
Spritely NFS: Experiments with Cache-Consistency Protocols

V. Srinivasan
University of Wisconsin

Jeffrey C. Mogul
Digital Equipment Corporation Western Research Laboratory

Abstract

File caching is essential to good performance in a dis-
tributed system, especially as processor speeds and
memory sizes continue to improve rapidly while disk
latencies do not. Stateless-server systems, such as NFS,
cannot properly manage client file caches. Stateful sys-
tems, such as Sprite, can use explicit cache consistency
protocols to improve both cache consistency and overall
performance.

By modifying NFS to use the Sprite cache consistency
protocols, we isolate the effects of the consistency
mechanism from the other features of Sprite. We find
dramatic improvements on some, although not all,
benchmarks, suggesting that an explicit cache consis-
tency protocol is necessary for both correctness and
good performance.

1. Introduction
Cache management strategies are central to performance,

reliability, and correctness of distributed file services.
Caching improves performance by avoiding unnecessary
disk traffic, network traffic, and server use, but caching
implies the potential existence of multiple copies of the
same data, and keeping these multiple copies consistent is a
challenge. This is especially true when the caches are kept
by the clients of a distributed file service, which might be
attempting concurrent access to the same file.

Several different cache-consistency strategies are used in
existing systems. Two important examples are the
NFS [131 and Sprite [7] file system protocols. (“Sprite” is
the name of an entire distributed operating system; we are
concerned only with the Sprite file protocols, which we
refer to as “Sprite” in this paper.)

Permission to copy without fee all or parl of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specitic permission.
0 1989 ACM 089791-338-3/89/0012/0045 $1.50

NFS adheres to a stateless-server model and uses a
probabilistic, stateless consistency scheme’. Sprite main-
tains server state, and uses an explicit consistency protocol.
This protocol allows Sprite to guarantee the semantics of
concurrent access by several clients to the same file; in
addition, Sprite is alleged to provide better performance
than NFS [7].

In NFS, cache consistency, performance, and crash vul-
nerability are inextricably linked together. NFS requires
clients to write blocks immediately to the server; this write-
back policy is necessary to maintain consistency, but per-
formance is reduced. Through its consistency protocol,
Sprite is able to separate performance from consistency,
and thus improve both. The NFS write-through policy also
limits the amount of data lost in a crash: Sprite allows
clients to select this policy only when they need it. Al-
though stateless servers have certain well-known ad-
vantages, they appear to be unable to simultaneously
provide consistency and good performance.

In the experiment described in this paper, we trans-
planted the Sprite consistency protocol into the NFS file
access protocol, hoping that some of Sprite’s benefits
would be transferred to NFS. This experiment also helps to
isolate the effects of the cache consistency protocols from
other differences between NFS and Sprite (for example, the
different approaches to file name translation).

It proved to be relatively easy to modify the NFS im-
plementation used in the UltrixTM operating system to use
the Sprite consistency mechanism. We call this system
“Spritely NFS*.” In section 3 we describe the specific
changes to the NFS protocol, and in section 4 we describe
our implementation.

‘The official NFS protocol specification [161, while requiring a stateless
server, says nothing about cache consistency. This specification provides
insufficient guidance for producing a workable NFS implementation: the
so-called “reference port” implementation is what actually defines correct
behavior of NFS clients and servers. The reference port does imply a
particular cache-consistency scheme.

2 “spritedy UC/~. [obsolete .s~~i~~$t (sprite), alteration of sl~i/c]: marked
by a gay lightness and vivacity: SPIRITED syn see LIVELY” [171.

45

Performance measurements, presented in section 5, are
somewhat ambiguous. Depending on the benchmark,
Spritely NFS either dramatically outperforms NFS.. or per-
forms slightly worse. Our expectation is that in actual use,
Spritely NFS should perform moderately better than un-
modified NFS. In any event, Spritely NFS guarantees that
no two clients will have inconsistent cached copies of a
file.

2. Approaches to cache consistency
We hoped to answer two questions in our experiment:
1. Are the performance advantages claimed for Sprite

really the result of the cache-consistency mechanism,
or are they attributable to differences in other features
or to implementation quality?

2. Would adding Sprite-like consistency protocols to NFS
improve NFS performance, and could this be done
without significantly complicating the NFS implemen-
tation?

Implicit in these questions is the idea that the central dif-
ference between Sprite and NFS is their different alpproach
to cache consistency. Indeed, the protocols are similar in
many ways, particularly because both are meant to provide
a nearly transparent emulation of the Unix@ file system,
using servers accessed by remote procedure call (R.PC). In
both Sprite and NFS, portions of a file may be cached in
memory at the client (in contrast to the whole-file caching
scheme used in Andrew [2] or Cedar [141).

2.1. NFS consistency model
NFS follows a stateless-server model: the servezr retains

no information about its clients between RPC requests, and
ail file data is written synchronously to disk. This
simplifies the server implementation, avoids hard limits on
the number of simultaneous clients, and makes server-crash
recovery trivial.

Since the server has no record of which clients are cur-
rently using a file, it cannot itself guarantee cache consis-
tency. An NFS client periodically checks with the server to
see if a file has been modifiedj; if so, the client invalidates
its cache for that file. The interval between checks is a
compromise between performance (frequent checking loads
the server and delays the client) and consistency
(insufficiently frequent checking may mean that a client
uses stale data from its cache). The check is also made
each time the client opens a file.

Since one NFS client has no way of identifying other
clients that may be concurrently accessing a file, all of its
consistency checks must be made with the file server.
Therefore, whenever a client modifies a file, it must im-
mediately communicate the change back to the server. This
“write-through” policy limits the potential inconsistency
between the server’s copy and the client’s cache to a short

3The interval between probes in Ultrix varies between 3 and 150 seconds,
depending on the recent history of the file.

period. It also limits the amount of damage caused by a
crash; since an NFS server is required to write data to st-
able storage before returning from the remote procedure
call, the amount of cached information that is vulnerable to
loss during a crash is quite limited.

The use in NFS of write-through combined with periodic
checks provides consistency as long as no client writes a
file while another client has the file open, Because the
notion of “open” is not present in the NFS protocol but is
simply the state of a client with respect to a file, this is not
a true guarantee, since there is no way to enforce it.

A write-through policy has two distinct performance dis-
advantages. First, write-through limits the performance
benefits of client-side caching, since a server disk access is
done for every write. A surprising number of Unix files
have short lifetimes and are never shared by multiple
clients [IO], and thus need not be kept anywhere but in the
cache of the client where they are created. NFS, unfor-
tunately, cannot distinguish between shared and unshared
files, and so must treat every file as if it were potentially
shared. Both client and server waste effort performing un-
necessary write-through operations.

The second disadvantage of a strict write-through policy
is that it forces applications to run synchronously with the
disk. While an application is waiting for the data to make
its way over the network, through the server queues, and
onto the disk, it is blocked. The application therefore takes
longer to complete than it would if disk writes were per-
formed asynchronously, as they are in the local Unix file
system. Especially on single-user workstations, this time is
wasted.

Actual NFS client implementations do not always write
data synchronously. Instead, a block may be handed to a
daemon process, which immediately writes it to the server;
the original requesting process does not wait for the write
to complete. This modification appears necessary for
reasonable performance, but it does expose data to loss
during a crash. In order to maintain consistency between
opens of a file, an NFS client synchronously finishes all
pending write-throughs when the file is closed.

2.2. Sprite consistency model
Sprite follows a stateful-server model. Unlike NFS,

Sprite has explicit open and &se operations. Since the
open operation (in Sprite as in Unix) specifies if the ap-
plication intends to write to the file, by tracking open and
close operations the Sprite file server knows not only which
clients are currently using a file, but whether any of them
are potentially writers.

This is important because files are seldom “write-
shared”: that is, seldom do two or more clients simul-
taneously have a file open that one of them is writing.
More typically, either all the clients are doing read-only
operations, or a single client “owns” the file while it is
being modified. (We refer to these as the “read-only” and
“single-writer” cases, or together as “non-write-shared.“)

46

Because a non-write-shared file can be cached at the
clients without any danger of inconsistency, the Sprite serv-
er responds to each open request indicating if it is safe to
cache the file. Clients can cache without the periodic con-
sistency checks required in NFS. A single-writer client
need not do write-throughs, and might never write to the
server during the file’s entire lifetime. (If reliability is
more important than performance, an application can use
explicit file-flushing operations to cause write-through.)

If a file is write-shared, none of the clients (writers 01
readers) are allowed to cache it. For writers, this reverts to
the write-through policy of NFS, and provides the same
single-copy consistency between a writer and the server.
For readers, this is stricter than the NFS mechanism; each
read operation goes directly to the server. Readers are
guaranteed consistency with writers, provided that some
other mechanism (such as file locking) serializes the reads
and writes. NFS cannot feasibly use such a strict non-
caching policy, since NFS cannot distinguish between the
infrequent write-sharing situation when it is beneficial, and
the normal non-write-shared case when it is wasteful.

Of course, when multiple clients open a file, they do not
all issue their opens simultaneously. When a file that is
open read-only is subsequently opened for write, the Sprite
file server must notify not only the newly-arrived writer,
but also the existing readers, that the file is no longer cach-
able. (Similarly, when a file is opened first by a single
writer and then by another client, the first writer must be
told to stop caching its copy and to return all the dirty pages
to the server.) To do this notification, the Sprite server
makes asynchronous calls to the client, or “callbacks.”
Callbacks are the other major difference between the NFS
and Sprite protocols (in addition to the explicit O/XVI and
close operations).

There are other design differences between Sprite and
NFS that are not further considered in this paper, although
they do significantly effect performance. For example,
Sprite servers can translate entire (multiple-component) file
pathnames in one operation, whereas NFS servers translate
pathnames one component at a time. Sprite and NFS also
use different RPC protocols.

2.3. Potential advantages of Sprite
The Sprite consistency mechanism, unlike the periodic

checks used in NFS, grrarar~tees consistency between
clients accessing the same file. Thus, in some sense Sprite
is more “correct” than NFS. We do not know how impor-
tant this is in practice: since application writers know that
NFS does not provide true consistency, and especially be-
cause write-sharing is infrequent in any case, the lack of
consistency in NFS may not be significant. (A more fre-
quent case IS ’ ~ “sequential write-sharing,” where the writer
closes a file before the reader opens it; NFS provides con-
sistency in this case.) On the other hand, the weakness of
NFS consistency may be responsible for the lack of shared-
database applications.

Sprite should also provide better performance. Most im-
portant is its use of write-back instead of write-through.
This improves performance in two cases:

1. An application that alternates computation with disk
output (such as the compilation of several modules) can
do both in parallel, since Sprite allows the client’s
writebacks to proceed asynchronously even across file
closes.

2. An application that generates short-lived files (such as
a compiler with its intermediate files, or a sort
program) need not ever pay the cost of writing them to
disk. The client can delay write-back long enough that
the file may be deleted before the file is ever written to
the server. This becomes more significant as memory
chip sizes, and consequently client file system cache .
sizes, Increase.

These two cases are quite common for typical Unix
workloads, especially on diskless workstations, and the per-
formance improvements can be dramatic. Reducing the
number of server writes improves response time, since
writes are always synchronous with the disk at the server,
unlike reads which often hit in the server cache. Reducing
server writes can also improve the read hit rate of the server
cache, since “useful” cached data is less likely to be
replaced by the data from “useless” writes.

Sprite avoids the cost of periodic consistency probes, but
instead must do explicit open and &se operations. In
Sprite (but not Spritely NFS) the open operation is
“piggybacked” on the file name translation, thus eliminat-
ing one RPC call. Even so, in the case where a file is
opened, read quickly, and then closed, Sprite would require
one more RPC operation than NFS (because NFS would
not need to do any consistency probes in such a brief
interaction).

If the application mix is right, use of the Sprite consis-
tency mechanism should improve performance over NFS
by reducing client-to-server traffic and server disk I/O. The
latter is especially important because disk access times are
not improving nearly as fast as processor and communica-
tion speeds. This in turn should improve client response
time, and also increase the number of clients that can ac-
tively use a single server (and thus that can actively share a
single file system).

Because an NFS server keeps no per-client or per-open-
file state, in theory it could handle an arbitrary number of
clients or open files. A Sprite server cannot serve an un-
bounded number of clients or files, since it keeps infor-
mation about each recently-active file. That comparison
may be illusory: while the NFS server may be able to
“handle” an arbitrary number of clients, the Sprite server
should be able to provide acceptable performance to a
larger number of simultaneously active clients.

2.4. Implications for crash recovery
Because NFS servers are stateless, server crash recovery

in NFS is trivial: the server simply restarts. Client crash
recovery is also fairly simple, since all client data is written

47

immediately (as soon as possible) to disk, and
synchronously on close4. Only crashes that occur between
the creation of data by an application (for example,
keystrokes to a text editor) and the completion of a file-
write RPC cause data loss; this is actually better than the
local file system reliability in Unix, where a disk write may
be delayed for as much as 30 seconds.

Sprite provides roughly the same protection against
client crashes as does a local Unix file system. (An ap-
plication can always do explicit file flushes to provide
crash-resistance, but few existing Unix programs are writ-
ten this carefully. As in Unix, the write-delay period may
be adjusted to reduce the crash-vulnerability window.)
Sprite server crash recovery is more complex than in NFS,
since the server must reconstruct the state it maintains
about which files are open by which clients (or else the
clients could become inconsistent). A server-crash
recovery mechanism has been implemented for Sprite [181;
it relies on two of Sprite’s properties:

1. The clients together “know” who is caching the file,
and the server can reconstruct its state from the clients.

2. The consistency state of the file cannot chalnge while
the server is down, or until the server is willing to allow
it to change.

Most of the complexity in the recovery mechanism comes
in detecting crashes and reboots, rather than in rebuilding
state. This is done by tracking the passage of RPC packets,
and using periodic “keepalive” packets, to detect when a
client or server has crashed or rebooted: the same
mechanism also suffices to detect network partitions.
There is some cost to tracking RPC packets, but a reliable
crash and reboot detection mechanism is of course useful
for other purposes besides recovering file server state.

2.5. Related work
A cache-consistency mechanism roughly intermediate

between that of NFS and Sprite has been implemented for
the System V Remote File Sharing (RFS) system [I]. As in
NFS, clients write-through to the server, so the only pos-
sible inconsistency is between the server and readers. RFS
is not stateless; clients send o/>en and close mess.ages to the
server, so the server is able to send “invalidate’” messages
back to clients when their caches must be disabled. Unlike
Sprite, RFS waits until writes actually occur before in-
validating client caches. As in both Sprite and NFS, ver-
sion numbers are used to maintain client cache consistency
when a file is reopened after being closed. RFS provides
the same consistency guarantees as Sprite, but because RFS
uses the same write policy as NFS, its performalnce should
be closer to that of NFS.

Both Sprite and RFS use entire files as the unit for con-
sistency. Kent 141 describes a system that maintains consis-
tency on individual file blocks; before a client writes a

“Actually, the reference port of NFS delays writes that do not extend to
the end of a block, as a means of optimizing improperly-buffered sequen-
tial writes.

block, it must acquire ownership of that block. Other
clients invalidate cached copies of that block, and only one
client at a time can own a block. This system required
special hardware to implement the consistency protocol
with sufficient performance.

The dogma of statelessness associated with NFS has
been broached before. Juszczak [3] shows that because the
individual NFS operations are not really idempotent, cer-
tain kinds of communication failure can result in incorrect
behavior. A similar observation is made in [2]. By adding
a small amount of state to the NFS server, he managed to
resolve this problem, and also to improve the performance
of highly-loaded servers.

Many other file system designs include explicit consis-
tency protocols. These include Andrew [2], Cedar [141,
Apollo [6], and Locus [1 I]. A comparison between Sprite
and these systems may be found in [7].

3. Modifications to the NFS protocol
In this section we sketch the modifications

protocol necessary to support the Sprite
protocols (see [151 for a detailed description).

to the NFS
consistency
This is the

“Spritely NFS” (SNFS) protocol most of the complexity
in SNFS is in the irqtden~entution, described in section 4.

3.1. New client-to-server calls
In unmodified NFS [161, all RPC calls are initiated by

the client. We added two new calls, open and close, to the
client’s repertoire.

The o/>etl RPC call takes a “file handle” (an identifier
returned by the lookup operation) and a flag indicating if
the client intends to write the file. The server returns a
cacheEnabled flag to tell the client whether it is al-
lowed to cache data for this file. The server keeps a ver-
sion number for each file, which increases every time the
file is opened for writing; the open call returns both the
latest version number and the previous version number. A
client’s cache is valid if the latest version number matches
the version of the cached copy. If the client is opening the
file for write, its cache is also valid if it matches the pre-
vious version number; this is because the change in version
number has resulted from the current open-for-write. The
server also returns the same attributes record that
would have been returned from a gefuttr (get file attributes)
procedure, obviating the getam call that NFS must make
when a file is opened.

The close procedure tells the server that the client is no
longer using the specified file handle. The client passes the
same writeMode flag that it provided for the correspond-
ing open operation; it must be supplied since open could
have been called several times, with different modes, on a
single file handle.

48

3.2. Server-to-client calls
Whenever an SNFS server needs to notify a client that a

file must no longer be cached, it issues a callback opera-
tion. This RPC call goes from server to client, so the client
must provide RPC service for this request. The callback
operation identifies the file in question through several
parameters that allow the client to locate its data structures
for the file. Two flags specify what actions to take: one
indicates that any dirty blocks in the client’s cache should
be written back to the server, and the other that any cached
blocks should be invalidated and further caching disabled.

If the callback involves a write-back, the client should
not return from the callback RPC until all the dirty blocks
have been written back to the server. This has two implica-
tions:

I. Because the write operations generated by the client in
response to the callback go to the server that is waiting
for the termination of the callback, an SNFS server
must be multi-threaded to avoid deadlock. If there are
N threads, only N-I may be doing callbacks simul-
taneously, so that at least one thread can service the
write-backs.

2. Since the server makes a callback while servicing an
open operation from another client, it cannot wait
forever for the callback (since the client doing the open
will time out). Usually the callback, together with any
required write-backs, should finish long before the RPC
times out, but this is not guaranteed; the network might
be slow, the server might be overloaded, or there might
be many dirty blocks. We believe that this is not a
serious problem; the callback operation can safely be
retried, so when the client doing the open operation
times out and retries, no harm is done. (Care must be
taken to avoid delayed duplicate RPC packets.)

If the client “serving” the callback is down, the SNFS can
honor the new open operation, but it should inform the new
client that the file may be in an inconsistent state. (This is
hard to do in the Unix model.) If the “dead” client comes
back to life after this point, it must be prevented from
making further use of the file until it obtains a new file
handle and reopens the file.

4. Implementation
We implemented a prototype of Spritely NFS by modify-

ing the existing NFS implementation in Ultrix version 2.2.
By changing the names of entry points and global variables,
we made it possible to have both SNFS and unmodified
NFS in the same kernel, which in turn made it easy to
compare the performance of the two protocols. With the
exception of a few utility programs, all the changes are
confined to the kernel; for user code, there is no visible
difference between NFS and SNFS.

4.1. Layering
In Ultrix, the “generic file system” (GFS) [121 (see

also [5]) provides a level of indirection to separate the
filesystem-generic code from the filesystem-specific code.

GFS implements the Juno& abstract data type, which is
similar to the traditional Unix in-memory inode data struc-
ture, but which supports multiple file systems (such as NFS
and local disks). GFS manages the file system block buffer
cache, and expects the underlying file systems to export a
set of methods for reading and writing file blocks. We
needed only one minor modification to GFS to support
SNFS (see [151 for implementation details not discussed
here).

On the server side, the NFS (and SNFS) service code
simply translates RPC requests into GFS operations on the
appropriate file system, normally the standard Unix local
file system.

4.2. Client changes
The gnode data structure provides space for filesystem-

specific data, some of which is already used by the NFS
client code. We added several new fields, including flag
bits such as “caching enabled”, the file version number,
and authorization information used when doing a delayed
write. No additional state tables are needed at the client.

GFS invokes the O/XV and close entry points for all file
system types, including NFS clients, when a file is opened
or closed. The new RPC calls in SNFS are dispatched from
these routines. (Many of the close calls could be avoided;
see section 6.2.)

4.2.1. Cache strategy
Two kinds of information are cached on the client: file

data blocks and file attributes. The file data blocks are
cached in the GFS buffer pool; each block is marked with
the appropriate file ID. The file attributes are stored in the
gnode.

Ultrix NFS refreshes the attributes cache based on its
age; an adaptive mechanism is used which allows longer
residence for files that have not been recently modified. In
SNFS, the attributes cache needs no refreshing if the file is
read-shared (cachable). If the file is write-shared (not
cachable), SNFS guarantees consistency by always fetching
attributes from the server, instead of caching them.

NFS maintains consistency for cached data by checking
the file modification timestamp, and invalidating the cache
if the timestamp changes. In SNFS, the explicit consis-
tency protocol maintains the cachability flag for the file; if
the file is not cachable, its blocks are never entered into the
cache. Also, the standard Unix read-ahead is disabled in
SNFS for non-cachable files, since the extra blocks cannot
be cached.

4.2.2. Callback service
In unmodified NFS, all RPC calls are initiated by the

client. In SNFS, the server initiates callback RPCs, so the
client must be able to service RPC requests. We simply use
the existing NFS server code.

The callback RPC is implemented as part of the SNFS
server code, but conceptually it is part of the SNFS client.

49

The information in the callback is used to locate the ~norlr
for the specified file, and the specific action is performed.
Cache invalidation is done locally to the client; if the server
requests write-back, the client uses the usual SNFS RPC
calls to write blocks back to the server.

4.2.3. Delayed write policy
Traditional Unix policy is to delay file data writes to the

local-disk file system, unless a user process explicitly
flushes them. Blocks are written back to disk when the
space is needed for other files. To bound the amount of
damage caused by a crash, all delayed-write blocks are
written to disk periodically (every 30 seconds, by the sync
system call from /etc/update). In the Sprite file sys-
tem, dirty blocks are written back to the server when they
reach 30 seconds in age; this is somewhat less conservative
than the traditional policy.

The NFS consistency mechanism prevents the accumula-
tion of delayed-writes. SNFS, on the other hand, uses the
normal GFS delayed-write mechanism, so (mostly by
default) it follows the traditional Unix policy.

Since it is relatively common for Unix applications to
create a temporary file and then delete it after a few
seconds, Sprite and SNFS take advantage of this behavior
by “cancelling” delayed writes when a file is deleted.
NFS cannot do this, since it synchronously writes back on
close.

4.3. Server state design

4.3.1. Server state table
An SNFS server, unlike an NFS server, must retain state

about files between RPC calls. In our implementation, the
SNFS server maintains a state table, organized1 as a hash
table, with entries for each open file and for each closed file
whose last writer may still have cached blocks.

To avoid running out of kernel memory, we limit the
number of entries in this table. This limits the number of
simultaneously open files per server, a limit that is not im-
posed by unmodified NFS (but each entry requires only 68
bytes, so the limit can be liberal). When entries run low,
those recording closed files may be reclaimed by sending
callbacks to the corresponding clients.

Most of the code added to support SNFS is in the state
table manager module. It has entry points to initialize the
server state data structures, and to perform the state tran-
sitions necessary on file open and close operations.

Our only modification to the original NFS server code
was to add the two new RPC services functions. The O/XI?
operation is similar to the existing ‘qefaltr operation, but it
calls the state table manager to record information about
the new open, potentially resulting in a callback.. The close
operation does nothing but notify the state table imanager.

4.3.2. State table entries
Each entry in the state table contains the file handle for

the corresponding file; this is the lookup key. It also con-
tains the file’s current version number, its current state
(such as read-only or write-shared), and a list of “client”
information blocks for each client host that has the file
open, or that might have dirty blocks in its cache if the file
is closed.

A client information block contains the network address
of the client host; this is used as an identifier and also to
address the callback RPCs. A client block also contains
counts of the number of readers and writers for this file at
this client (more than one process there may have the file
open) and additional information used in the callback RPC
to help the client identify the file.

4.3.3. Version number generation
The server assigns a version number to each file; the

version number must increase each time the file is opened
for writing. This allows clients to determine if cached
blocks are still valid when a file is reopened. Ideally, the
version number would be associated with each file on st-
able storage (as is done in Sprite), but since we did not
want to modify the underlying Unix local file system to
store additional information, we chose to use a global
counter to generate version numbers. This solution is
suitable only for experimental use, as it poses several ob-
vious problems.

4.3.4. State transitions
Each file may be in one of several states. There is some

freedom in the choice of state assignments; in retrospect,
the one we chose would have to be changed to support
“delayed close” (see section 6.2) without deadlocking. In
our implementation of SNFS, the states are:

CLOSED File not open by any client.

CLOSED-DIRTY File not open, but the last writer may
still have dirty blocks.

ONE-READER File open read-only by one client.

ONE-RDRDIRTY File open read-only by one client,
which may have dirty blocks cached
from a previous open.

MULT-READERS File open read-only by two or more
clients.

ONE-WRITER File open read-write by one client.

WRITE-SHARED File open by two or more clients, in-
cluding at least one writer.

Table 4-l shows the possible state transitions. Note that
no transition occurs (and thus none is shown) if a client that
already has a file open for read-only issues another read-
only o/~/r for that file, or if a client that has a file open for
read-write issues another open of any sort for that file.

50

ONE-RDRDIRTY

ONE-WRITER

ONE-WRITER

CLOSED-DIRTY Final close Not affected None

CLOSED-DIRTY Final close Not affected None, this client recorded
as last writer

ONE-RDRDIRTY Final close for write, client still reading Not affected None, this client recorded
as last writer

Table 4-1: SNFS server state transitions

4.4. Crash Recovery 5. Performance
We have not yet implemented a crash recovery protocol

for Spritely NFS. Such a protocol would involve changes
to both the client and server implementations, and would
reduce performance to some extent. Note that the
published measurements of Sprite [7] were also made with-
out a recovery protocol.

In this section, we Iook at the performance differences
between NFS and SNFS. We focus on the most common
case, where there is no concurrent sharing of a file between
two or more client hosts. In the write-shared case, SNFS
disables the client cache and so performs much worse than
NFS - but much more correctly.

4.5. Code size
A crude measure of the complexity of the modifications

we made is the change in source code size. The un-
modified NFS code we started with consisted of 9200 lines
of commented C source code in 15 files. The SNFS ver-
sion consists of 1 1 150 lines in 16 files, most of the increase
coming from the SNFS server state manager. We believe
that an implementation supporting both NFS and SNFS
protocols would be only a few hundred lines longer than
our SNFS code, although crash recovery code would be
substantially larger.

5.1. Factors affecting performance
The performance differences between NFS and SNFS are

the result of variation in several factors, which depend on
the application mix:

l The parallelism available with delayed write instead
of write-through.

l The writes averted when temporary files are deleted
before being written back.

l The number of RPC calls required over the active
lifetime of a file.

Run-time data space requirements vary depending upon
the limit imposed on the number of open files; for example,
up to 1000 simultaneously open files can be accommodated
with about 70 kbytes of data space.

We believe that the computational costs of the SNFS im-
plementation are not significantly different from those of
NFS.

For example, SNFS gains most from increased paral-
lelism when only one job is running on the client host, and
it can alternate computation with write I/O (such as a

51

compiler). File copying can also benefit as lon,g as the
cache does not fill with dirty blocks, because the writes are
often postponed so as to overlap with other tasks. Less
such I/O parallelism is available if many applications are
running in parallel on the client.

Similarly, SNFS gains by avoiding writes if the applica-
tion is generating a significant volume of temporary files
(and if these files fit easily into the client cache).

The relative number of RPC operations depends on the
application. For example, a file that is read only once for a
brief period (such as a source module) differs from a file
that is read over the course of several seconds (some text
editors do this, for example). In the “read-quickly” case,
NFS will require one fewer RPC than SNFS, since SNFS
requires the additional &se operation (the SNFS open
operation is equivalent to the ,qef&tr operation done at file-
open time by NFS). In the “read-slowly” case, SNFS may
break even or better, since NFS must do consistency probes
every few seconds.

Frequently, the NFS model wins because most applica-
tions follow the “read-quickly” pattern. As we point out
in section 6.2, however, a minor modification to our im-
plementation of SNFS could perform significantly better
than NFS in the case where a file, such as a popular header
file, is read repeatedly during the course of some seconds.
This pattern is actually quite common.

In addition to effects of the application mix, the relative
performance of SNFS and NFS depends on system
parameters including the file cache size, RPC speed, and
disk access time. As the client’s file cache size increases,
the relative benefit of clever cache-management protocols
increases as well. Also, when the gap between lprocessor
speeds and disk access time widens (as it appe.ars to be
doing), cache-management efficiency becomes more im-
portant. Finally, since NFS and SNFS differ somewhat in
the number of RPC calls used, an increase in RPC speed
(relative to processor speed) reduces the relative petfor-
mance difference.

5.2. Andrew benchmark measurements and analysis
Our SNFS implementation was originally developed for

Ultrix running on a MicroVAX-IITM with a relatively small
memory. Because we were interested in the effects of large
caches, we ported the code to the experimental Titan
workstation. Titans are RISC processors running about
12- 15 times as fast as a VAX-l l/780, and supporting up to
128 Mbytes of main memory [8]. Identical machines were
used for client and server, and the RA81 and RA82 disks
used are moderately high performance drives. The operat-
ing system running on the Titan is not exactly LJltrix, but
the NFS and other file system code is taken directly from
Ultrix, with only a few lines changed because of architec-
tural differences. All our measurements were made on
Titans.

It is relatively easy to benchmark the individual cases
where one might expect SNFS performance to differ from
NFS performance. It is harder to measure an aggregate

difference, since the weighting for the individual dif-
ferences depends so much on the application mix. We
chose to concentrate on the Andrew benchmark suite [2],
since it covers many of the individual cases and does give
some idea of the aggregate performance. The Andrew
benchmark spends a significant amount of time doing com-
pilation; since the cost of compilation depends upon the
target architecture, it is not possible to compare our figures
directly to previously published results from the Andrew
benchmarks. We also benchmarked an external sort ap-
plication, since this emphasizes the differential perfor-
mance on temporary files; see section 5.3.

The Andrew benchmark consists of 5 phases, applied to a
tree of directories and files; the following description is
taken from [2]:

MakeDir Constructs a target subtree that is identical
in structure to the source subtree.

COPY

ScanDir

ReadAIl

Copies every file from the source subtree
to the target subtree.

Recursively traverses the target subtree
and examines the status of every file in it:
does not actually read the contents of any
non-directory file.

Scans every byte of every file in the target
subtree once.

Make Compiles and links all the files in the tar-
get subtree.

Different phases highlight different differences between
SNFS and NFS. The Copy phase favors SNFS, since the
delayed-write policy allows more parallelism between the
read and write I/O streams. The ScanDir and ReadAll
phases favor NFS, since SNFS has about one additional
RPC to do for each file. The Make phase favors SNFS
because it allows parallelism between file writing and ei-
ther file reading or computation.

Because the delayed-write policy of SNFS postpones
some operations until after the completion of the
benchmark, we ran the SNFS benchmarks several times in
a row (rather than interleaving them with NFS benchmark
runs) so that NFS would not be charged for writes incurred
by SNFS.

We ran the benchmark in three configurations: one with
all files on the local disk, one with just the data files
remotely mounted but temporary files kept locally, and the
last with both data and temporary files remotely mounted.
The latter configuration should favor SNFS for the Make
phase, since it allows the “delete-before-writeback” op-
timization to take effect. In all configurations, the

sWe used a slightly modified version of the original Andrew
benchmark, due to John Ousterhout 191, that does produce comparable
numbers. This is done by using a portable compiler and loader that
produce code for a fixed target architecture, not for the architecture being
tested. We hope that future benchmarking will be based on this portable
version.

52

“compiler” programs were on the same file system as the
data, and other Unix utility programs were on the local
disk.

The results are shown in table 5-1. Each number shown
is an average over 10 trials. Measurement accuracy is no
better than a second or two, so slight variations are mean-
ingless.

During our experiments, neither the client nor server
machine were used for any other jobs (although some
housekeeping tasks occasionally run in the background).
Both machines had large file buffer caches (about 16M
bytes on the client and 3.5M bytes on the server), large
enough that no data was ever removed from the caches due
to replacement. This simplifies analysis but does favor
SNFS, which is better able to make use of a large cache
than NFS.

The results shown in table 5-1 confirm our expectations.
SNFS performs about 25% better on the Copy phase, and
20% to 30% better on the Make phase (depending on
whether /tmp is local or remote). NFS performs about 5%
better on the ScanDir and ReadAIl phases. SNFS com-
pletes the entire benchmark 15% to 20% faster than NFS,
because the complete benchmark places most weight on the
Make phase.

Elapsed time in seconds I

Tabie 5-1: Results of Andrew benchmark

Table 5-2 shows RPC operation counts for a typical trial
with each of the NFS and SNFS configurations; there may
be insignificant inaccuracies in the counts. With /tmp on
a local disk, SNFS requires slightly (2%) more RPC opera-
tions, but since SNFS substitutes open and close operations
for the more expensive read and wife operations, it comes
out ahead in total cost. With /tmp remotely mounted,
SNFS requires 6% fewer total operations, and 42% fewer
data transfer operations.

Table 5-2: RPC calls for Andrew benchmark

Several entries in table 5-2 deserve explanation. When
/tmp is mounted locally, one might expect both protocols
to issue the same number of write RPC calls. Because the
Ultrix NFS implementation delays partial-block writes, it is
more sensitive than SNFS to the “natural” file system
block size used at the server. During our tests, we used a
4k byte block; NFS might have performed slightly better
had we used an Sk byte block size.

We also found that NFS issues far more rvad RPC calls.
In trying to explain why this is so, we discovered that it is
not the fault of the NFS protocol. Rather, our version of
the NFS code invalidates the client data cache when a file
is closed. In many instances the client first writes a file,
closes it, and then reopens and reads it, and this bug
prevents the client from using its cached copy. Our NFS
implementation is based on a version of the reference port
that is several years old; more recent implementations of
NFS have fixed this bug, but we were unable to measure-
ment their performance on comparable hardware.

Finally, we note that roughly half of the RPC calls are
file name lookups (SNFS and NFS use the same protocol
for this). Clearly, any mechanism that reduced the number
of lookups would improve performance; we suspect that
applying the Sprite consistency protocols to a cache of
directory entries might be a good approache.

hRecent versions of NFS also do more extensive caching of name
translations.

53

time in seconds

i 4oi-]

L -0 I20 240 360 480 600
time in seconds

240 360
time in seconds

480 600 -0 120

Figure 5-1: Server utilization and call rates for NFS

We were also interested in the effect of file system
protocol on “server utilization,” the CPU load placed on
the server for a given application. Measurements of the
Sprite operating system suggest that the Sprite file system
can support about four times as many clients as can a Unix
system with NFS running on identical hardware [7]. We
measured the server CPU load (roughly, the percentage of
time not spent in the “idle” state) while running the
Andrew benchmark for NFS and SNFS; in both cases,
/tmp was remotely mounted, effectively simulating the
load of a diskless workstation. We also measured the rate
of RPC calls, as well as individual rates for rvad and t+rire
calls. Graphs of the server load and call rates are shown in
figure 5-1 for the NFS benchmark, and in figure 5-2 for the
SNFS benchmark. All the graphs in one figure alre for the
same run, so one can see how the rates are correlated in
time.

Figure 5-2: Server utilization and call rates for SNFS

The load varied considerably over the course of the
benchmark, and was strongly correlated with the aggregate
rate of RPC calls; it was nor correlated with the rate of road
or write calls. Since SNFS, even when /tmp is remotely
mounted, requires only slightly fewer operations than NFS,
the integral of CPU load over time was only slightly lower
for SNFS. In fact, since the SNFS benchmark completes
significantly faster, the average server load during the
benchmark is slightly higher than for NFS; it also appears
to be slightly burstier.

We believe that the advantage, in server CPU utilization,
of Sprite over NFS is probably the result of a more efficient
RPC protocol and perhaps a more efficient file name trans-
lation mechanism. We have no evidence to show that the
SNFS cache consistency protocol itself, in isolation from
the write policy, leads to significantly different server CPU
utilization on the Andrew benchmark. On the other hand,
the difference in Mvite operation rates (see table 5-2) im-
plies that the server disk utilization with SNFS is 30% to
35% lower.

120 240 360
time in seconds

480 600

120 240 360 480 600
time in seconds

s I ’ ’ ’ I ’ ’ s ,

120 240 360
time in seconds

480 600

I

240 360
time in seconds

480 600

54

5.3. Sort benchmark measurements and analysis
The Andrew benchmark suggested that the most sig-

nificant difference between NFS and SNFS was their per-
formance on temporary files. (This is most important for
diskless clients.) We explored this case by benchmarking
the Unix sort program. which does an external sort and so
makes heavy use of temporary files. (This benchmark also
emphasizes the performance degradation caused by the in-
ability of our NFS client implementation to retain cached
data after closing a file.)

We measured the performance of the sort program with
its temporary files (kept on JusrI tmp) on local disk,
remote-mounted via NFS, and via SNFS. Table 5-3 shows
the resulting elapsed times for input files of three different
sizes; the important parameter is the amount of temporary
storage used, which grows faster than the input file.

SNFS dramatically outperforms NFS on this benchmark,
completing approximately twice as fast. In all three cases
the client CPU utilization is higher for SNFS; in other
words, I/O latency is the bottleneck. Table 5-4 shows that
SNFS does far fewer read RPC calls than does NFS, in-
dicating that some of the difference is attributable to the
bug in our NFS implementation, rather than the NFS
protocol itself. We believe that this accounts for less than a
quarter of the performance difference, the rest attributable
to the synchronous writeback-on-close required in NFS.

File Temp local NFS SNFS
size storage /usr/tmp /usr/tmp /usr/tmp

281 k 304 k 4 set 8 set 4 set

1408 k 2170 k 33 set 10.5 set 48 set

2816 k 7764 k 74 set 234 set 127 set

Table 5-3: Results of Sort benchmark

I I I I
Total 1611 953 3145 1920

Table 5-4: RPC calls for Sort benchmark

We ran a simple benchmark on a recent NFS implemen-
tation (SunOS Release 4.0.3 running on a Sun-3) to high-
light the penalty for invalidating the client cache when
closing a temporary file. This benchmark writes a large
file, closes it, and then opens and reads either the same file,
or a different file of the same size. We caused the client
cache to be invalidated between trials. There was no sig-
nificant difference in elapsed times, indicating that the
(elapsed-time) cost of a read missing the client cache is
negligible compared to the cost of writing through.

Unlike the Andrew benchmark, on the sort benchmark
the total server CPU utilization is about 40% lower for
SNFS. probably because SNFS does about 40% fewer RPC
calls. This is a significant improvement, but might dis-
appear with a more careful NFS client.

5.4. Avoiding file writes for temporary tiles
A delayed write policy means that data written to short-

lived temporary files may never need to be sent to the serv-
er. The sort benchmark runs long enough that the periodic
write-back done by the Unix /etc/update process is
likely to cause significant traffic even though few of the
temporaries actually reach the age of 30 seconds.

To emphasize the benefits of delaying writes of tem-
porary files, we ran the sort benchmark with the
/etc/update process disabled. The results, shown in
table 5-5, show that for files whose lifetime is short
enough, SNFS matches or beats local-disk performance
(even though data blocks are not written, the local-disk file
system still writes out structural information). NFS perfor-
mance is unchanged, within the limits of measurement er-
ror. Table 5-6 shows that SNFS, in this situation, is doing
almost no MY;@ RPC operations.

Table 5-5: Sort benchmark, infinite write-delay

Remote Procedure Calls

Version update? Reads Writes Others

NFS Yes 1340 1452 353

NFS No 1227 1451 368

SNFS Yes 67 1441 412

SNFS No 65 33 407

Table 5-6: RPC calls for Sort benchmark,
28 16 kbyte input file, with infinite write-delay

55

6. Future work
In this section we touch on several issues we have not yet

addressed in our implementation. (We have already
touched on the issue of crash recovery in section 2.4.)

6.1. Coexistence of NFS and SNFS
SNFS coexists quite easily with unmodified NFS. A

single client host can remote-mount file systems using ei-
ther protocol, and a single server host can provide access to
separate file systems using either protocol. A hybrid server
could distinguish between SNFS and NFS clients because
SNFS clients always perform open operations before other
file operations. A hybrid client could distinguislh between
SNFS and NFS servers, since the latter will reject an open
operation. Thus, the SNFS clients and servers will discover
each other, and other combinations will simply revert to the
standard NFS protocol.

It is trickier to support simultaneous access via both NFS
and SNFS to the same file system, since the NFS clients
cannot participate in the SNFS consistency protocol. One
approach is to treat any NFS access to a file already open
under SNFS as implying an SNFS open operation. The
server also has to keep, for a period no less than the longest
reasonable NFS attributes-probe interval, a record of all
other files accessed via NFS. By using this information,
the server can manage the caches of SNFS clients so as to
guarantee their consistency, and still provide “normal”
NFS consistency to the NFS clients. (See [151 for more
details.)

6.2. Delaying the SNFS close operation
Our SNFS implementation sends an open operation to

the server every time a process opens a file. This is not
necessary; since most files are reopened soon after they are
closed, we could avoid a lot of network traffic if the SNFS
clients delayed close operations in anticipation of a sub-
sequent open operation. The client would keep a flag in the
gnnde structure indicating that a “closed” file has not yet
been reported to the server; this would allow it to realize
that a subsequent open operation can be performed locally.

Delayed-close may create situations where the server
perceives write-sharing to be taking place, when in fact it is
not. If a client with a delayed-close file receives a callback
for that file, the appropriate response is to close the file so
that it can be cached by the new client host. Dellayed-close
will also cause the server’s state table to fill up with ap-
parently open files. It may be necessary to create a new
callback mode that asks a client to relinquish a ‘closed file;
the server would perform these as necessary to attempt to
reclaim state table entries that have not been used recently.
Clients could also spontaneously issue close operations for
files that have not been re-opened after a few minutes.

7. Summary and Conclusions
Our experiments have convinced us that the Sprite ap-

proach to consistency is superior to that used in NFS. NFS
cannot provide complete consistency with acceptable per-
formance. Even with the weak consistency provided by
most NFS implementations, performance is probably worse
than that provided by the Sprite consistency protocol.
Sprite’s performance advantage over NFS comes mostly
from its delayed write-back policy, not directly from the
explicit cache consistency protocol, but without such a
protocol, delayed write-back is too dangerous.

We found that adding the Sprite consistency protocol to
NFS was possible without major disruption of the NFS im-
plementation, and required only a few programmer-months.
In order to completely refute the dogma of statelessness, we
would have to demonstrate that SNFS has the same fault-
tolerance as NFS; this would require implementation of a
recovery protocol.

We did not find that SNFS outperformed NFS as much
as Sprite itself outperformed NFS [7]. One reason may be
that the NFS we used has been adjusted to place perfor-
mance ahead of consistency; perhaps this is the right
choice. A more intriguing question is whether the high rate
of file lookup calls, as we detailed in table 5-2, swamps
other file system performance differences. NFS and SNFS
use the same lookup mechanism; Sprite uses an entirely
different approach, which might account for its advantage,
and might profitably be applied to the NFS protocols.

Caching in file systems is becoming more crucial as
processor speeds and memory sizes improve faster than
disk access times. We cannot afford to use inadequate
cache mechanisms simply because the good ones seem har-
der to implement.

8. Acknowledgements
Richard Swan prompted our interest in integrating Sprite

concepts into a quotidian operating system. John Ouster-
hout, in his post-sabbatical semi-residence at our
laboratory, helped us understand Sprite and kept us honest.
Richard Hyde and Chris Kent helped us brainstorm our
design, and Bob Rodriguez kindly took time off from his
summer vacation to help us understand the arcana of Ultrix.
Chet Juszczak provided both encouragement and a reality
check, and Dan Kolkowitz provided access to a Sun
workstation. Andrew Black and the anonymous referees
prompted many necessary changes, and Bill Hamburgen,
Mary Jo Doherty, Joel McCormack, and Joel Bartlett
helped to proofread the many drafts. Our mistakes are our
own, of course.

56

References

Ill

[21

[31

141

[51

L61

171

PI

[91

M. J. Bach. M. W. Luppi. A. S. Melamed, and
K. Yueh. A Remote-File Cache for RFS. In /Qoc~.
Sumnw 1987 USENIX Co~$w~rr~~, pages 275-280.
Phoenix, AZ, June, 1987.

John H. Howard, Michael L. Kazar. Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert
N. Sidebotham, and Michael J. West. Scale and Per-
formance in a Distributed File System. ACM Trans-
crctions OF? C’ompt~r Sy.stcm.s 6(I):5 l-8 I. February,
1988.

Chet Juszczak. Improving the Performance and Cor-
rectness of an NFS Server. In Proc. Winter. 1989
USENZX Conjerence, pages 53-63. San Diego,
February, 1989.

Christopher A. Kent. Cache Coheretve in Disrrh4tcd

Sysfems. PhD thesis, Purdue University, 1986. Also
available as Digital Equipment Corporation Western
Research Laboratory Research Report 87/4.

S. R. Kleiman. Vnodes: An Architecture for Multiple
File Systems Types in Sun UNIX. In Proc. Summer
1986 USENlX Cnnfewnce, pages 238-247. Atlanta,
GA, June, 1986.

P. J. Leach, P. H. Levine, B. P. Douros,
J. A. Hamilton, D. L. Nelson, and B. L. Stumpf. The
architecture of an integrated local network. IEEE
Journal on Selected Ascas in Communication
SAC- I (5):842-857, November, 1983.

Michael N. Nelson, Brent B. Welch, and John
K. Ousterhout. Caching in the Sprite Network File
System. ACM Transuctinns on Computer. Systems
6(1):134-154, February, 1988.

Michael J. K. Nielsen. Titarl System Manual.
Research Report 86/l, Digital Equipment Corporation
Western Research Laboratory, September, 1986.

John Ousterhout. Private communication. 1989.

[IO] John K. Ousterhout, Herve Da Costa, David Harrison,
John A. Kunze, Mike Kupfer, and James
G. Thompson. A Trace-Driven Analysis of the UNIX
4.2 BSD File System. In Proc. l&h Symposium on
Opercrting Systems Principles, pages 15-24. Orcas ls-
land, WA, December, 1985.

[1 I] G. J. Popek and B. J. Walker, Eds. The LOCUS Dis-
tributed System Architecture. The MIT Press,
Cambridge, MA, 1985.

[I21 R. Rodriguez, M. Koehler, and R. Hyde. The Generic
File System. In PKK. Summer- 1986 USENIX
Confer-ence, pages 260-269. Atlanta, GA, June, 1986.

I I3 I Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and lmplemen-
tation of the Sun Network filesystem. In Pwc~. &ml-
me!’ 1985 USENIX Cor!fi~rcwcc. pages I l9- 130.
Portland, OR, June, 1985.

[141 Michael D. Schroeder, David K. Gifford, and Roger
M. Needham. A Caching File System For A
Programmer’s Workstation. In Proc. 10th Symposium
017 Opuuting Systems Principles, pages 25-34. Orcas
Island, WA, December, 1985.

[151 V. Srinivasan and Jeffrey C. Mogul. SpriteIy NFS:
E.\-lxv~iments with and Implementation of Cachc-
Consistcwy Protocols. Research Report 8915, Digital
Equipment Corporation Western Research Laboratory,
March, 1989.

[161 Sun Microsystems, Inc. NFS: Netkwk File System
Protocol Spec.~ficutioii. RFC 1094, Network Infor-
mation Center, SRI International, March, 1989.

[171 Wehstcv’s News Collegiate Dictionury. G. &
C. Merriam Company, Springfield, MA, 1979.

[181 Brent B. Welch. The Sprite Distrihured File System.
PhD thesis, Department of Electrical Engineering and
Computer Science, University of
California-Berkeley, 1989. In preparation.

57

