the file manager’s response to lookup
operations. File attributes are either computed from NASD
object attributes (e.g. modify times and object size) or
stored in the uninterpreted filesystem-specific attribute (e.g.

Table 1: Measured cost and estimated performance of read and write requests. The instruction counts and distribution were obtained by
instrumenting our prototype with ATOM and using the Alpha on-chip counters. The values shown are the total number of instructions
required to service a particular request size and include all communications (DCE RPC, UDP/IP) and NASD code including kernel work
done on their behalf. The measured number of cycles per instruction (CPI) for 1-byte requests was 2.2 (for larger requests our processor
copying implementation suffers significantly while real disks have substantial hardware assistance as shown in Figure 3). The second set
of columns use these instruction counts to estimate the duration of each operation on a 200 MHz processor, assuming a CPI of 2.2 for all
instructions (including copying and communications instructions). For comparison purposes, we experimented with a Seagate Barracuda
(ST 34371W). This drive is able to read the next sequential sector from its cache in 0.30 msec and read a random single sector from the
media in 9.4 msec. With 64 KB requests, it reads from cache in 2.2 msec and from the media, at a random location, in 11.1 msec.
“Write - warm cache” means that the needed metadata is in the cache before the operation starts.

Operation Total Instructions / % Communications
Operation time (msec)

(@ 200 MHz, CPI = 2.2)

Request Size 1 B 8 KB 64 KB 512 KB 1 B 8 KB 64 KB 512KB

read - cold cache 46k 70 67k 79 247k 90 1,488k 92 0.51 0.74 2.7 16.4

read - warm cache 38k 92 57k 94 224k 97 1,410k 97 0.42 0.63 2.5 15.6

write - cold cache 43k 73 71k 82 269k 92 1,947k 96 0.47 0.78 3.0 21.3

write - warm cache 37k 92 57k 94 253k 97 1,871k 97 0.41 0.64 2.8 20.4

9

mode and uid/gid).

AFS is a more complex distributed filesystem personality,
but is also readily mapped to a NASD environment. As with
NFS, data-moving requests (FetchData, StoreData)
and attribute reads (FetchStatus, BulkStatus) are
directed to NASD drives, while all other requests are sent to
the file manager. Because AFS clients perform lookup oper-
ations by parsing directory files locally, there was no obvi-
ous operation on which to piggyback the issuing of
capabilities so AFS RPCs were added to obtain and relin-
quish capabilities explicitly. AFS’s sequential conistency is
provided by breaking callbacks (notifying holders of poten-
tially stale copies) when a write capability is issued. With
NASD, the file manager no longer knows that a write opera-
tion arrived at a drive so must inform clients as soon as a
write may occur. The issuing of new callbacks on a file with
an outstanding write capability are blocked. Expiration
times set by the file manager in every capability and the
ability to directly invalidate capabilities allows file manag-
ers to bound the waiting time for a callback.

AFS also requires enforcement of a per-volume quota on
allocated disk space. This is more difficult in NASD
because quotas are logically managed by the file manager
on each write but the file manager is not accessed on each
write. However, because NASD has a byte range restriction
in its capabilities, the file manager can create a write capa-
bility that escrows space for the file to grow by selecting a
byte range larger than the current object. After the capability
has been relinquished to the file manager (or has expired),
the file manager can examine the object to determine its
new size and update the quota data structures appropriately.

Both the NFS and AFS ports were straightforward. Specifi-
cally, transfers remain quite small, directory parsing in NFS
is still done by the server, and the AFS server still has a con-
currency limitations caused by its coroutine-based user-

level threads package. Our primary goal was to demonstrate
that simple modifications to existing filesystems allow
NASD devices to be used without performance loss. Using
the Andrew benchmark [Howard88] as a basis for compari-
son, we found that NASD-NFS and NFS had benchmark
times within 5% of each other for configurations with
1 drive/1 client and 8 drives/8 clients [Gibson97b]. We do
not report AFS numbers because the AFS server’s severe
concurrency limitations would make a comparison unfair.

5.2 A Parallel Filesystem for NASD Clusters
To fully exploit the potential bandwidth in a NASD system,
higher-level filesystems should make large, parallel requests
to files striped across multiple NASD drives. As illustrated
in Figure 8, our layered approach allows the filesystem to
manage a “logical” object store provided by our storage
management system called Cheops. Cheops exports the
same object interface as the underlying NASD devices, and
maintains the mapping of these higher-level objects to the
objects on the individual devices. Our prototype system
implements a Cheops client library that translates applica-
tion requests and manages both levels of capabilities across
multiple NASD drives. A separate Cheops storage manager
(possibly co-located with the file manager) manages map-
pings for striped objects and supports concurrency control
for multi-disk accesses. The Cheops client and manager is
less than 10,000 lines of code.

To provide support for parallel applications, we imple-
mented a simple parallel filesystem, NASD PFS, which
offers the SIO low-level parallel filesystem interface
[Corbett96] and employs Cheops as its storage management
layer. We used MPICH for communications within our par-
allel applications [MPI95], while Cheops uses the DCE
RPC mechanism required by our NASD prototype.

To evaluate the performance of Cheops, we used a parallel
data mining system that discovers association rules in sales

Figure 8: A NASD-optimized parallel filesystem. NASD PFS is used in conjunction with MPI for parallel applications in a cluster of
workstations. The filesystem manages objects which are not directly backed by data. Instead, they are backed by a storage manager,
Cheops, which redirects clients to the underlying component NASD objects. Our parallel filesystem extends a simple Unix filesystem
interface with the SIO low-level interface [Corbett96] and inherits a name service, directory hierarchy, and access controls from the
filesystem.

Parallel FS

Access Control
Namespace
Consistency

Net Protocol

Net Hardware

Parallel FS

Cheops

Net Protocol

Application

File Manager

Client

Storage Manager

Cheops Manager

Concurrency Control
Mapping

Redundancy

Net Protocol

Net Hardware

Management

Read/Write

Access Control
NASD NASDNASDNASD

Net Hardware

MPI

Switch

Object 0 = (0.1, 0.2, 0.3, 0.4)

Object 0.1 Object 0.3Object 0.2 Object 0.4

Object 0

10

transactions [Agrawal94]. The application’s goal is to dis-
cover rules of the form “if a customer purchases milk and
eggs, then they are also likely to purchase bread” to be used
for store layout or inventory decisions. It does this in several
full scans over the data, first determining the items that
occur most often in the transactions (the 1-itemsets), then
using this information to generate pairs of items that occur
most often (2-itemsets) and then larger groupings (k-item-
sets) in subsequent passes. Our parallel implementation
avoids splitting records over 2 MB boundaries and uses a
simple round-robin scheme to assign 2 MB chunks to cli-
ents. Each client is implemented as four producer threads
and a single consumer. Producer threads read data in
512 KB requests (which is the stripe unit for Cheops objects
in this configuration) and the consumer thread performs the
frequent sets computation, maintaining a set of itemset
counts that are combined at a single master client. This
threading maximizes overlapping and storage utilization.

Figure 9 shows the bandwidth scalability of the most I/O
bound of the phases (the generation of 1-itemsets) process-
ing a 300 MB sales transaction file. A single NASD pro-
vides 6.2 MB/s per drive and our array scales linearly up to
45 MB/s with 8 NASD drives.

In comparison, we also show the bandwidth achieved when
NASD PFS fetches from a single higher-performance tradi-
tional NFS file instead of a Cheops NASD object. The NFS
file server is an AlphaStation 500/500 (500 MHz, 256 MB,
Digital UNIX 4.0b) with two OC-3 ATM links (half the cli-

ents communicate over each link), and eight Seagate
ST34501W Cheetah disks (13.5 MB/s) attached over two
40 MB/s Wide UltraSCSI busses. Using optimal code, this
machine can internally read as much as 54.1 MB/s from
these disks through the raw disk interface. We show two
application throughput lines for this server. The line marked
NFS-parallel shows the performance of each client reading
from an individual file on an independent disk and achieves
performance up to 22.5 MB/s. The results show an NFS
server (with 35+ MB/s of network bandwidth, 54 MB/s of
disk bandwidth and a perfect sequential access pattern on
each disk) loses much of its potential performance to CPU
and interface limits. In comparison, each NASD is able to
achieve 6.2 MB/s of the raw 7.5 MB/s available from its
underlying dual Medallists. Finally, the NFS line is the one
most comparable to the NASD line and shows the bandwidth
when all clients read from a single NFS file striped across
n disks. This configuration is slower at 20.2 MB/s than
NFS-parallel because its prefetching heuristics fail in the
presence of multiple request streams to a single file.

In summary, NASD PFS on Cheops delivers nearly all of
the bandwidth of the NASD drives, while the same applica-
tion using a powerful NFS server fails to deliver half the
performance of the underlying Cheetah drives.

6. ACTIVE DISKS
Recent work in our group has focused on the logical exten-
sion to exploiting the growing amount of on-drive computa-
tion by providing full application-level programmability of
the drives in what we call Active Disks [Riedel98,
Acharaya98]. This next generation of storage devices pro-
vides an execution environment directly at individual drives
and allows code to execute near the data and before it is
placed on the interconnect network. This provides the capa-
bility to customize functionality for specific data-intensive
applications. By extending the object notion of the basic
NASD interface to include code that provides specialized
“methods” for accessing and operating on a particular data
type, there is a natural way to tie computation to the data
and scale as capacity is added to the system. NASD enables
this type of extension functionality for the first time because
the object-based interface provides sufficient knowledge of
the data at the individual devices without having to resort to
external metadata.

We have explored data mining and multimedia applications
for use in Active Disks. One of the applications we exam-
ined is the frequent sets computation discussed above. In
our Active Disk experiments, we also distribute the sales
transaction data across a set of drives, but instead of reading
the data across the network into a set of clients to do the
itemset counting, the core frequent sets counting code is
executed directly inside the individual drives. This allows us
to take advantage of the excess computational power avail-
able at the drives and completely eliminates the need for the
client nodes (for this particular application). Using the same
prototype drives discussed above and approximate Active
Disks functionality, we achieve 45 MB/s with low-band-

Figure 9: Scaling of a parallel data mining application. The
aggregate bandwidth computing frequent sets from 300 MB of
sales transactions is shown. The NASD line shows the
bandwidth of n clients reading from a single NASD PFS file
striped across n drives and scales linearly to 45 MB/s. All NFS
configurations show the maximum achievable bandwidth with
the given number of disks, each twice as fast as a NASD, and up
to 10 clients spread over two OC-3 ATM links. The comparable
NFS line shows the performance all the clients reading from a
single file striped across n disks on the server and bottlenecks
near 20 MB/s. This configuration causes poor read-ahead
performance inside the NFS server, so we add the NFS-parallel
line where each client reads from a replica of the file on an
independent disk through the one server. This configuration
performs better than the single file case, but only raises the
maximum bandwidth from NFS to 22.5 MB/s.

0 2 4 6 8
Number of Disks

0.0

10

20

30

40

50
A

pp
lic

at
io

n
T

hr
ou

gh
pu

t (
M

B
/s

)

NASD
NFS
NFS-parallel

11

width 10 Mb/s ethernet networking and only 1/3 of the hard-
ware used in the NASD PFS tests of Figure 9. While the
exploration of Active Disks has just begun, the potential
value for some applications is dramatic.

7. CONCLUSIONS
Scalable storage bandwidth in clusters can be achieved by
striping data over both storage devices and network links,
provided that a switched network with sufficient bisection
bandwidth exists. Unfortunately, the cost of the workstation
server, network adapters, and peripheral adapters generally
exceeds the cost of the storage devices, increasing the total
cost by at least 80% over the cost of simply buying the stor-
age. We have presented a promising direction for the evolu-
tion of storage that transfers data directly on the client’s
network and dramatically reduces this cost overhead.

Our scalable network-attached storage is defined by four
properties. First, it must support direct device-to-client
transfers. Second, it must provide secure interfaces (e.g. via
cryptography). Third, it must support asynchronous over-
sight, whereby file managers provide clients with capabili-
ties that allow them to issue authorized commands directly
to devices. Fourth, devices must serve variable-length
objects with separate attributes, rather than fixed-length
blocks, to enable self-management and avoid the need to
trust client operating systems.

To demonstrate these concepts, we have described the
design and implementation of a NASD prototype that man-
ages disks as efficiently as a UNIX filesystem. Measure-
ments of this prototype show that available microprocessor
cores embedded into the ASIC of a modern disk drive
should provide more than adequate on-drive support for
NASD, provided there is cryptographic hardware support
for the security functions.

Using a simple parallel, distributed filesystem designed for
NASD, we show that the NASD architecture can provide
scalable bandwidth. We report our experiments with a data
mining application for which we achieve 6.2 MB/s per cli-
ent-drive pair in a system up to 8 drives, providing 45 MB/s
overall. In addition, we describe how conventional distrib-
uted filesystems (NFS and AFS) can be ported to use NASD
with performance comparable to current server-based sys-
tems.

8. ACKNOWLEDGEMENTS
We thank Mike Leis of Quantum for the Trident chip dia-
gram of Figure 2. We thank Paul Mazaitis for his heroic
efforts in getting our prototype environment configured and
keeping it running. We thank Dan Stodolsky, Bill
Courtright, Joan Digney, Greg Ganger, Tara Madhyastha,
Todd Mowry, John Wilkes, Ted Wong, and the anonymous
reviewers for taking their valuable time to provide us with
comments that much improved the paper. We also thank the
members of the NSIC working group on network-attached
storage, especially Dave Anderson, Mike Leis, and John
Wilkes, for many useful conversations and site visits.
Finally, we thank all the other members of the Parallel Data

Lab make our research possible and enjoyable.

This research is sponsored by DARPA/ITO through DARPA
Order D306, and issued by Indian Head Division, NSWC
under contract N00174-96-0002. The project team is
indebted to generous contributions from the member com-
panies of the Parallel Data Consortium, including: Hewlett-
Packard Laboratories, Intel, Quantum, Seagate Technology,
Storage Technology, Wind River Systems, 3Com Corpora-
tion, Compaq, Data General/Clariion, and Symbios Logic.

9. REFERENCES
[Acharya98] Acharaya, A. et al, Active Disks, ACM ASPLOS,
Oct 1998.

[Agrawal94] Agrawal, R. and Srikant, R. Fast Algorithms for
Mining Association Rules, VLDB, Sept 1994.

[Anderson96] Anderson, T., et al. Serverless Network File
Systems, ACM TOCS 14(1), Feb 1996.

[Anderson97] Anderson, J.M. et al., Continuous Profiling:
Where Have All the Cycles Gone?, ACM SOSP, Oct 1997.

[Anderson98a] Anderson, D. Network Attached Storage
Research, www.nsic.org/nasd/meetings.html, March 1998.

[Anderson98b] Anderson, D. Network Attached Storage
Research, www.nsic.org/nasd/meetings.html, June1998.

[Anderson98c] Anderson, D., et al. Cheating the I/O Bottle-
neck: Network Storage with Trapeze/Myrinet, USENIX, June
1998.

[Baker91] Baker, M.G. et al., Measurements of a Distributed
File System”, ACM SOSP, Oct 1991.

[Bellare96] Bellare, M., Canetti, R. and Krawczyk, H., Key-
ing Hash Functions for Message Authentication, Crypto ‘96,
1996.

[Benner96] Benner, A.F., Fibre Channel: Gigabit Communi-
cations and I/O for Computer Networks, McGraw Hill, 1996.

[Birrell80] Birell, A.D. and Needham, R.M., A Universal File
Server, IEEE TSE6 (5), Sept1980.

[Boden95] Boden, N.J., et al., Myrinet: A Gigabit-per-Second
Local Area Network, IEEE Micro, Feb 1995.

[Cabrera91] Cabrera, L. and Long, D., Swift: Using Distrib-
uted Disk Striping to Provide High I/O Data Rates, Comput-
ing Systems4:4, Fall 1991.

[Cao93] Cao, P., et al., The TickerTAIP Parallel RAID Archi-
tecture, ACM ISCA, May 1993.

[Corbett96] Corbett, P., et al., Proposal for a Common Parallel
File System Programming Language, Scalable I/O Initiative
CalTech CACR 130, Nov 1996.

[Deering95] Deering, S. and Hinden, R., Internet Protocol
Version 6 Specification, RFC 1883, Dec 1995.

[deJonge93] deJonge, W., Kaashoek, M.F. and Hsieh. W.C.
The Logical Disk: A New Approach to Improving File Sys-
tems, ACM SOSP, Dec 1993.

[Dennis66] Dennis, J.B. and Van Horn, E.C., “Programming
Semantics for Multiprogrammed Computations”, CACM 9, 3,
1966

12

[Drapeau94] Drapeau, A.L., et al., RAID-II: A High-Band-
width Network File Server, ACM ISCA, 1994.

[Gibson97a] Gibson, G., et al., File Server Scaling with Net-
work-Attached Secure Disks, ACM SIGMETRICS,
June 1997.

[Gibson97b] Gibson, G., et al. Filesystems for Network-
Attached Secure Disks, TR CMU-CS-97-118, July 1997.

[Gobioff97] Gobioff, H., Gibson, G. and Tygar, D., Security
for Network Attached Storage Devices, TR CMU-CS-97-
185, Oct 1997.

[Golding95] Golding, R., Shriver, E., Sullivan, T., and
Wilkes, J., “Attribute-managed storage,” Workshop on
Modeling and Specification of I/O, San Antonio, TX, Oct
1995.

[Gong89] Gong, L., A Secure Identity-Based Capability
System IEEE Symp. on Security and Privacy, May 1989.

[Grochowski96] Grochowski, E.G. and Hoyt, R.F., Future
Trends in Hard Disk Drives, IEEE Trans. on Magnetics
32 (3), May 1996.

[Hartman93] Hartman, J.H. and Ousterhout, J.K., The Zebra
Striped Network File System, ACM SOSP, Dec 1993.

[Hitz90] Hitz, D. et al., Using UNIX as One Component of
a Lightweight Distributed Kernel for Multiprocessor File
Servers, Winter USENIX, 1990.

[Hitz94] Hitz, D., Lau, J. and Malcolm, M. File Systems
Design for an NFS File Server Appliance, Winter USENIX,
January 1994.

[Horst95] Horst, R.W. TNet: A Reliable System Area Net-
work, IEEE Micro, Feb1995.

[Howard88] Howard, J.H. et al., Scale and Performance in a
Distributed File System, ACM TOCS 6 (1), February 1988.

[IEEE95] IEEE P1244. “Reference Model for Open Storage
Systems Interconnection-Mass Storage System Reference
Model Version 5”, Sept 1995

[Intel97] Intel Corporation, Virtual Interface (VI) Architec-
ture, www.viarch.org, Dec 1997.

[Karger88] Karger, P.A., “Improving Security and Perfor-
mance for Capability Systems”, University of Cambridge
Computer Laboratory Technical Report No. 149, Oct 1988.

[Knudsen96] Knudsen, L. and Preneel, B., Hash functions
based on block ciphers and quaternary codes. Advances in
Cryptology ASIACRYPT, Nov 1996.

[Lee96] Lee, E.K. and Thekkath, C.A., Petal: Distributed Vir-
tual Disks, ACM ASPLOS, Oct 1996.

[Long94] Long, D.D.E., et al, Swift/RAID: A Distributed
RAID System, Computing Systems 7,3, Summer 1994.

[Maeda93] Maeda, C., and Bershad, B., “Protocol Service
Decomposition for High-Performance Networking”, 14th
ACM SOSP, Dec. 1993.

[McKusick84] McKusick, M.K. et al., A Fast File System for
UNIX, ACM TOCS 2, August 1984.

[Miller88] Miller, S.W., A Reference Model for Mass Storage
Systems, Advances in Computers 27, 1988.

[Mitchell81] Mitchell, J. and Dion, J., A Comparison of Two
Network-Based File Servers, ACM SOSP, Dec 1981.

[MPI95] The MPI Forum, The Message-Passing Interface
Standard, www.mcs.anl.gov/mpi/standard.html, May 1995.

[Neuman94] Neuman, B.C. and Ts’o, T., Kerberos: An
Authentication Service for Computer Networks, IEEE Com-
munications 32,9, Sept 1994.

[Patterson88] Patterson, D.A., et al., A Case for Redundant
Arrays of Inexpensive Disks, ACM SIGMOD, June 1988.

[Pricewatch98] www.pricewatch.com, July 1998.

[Riedel98] Riedel, E., et al., “Active Storage for Large-Scale
Data Mining and Multimedia” VLDB, Aug 1998.

[Sachs94] Sachs, M.W. et al., LAN and I/O Convergence: A
Survey of the Issues, IEEE Computer, Dec 1994.

[Sandberg85] Sandberg, R. et al., Design and Implementation
of the Sun Network Filesystem, Summer USENIX, June 1985,
pp. 119-130.

[Srivastava94] Srivastava, A., and Eustace, A., ATOM: A sys-
tem for building customized program analysis tools, WRL
Technical Report TN-41, 1994.

[Tanenbaum86] Tanenbaum, A.S., Mullender, S.J. and van
Renesse, R., Using Sparse Capabilities in a Distributed Sys-
tem, Sixth Conference on Distributed Computing, 1986.

[Thekkath97] Thekkath, C., et al., Frangipani: A Scalable
Distributed File System, ACM SOSP, Oct 1997.

[TPC98] Transaction Performance Council TPC-C Executive
Summaries, URL: www.tpc.org, Mar 1998.

[TriCore97] TriCore News Release, Siemens’ New 32-bit
Embedded Chip Architecture Enables Next Level of Perfor-
mance in Real-Time Electronics Design, www.tri-core.com,
Sept 1997.

[VanMeter96] Van Meter, R., Hotz, S. and Finn, G., Derived
Virtual Devices: A Secure Distributed File System Mecha-
nism, Fifth NASA Goddard Conference on Mass Storage Sys-
tems and Technologies, Sep 1996.

[VanMeter98] Van Meter, R., et al., VISA: Netstation’s Vir-
tual Internet SCSI Adapter, ACM ASPLOS, Oct 1998.

[Verbauwhede87] Verbauwhede, I. et al., H. Security Consid-
erations in the Design and Implementation of a New DES
Chip, EUROCRYPT, 1987.

[vonEicken95] von Eicken, T., Basu, A., Buch, V. and
Vogels, W. U-Net: A User-Level Network Interface for Par-
allel and Distributed Computing, ACM SOSP, Dec 1995.

[Watson95] Watson, R., Coyne, R., The Parallel I/O Archi-
tecture of the High-Performance Storage System (HPSS),
14th IEEE Symposium on Mass Storage Systems, September
1995.

[Wilkes79] Wilkes, M.V. and Needham, R.M., The Cam-
bridge CAP Computer and Its Operating System, 1979.

[Wilkes92] Wilkes, J. Hamlyn - An Interface for Sender-
based Communications, Hewlett-Packard Laboratories
Technical Report HPL-OSR-92-13, Nov 1992.

[Wulf74] Wulf, W.A. et al., “HYDRA: The Kernel of a Mul-
tiprocessor Operating System”, CACM, 17,6, June 1974

