Improving Ext2 Integrity with Checksums

Chloe Schulze, Brian Pellin
{cschulze,bpellih@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Abstract (or if) the failure occurred. Obviously, for a system to ac-
tually meet the claim of reliability, this is an unacceptabl

We have modified the ext2 file system to include checksumoee of operation.

ming on a per block basis. Our goal is to follow a realistic There are two issues that need to be addressed in or-
failure model, which accepts that disks can partially failer to solve this problem. The first is a need for a new
and do so silently. The addition of checksumming to ex{gk failure model. No longer can we assume a fail-stop
detects silent data corruption and notifies the user if dagdodel, and so we develop a new paradigm that takes into
has been changed on disk without his/her knowledge. Thigount the gray area of silent failures. The second issue
solution may also solve some other errors, such as mad-one of detection and notification. The data corruption

cious changes to data. We make no attempt to recowgiist first be identified and then the user and/or file system
lost data, only to notify the user of the occurrence. Oufust be notified of the occurrence.

implementation is comparable to the performance of ext2,; this paper, we describe a new file system, which
with the addition of overhead incurred from reading, Writyea|s with several of the aforementioned problems. This
ing and computing checksums. We broke down the cfjstem, named Second Extended File System with Check-
ponents of the overhead and found that for warm cachgmming or ext2c, is a modified version of ext2 that uses
reads the computation of the checksum dominates CRkbcksums to verify the correctness of file data.

costs. Additionally, for cold cache operations, we found 1,4 paper will proceed as follows: in Section 2 we
that the time is severely dominated by the disk positioniggscrine our failure model, then in Section 3 we outline

to read the checksums. ext2c and our checksumming mechanism. Performance is
addressed in Section 4. Section 5 considers further work

1 1 q . to improve ext2c. Section 6 discusses related work and in
ntroduction Section 7 we conclude.

Reliability is a major source of concern in file system de-

sign, and the main issue behind it is data loss or data cgqr-

ruption. The weak links in this chain are disks. Disk e2 Fault Model

rors, though possibly few and far between, pose a problem

for data integrity. Though precautionary actions, such Faqr a disk failure model to be accurate, it must take into
regular backups, are essential for data recovery and 8ggount all the ways in which a disk can fail. Examples
greatly reduce the problems associated with disk failufe:

those efforts do not help if it is not apparent that the disk

has failed. Disks do fail, however, they do not always do e Full disk failure: entire disk stops working, can be

so completely, making it hard to recognize exactly when permanent or temporary.

e Partial disk failure: latent sector errors, sectors

disk go bad, can also be permanent or tempora

_)) foo (data file) 5 (checksum file)
e Data corruption caused by improper disk operz T

This includes misdirection (data written to the wr no. > - 2
block) and phantom writes (the disk returns tha 4096
write completed, but it did not actually complete) Bock | g | SHAL | e o

no. 1

These errors can all cause data to be lost or corr

without the user’s or file system’s knowledge. .
Keeping the above types of errors in mind, a mor

curate failure model is one in which a disk can fail sile D

or experience data corruption at anytime with no in

tion that the data may be incorrect. Using this fault m

we designed a system to handle several of these types of
failures. Figure 1: Checksum Creation. This figure shows the series of
steps that happen when a block is written to a file.

3 EXT2C _ _ . . -
certain blocks of a file can be pinpointed without invali-

The goal of ext2C is to detect silent data corruption afi@ting the entire file. Additionally, a block of a file can be
notify the user when it occurs. To facilitate this goal, wéPdated without having to read the entire file (to compute
have modified ext2 to compute and store checksums. Bhghecksum over it).

file system operates by computing a checksum whenevef here are also advantages to storing the checksums in
data is written and storing that checksum in a file. Whénseparate file as opposed to storing them within the file
data is read, a new checksum is calculated and then céi@ta. This implementation is simpler than attempting to

pared to the stored one. If the checksums do not matgipre the checksums inline (within each block) or in some
an error is returned to the user. part of the inode or its indirect blocks, because there is no

need to modify the any of the structures of the file sys-
31 Check G larit tem. Also, because of the size of each checksum, about

' ecksum Granulfarity two hundred blocks of a file can be read using only one
Various design choices of where and how to store chedkock of the checksum file. This is obviously advanta-
sums are discussed in the paper by Sivanthanu, et. ggous for long, sequential reads. Though other solutions
[8]. We chose to compute checksums on a block by bloBRve definite advantages, such as ease of access, we de-
basis, per data file, and then store those checksums ®idgd to forgo the gains (and added complexity) of their
separate file. The checksum files are named accordiiiﬁ@bmentation and leave them as further work and opti-
to their respective data files’ inode numbers, and thesgmzation to the system.
turn are stored in a checksum directory. Each checksum

is 20 bytes in length, and can be indexed by the blogk3 Computing the Checksum
number of the block in the file that it represents. Figure 1

demonstrates the creation of a checksum. To compute the checksum over a block of data, we use
the SHA-1 secure hash function[2our main reason for
32 EXT2C Write using such a hash function is to minimize the possibil-

When compared to other implementations, there are b"_"ViAlthough it has recently been confirmed that some collisibechs

eral ad_Van_tageS to compu_ting checksums in t_hiS Manm&kt on SHA-1, these attacks do not make it easy to find astmlifor
To begin with, the granularity of the checksum is such that arbitrary hash value. So, it is still adequate for our pses.

ity of a collision of checksum results, and additionall
have a fixed size output for a variable size input. St

produces a digest of 160 bits, which is highly unlikel Read 4000 bytes
collide with another hash of a different input. zooom

File | ‘
3.4 Changesto EXT2 DataBlocks o 4006 8192

We decided to use ext2 as a basis for our implem
tion because of its simplicity. Further work could be ¢
in extending this concept to other file systems or ev
VFS, which would be another compelling project.
To add checksumming to ext2, we wrote our own w
per functions for the normal ext2 read and write calls Checksum
then modified the mapping from the system call reac
write to point to our new functions. Both of the new fu
tions work generally in the same manner.

Match
or
Failure

. Figure 2:Read Operation. This figure shows the series of steps
3.5 EXT2C Write that occur during the ext2c read.

The write function first calls the regular ext2 write call. It

then determines the number of blocks changed in the §ilg not match, an error message is thrdwand the read
and the index of the first changed block. The newly wriioes not complete. If the two match, however, the opera-
ten data is then read in, and a checksum is computed gy proceeds and at the end of the function the result of
each block. At this juncture we do not check the validifjye injtial ext2 read call is returned. Figure 2 outlines the
of the old checksum because it is being written over agbps taken by the ext2c read function.

so it should not matter if the data has been corrupted. Werhe added overhead incurred by the read function is
then open up the checksum file and write the new chedmilar to that of the write function. There is an extra
sum to the appropriate place (which is the index of the fiigyta read, the read of the checksum, the computation of a

block * 20 bytes). We do this for each changed block ighecksum and the open and close of the checksum file.
the file, and then we close the checksum file and return

the result of the initial ext2 write. . .

The additional overhead in this function is the opel’?’—'7 Reading Unwritten Data
ing and closing of the checksum file, the computation ansla few cases the Linux file system semantics allow for
writing of the checksum to the checksum file, and the eeading data from a file that has not be written. If the file
tra read that pulls in the newly written data. pointer is advanced beyond the end of a file and the file is
written to at that point, then the data in-between the old
end of the file, and the start of the new write can be read.
36 EXT2C Read For example, one can create a new file, seek to byte 4096

Analogous to ext2c write, the read function first perforn@ld write data. The semantics state that a read from the
a regular read call. Then the function computes the nuftist 4096 bytes should return all 0's.

ber of blocks that are being read and the index of the firstOriginally, this created a problem for us. Our initial im-
block and then reads each of those blocks in one at a tifd€mentation only updated checksums for blocks of the
As each block is being read in, a checksum is computed

on that block and then it is compared to the correspond-2it the match fails, the read call will return -1 and ermo vié set to

ing checksum from the checksum file. If the checksurBSHECKSUM.

file that had changed. However, in one of these sp#- Results

cial writes, the automatically extended part of the file is

changing as well. Consider the above example wherénghis section, we first look at how we evaluated the cor-

file is created and data is written to the second block ksfctness of our implementation. That is followed by an

the file. The checksum gets written for the second bloakalysis of the performance of ext2 versus ext2c.

of the file, but not the first. Now, if we try and read from In our performance section, we closely examine the

the first block of the file, we will get a checksum miseosts of individual small operations. Then, we see the re-

match. sults of some benchmarks that better capture the behavior
The solution, is to detect during writes when this situ&f real workloads.

tion occurs. We do this by monitoring the effect of a write Our experiments were conducted on a Pentium 111 700

on a file’s length. If this creates any new blocks, then tféHz machine with 128MB of memory. The disk running

code considers the new blocks to overlap with the write @& file system is a Western Digital Protéghat runs at
well. 5400 RPM. Both file systems use a block size of 4 KB.

Ext2c is based on the implementation of the Second Ex-
tended File System (ext2) in the 2.6.11.6 version of the
3.8 Targeted Problems Linux kernel.

Ext2c can completely or partially detect the foIIowin%1 .
problems: bit rot, phantom writes, misdirection and mal 1 Implementation Correctness

cious writes. Bitrot, or the spontaneous flipping of bits, 8 order to verify that our implementation is correct, we
completely detectable because we have the guaranteed{jgfected the file system to a variety of workloads. In
the checksum has been written to disk. Therefore, whgier 1o cover all bases, there are several read/write-situa

the data is read_from disk, the checksum that is compuigshs to consider:
over the data will not match the stored checksum.

With the latter three problems, we no longer have thee 1/O’s aligned with the block boundary
guarantee that the checksum is written to disk. With phan-,
tom writes, if the checksum is written but the data is not,
then the error is detectable. However, if both are not writ-® 1/O’s larger than a block
ten, or if the data is written but the checksum is not, thene |/O’s that cross block boundaries
the data corruption will not correctly be detected. Misdi-
rection is similar; if the checksum is written correctly the
ext2c will detect the corruption, otherwise the data will be e All combinations of the above

silently corrupted. The detection of malicious writes de-

pends on the nature of the malicious entity. If the mive first tested all of the above for writes. We verified

licious entity directly modifies the disk, then the writdhat for the writes issued, the correct blocks were identi-

is similar to bit rot, and ext2c can detect the corruptiofied s néeding updates, and that the appropriate places in

However, if the malicious entity is either smart enough 8¢ checksum file were updated. Then, we did the same
write checksums, or somehow uses our modified read 4Af €ads. This time also verifying that the checksums
write functions than the error will be undetectable. ~ Matched the hash of the data stored.

In summary, ext2c can detect most normal (i.e unma-As an additional assurance of correctness, we were able
licious) error occurrences. However, because the chefﬁ(-run all of the benchmarks mentioned later in the paper
sums are also stored on disk, it is clear that the same tyﬁ'é@om any checksum errors.
of problems plaguing data are extendible to the check. Ve also needed to ensure that ext2c accurately detects
sums themselves. A solution to this problem would be 416N checksums do not match data.
store the checksums somewhere else, such as nonvolatile
memory. We leave this problem as further work. 3Model Number: WD100EB-00BHFO

I/O’s smaller than a block

e |/O’s that extend files

tions are performed on 80KB files.
Overhead Costs EXT2 vs. EXT2C Reading and writing single blocks takes about 3 times
» S longer in ext2c. Some of this extra time is expected, be-
mexT2c|| Cause we are accessing extra data on the disk, namely the
checksum file. The reason the cost is 3 times as expensive
is mainly due to the disk’s positioning time when moving

from the data block to the checksum block.

° The fact that the time is dominated by positioning also
explains why 10 block operations are very similar to the
single block operations. The time it takes to access the 9
additional data blocks is not significant when compared to
the repositioning of the disk in order to read the checksum

Read 1 Block Write 1 Block Read 10 Blocks Write 10 Blocks block. AISO' it ShOUId be noted that in this case the check-
sum block on disk only needs to be accessed once. The
first checksum block is cached on its initial use, and it is

Figure 3:Cold Cache Small Read/Write. This graph shows the then reused from memory for the subsequent data blocks.

comparative costs of small reads and writes in ext2 and ext2c This suggests that performance is highly sensitive to the
position of the checksum file relative to the regular data.
Pue to this fact, a method for placing checksum files near

a - .

%ta is highly desireable.

Milliseconds
- ®

Since we did not change any of the on disk form
from ext2, ext2c file systems can be mounted as ext2 fi
systems. When mounted this way, data can be altered
without the checksums being updated. Additionally, £2.2 \Warm Cache Behavior
checksum file can be edited just like any other file.

We used these combined abilities to inject errors inf @ consequence of our implementation, checksum con-
the file system. Ext2c successfully detected errors b&iitency is maintained not only on the disk, but in the
when the checksums were corrupted as well as when taemory cache of disk blocks, as well.
data was corrupted. This leads to the question, how expensive is maintain-
ing checksums in memory? In Figure 4, the ‘Normal
Read’ bar represents the time it takes to complete ext2
4.2 Small Scale Performance reads. The other sections of the bar represent components

An important aspect of ext2c to study is the breakdovih additional cost needed to perform an ext2c read. Thus,
of the cost of individual operations as compared to extP€ full bar is the total time required for an ext2c read.
Since our file system is an extension of ext2, it makes theThe first added cost, is the time it takes to perform the
perfect baseline. It is identical in every respect to ext2@epen and close on the checksum file. Though this is not
with the exception of the additions mentioned in Sectighlarge amount of the total cost, we could probably elimi-
3. nate it, by only open/closing the checksum file on the data
file's open/close.

Reading from the checksum file and the extra read from
the data file make up the next component of cost. Not
First, we consider the cold cache behavior of reads amdich can be done to reduce this cost. The data needs to
writes. In these benchmarks, every read has to retriddgeread from the file to feed as input to the hash function.
data from the disk and every write must to commit its dafdhe hash also needs to be read to verify the file data.
to the disk. The last component is by far the most significant.

Figure 3 shows the results of an experiment in whicbhecksumming the data takes about ten times as long as
we perform 1 and 10 block reads and writes. The opegservicing a normal read from cache. This suggests that the

4.2.1 Cold Cache Behavior

PostMark Component | EXT2 | EXT2C

Warm Cache Reads Total Transactions 5000 | 2500
Create 500 500
“°T— mChecksum Calculation Read 2499 1249
**17] mExtra Data Read + Checksum Append 2483 1241
w| | Read Delete 628 628

Open/Close Checksum File

DINormal Read Figure 5: PostMark Results (transactions / second) The

results of running PostMark for 10,000 transactions, even
read/append bias. The numbers are a measure of operation
throughput.

w i
@ &\\\\\\\\\\\\\\\\\

the influence of file system caching and read-ahead tech-
nigues.

The results from our test are presented in Figure 5. Cre-
Figure 4: Warm Cache Small Reads. This graph shows the ate and delete operations perform at the same rate for both
break down of costs in a cached read. The bottom bar represefife systems, because ext2c does not perform any addi-
the time it take_s to do a normal ext2 read. The nex_t bar is th@nal work for these operations.
extra time required to open apd clos.e.the checksum f|Ie: Ttte ne £ poth the read and append operations, ext2c accom-
shows the costs for performlng additional memory copieh®f lishes about half of throughput as ext2. This is fairly ex-
data and the checksum. The final shows the cost for calcglatin . . .
the checksum. pected._ Ignoring the effects of caching, checksu_mmlng

approximately doubles the number of I/Os required to

complete reads and writes. The reason why the perfor-
hash function is a significant bottleneck for in memory filmances losses as not as bad as seen in Section 4.2.1, is
operations. mainly because PostMark creates small files which tended

The hash function’s time is not as significant whel® have their checksum files closer to file data. This made
compared to how long it takes to service a disk requete disk operations closer to sequential and hence, more
so its efficiency was not something we initially consicefficient.
ered. However, these results suggest that an efficient hashhis has several implications. Small file workloads are
function is important to cache performance. rather common for file systems. So, a loss of one half

the throughput could be a heavy detraction from the de-

sire to use ext2c. However, many people are willing to
4.3 Large Scale Performance tolerate extra latencies to gain the benefits of network
While small scale micro-benchmarks are useful for deté'rl-e systems_[?], S0 'f. the benefits of checksumming are
- . ' equally desired, this is a reasonable trade off to make.
mining how the mechanics of a file system perform, they
do not give a good picture of the impact of those results.

To better understand the impact of performance lossés-2 Large Sequential Reads
we take a look at benchmarks that represent more realigfitother important file system workload is large sequen-

Read 1 Block Read 10 Blocks

workloads. tial operations. This is typically when disks reach their
best performance, because positioning time is amortized
431 PostMark over long data accesses. Current disk technology typically

performs much worse with respect to random accesses.
PostMark[4] is a benchmark designed to simulate real-It has already been seen that extra postioning time is
istic small file workloads. It performs random pairs aftroduced in ext2c when the file system moves from ac-
create/delete and read/append operations in order to liog@ssing data to acessing checksums. Since a single check-

TPC-B EXT2 vs. EXT2C

Sequential Reads
70

W EXT2
OEXT2C

&
o

—& -EXT2
—=—EXT2C

Milliseconds
N
o
Time (seconds)

0 100 200 300 400 500 0
Blocks (4096 bytes) 500 1000
Number of Transactions

Figure 6: Sequential Reads. Demonstrates the ext2 vs. ext2gigure 7:TPC-B. The results of the TPC-B benchmark run both
times for large reads. Ranges from size 40 blocks to 400 slockn, the ext2 and ext2c file system. TPC-B is a transactional pro
cessing benchmark.

sum block holds checksums for over 200 data blocks,

caching the checksum block will allow ext2c to amoriamortized over large data reads.

tize its extra positioning time, as well. Since checksumsThis suggests that ext2c can handle transactional work-
are treated as any other file, accesses to them benefit figads as well as it handles large sequential reads. This
from all of the caching technicues employed by ext2. is promising, because transactional workloads occur in

This is demonstrated in Figure 6. There is a fixed adgjtaces such as banks, where data integrity is critical.
tional cost for using ext2c for large reads. This fixed cost

mostly represents postioning time to retrieve the check-
sum block for the first time. Then, the checksum blods Further Wor k
stayes in memory cache for the next 200 data block reads.

Checksumming during large sequential operationsTi&aroughout the paper we have briefly mentioned further
relatively cheap. For workloads that involve these opeagptimizations and improvements that could be made to
ations (archival, large media storage), it is much easierext2c, we discuss them in more detail here.

justify the price of checksumming. Our performance results have shown that the overhead
experienced by ext2c over ext2 is primarily related to rota-
433 TPC-B tional positioning time of the disk to access the checksum

files. In light of this finding, it is clear that further study

TPC-B[1] is a benchmark designed to represent Databa$dhe effects of varying the locations of the checksum
Management System workloads. As such, it simulatiiles needs to be made to develop an optimal positioning
the workload of several clients connecting to a backeadheme. A method of positioning the checksums on disk
and making transactional requests, like those of a barduld greatly reduce the disk access overhead and so re-
or ATM. The results can be interpreted to determine hatuce the overall time taken by reads and writes.
much load a server can handle. Another source of CPU bound overhead is the hashing

Figure 7 displays the results of running the TPC-Binction used to compute the checksums. Further work
benchmarks with 500 and 1000 transactions. In this caseuld be directed at finding a more efficient hash function
ext2c performs only slightly worse than ext2. We caand so reduce that cost.
attribute the good performance to effective caching of An additional optimization mentioned in the perfor-
checksum blocks. Thus, seeks to the checksum files ar@nce section would be to open and close the checksum

files along with the data files, instead of within the read Conclusions

and write functions. This would cause a small reduc-

tion in the overhead of reading and writing (as shown in -])]
the performance section). However, opening and closi have added additional functionality to the ext2 file

the checksum file along with the data file might makeSystem to enable us to give certain guarantees to the user
big difference if the file is left open for awhile and man bout the correctness of his/her data. Our aim is to ensure

read/write operations are performed on it. hat the (_1ata r_ead by the ﬁle system is not corrupted_. '!'0
accomplish this goal, we first developed a more realistic
fault model for disks that accounts for the fact that disks
can corrupt data silently. We then followed this model
6 Related Work by adding checksumming to ext2 to create a new file sys-
tem ext2c. Ext2c works by checksumming data that is
A lot of related work has been done to solve or recovfitten to disk and then when reading data back, it com-
from disk failures. Some implementations, however, hagates a new checksum and compares it against the stored
a more complex goal then just the detection of data ceirecksum. If the two checksums do not match, then the
ruption. data has become corrupted on disk and an error message
File systems such as I3FS[3] and PFS[10], seek to pi®+eturned to the user. In this manner we provide certain
tect against malicious data change. File systems and datarantees to users about their data.

integrity can be seriously com.promised through attaCksThroughtesting with PostMark we have discovered that
on the system and the_se two f|_|e sy'_stems use checks 2c¢ has generally half the throughput of ext2 on small
ming _and other f[echmques to identify such breachesfﬁ s. This is due mainly to the cost of positioning the disk
security and verify correctness of data-. _Thouglh we ‘ti(S)read from the checksum files. We find that on large se-
mentpn that we can partlally detect _maI|C|ous writes, t,hfﬁjential 1/0s, however, that the positioning cost is amor-
IS obwous!y not our main concern with respect to the 'Mized, and so the additional cost over ext2 in sequential
plementation of ext2c. I/O is fixed. The same is reflected in the TPC-B bench-
There are also systems that are more comparablgy{grk. Additionally, all of our benchmarks served to test
our goals. The Solaris Dynamic File System[11] anfle correctness of ext2 as well as the performance. Over-
RUSTY([6] are both file systems, whose primary aim igj| it is clear that there are some performance losses in

to verify data integrity in the face of disk related errorg;sing ext2c, but under workloads where caching is effec-
Both use checksumming and transactional updates or dgf@ the loss of performance is modest.

replication in addition to other policies to provide a sense

of security of data to the user. As further work, we could optimize our implementa-

There are other systems that use different techniquegr 5 N setv_eral V\{ay?_m order to lTprovlz [;s [:e:jo(rjmance.
ensure data persistence. Systems such as RAID[5] and. € mostimportantimprovement would be fo find an op-

GRAID[9] attempt to solve disk problems by relying or]i'mal placement for the checksum files on disk to reduce

strength of numbers. These systems utilize many dis[&? positioning time of the disk. A second valuable opti-

as well as schemes of data replication or parity to prevéﬂ ation would be to find a more efficient hashing func-

data loss. Typically, however, these systems are desigHga S0 as to lower CPU costs when updating checksums

with the fail-stop model of fault detection in mind an s§! memory.

are only applicable when a full disk fails. Therefore, ar- In general, we have found that checksums help to val-
rays of disks are unlikely to notice silent data corruptiddate data at the cost of some throughput. As with ev-
and so cannot give a complete guarantee on the correcything, the usefulness of our file system is determined
ness of data. It is important to emphasize, however, thgttrade offs based on the user’s priorities. Depending on
the goals of these types of systems are more along the workload required, the cost of added integrity may be
lines of reliability of disks and performance, and so it isigh, but for the right workloads, integrity can be gained

natural that do not guarantee the correctness of data. at a cheap cost.

8

Acknowledgments

We would like to acknowledge Remzi for his excellent
suggestions and guidance. We would also like to thank
Vijayan Prabhakaran for providing help and access to
benchmarks.

References

(1]
(2]
(3]

(4
(5]

(6]

(7]

(8]

El

[10]

(11]

Transaction processing performance council. tpdtip:/
www.tpc.org

P. A. DesAutels. Shal: Secure hash algorithm., 198Ww.w3.
org/PICS/DSig/SHA1_1_0.html .

A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS:Iin
Kernel Integrity Checker and Intrusion Detection File @yst In
Proceedings of the 18th USENIX Large Installation System Ad
ministration Conference (LISA 20Q4)ages 69-79, Atlanta, GA,
November 2004.

J. Katcher. Postmark: A new file system benchmark. Tewdini
Report TR3022, Network Appliance Inc., October 1997.

D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for re-
dundant arrays of inexpensive disks (raid). In H. Boral and.P
Larson, editorsProceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data, Chicago, lllindise
1-3, 1988 pages 109-116. ACM Press, 1988.

V. Prabhakaran, N. Agrawal, L. Bairavasundaram, H. Gupna
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. RUSTY file system
Draft, April 2005.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.rLyo
Design and implementation of the Sun Network Filesystem. In
Proc. Summer 1985 USENIX Carpages 119-130, Portland OR
(USA), 1985.

G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing
File System Integrity Through Checksums. Technical Re-
port FSL-04-04, Computer Science Department, Stony Brook
University, May 2004. www.fsl.cs. sunysb edu/docs/
nc-checksum-tr/nc-checksum.pdf

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, BndH.
Arpaci-Dusseau. Improving storage system availabilityhvid-
GRAID. In Proceedings of the USENIX FAST '04 Conference on
File and Storage Technologiepages 15-30, San Francisco, CA,
March 2004. University of Wisconsin, Madison, USENIX Assoc
ation.

C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying fdgstem
protection. pages 79-90.

G. Weinberg. Solaris Dynamic File Systemhttp:
/Imembers.visi.net/"thedave/sun/DynFS.pdf

