
Improving Ext2 Integrity with Checksums

Chloe Schulze, Brian Pellin
{cschulze,bpellin}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Abstract

We have modified the ext2 file system to include checksum-
ming on a per block basis. Our goal is to follow a realistic
failure model, which accepts that disks can partially fail
and do so silently. The addition of checksumming to ext2
detects silent data corruption and notifies the user if data
has been changed on disk without his/her knowledge. This
solution may also solve some other errors, such as mali-
cious changes to data. We make no attempt to recover
lost data, only to notify the user of the occurrence. Our
implementation is comparable to the performance of ext2,
with the addition of overhead incurred from reading, writ-
ing and computing checksums. We broke down the com-
ponents of the overhead and found that for warm cache
reads the computation of the checksum dominates CPU
costs. Additionally, for cold cache operations, we found
that the time is severely dominated by the disk positioning
to read the checksums.

1 Introduction

Reliability is a major source of concern in file system de-
sign, and the main issue behind it is data loss or data cor-
ruption. The weak links in this chain are disks. Disk er-
rors, though possibly few and far between, pose a problem
for data integrity. Though precautionary actions, such as
regular backups, are essential for data recovery and can
greatly reduce the problems associated with disk failure,
those efforts do not help if it is not apparent that the disk
has failed. Disks do fail, however, they do not always do
so completely, making it hard to recognize exactly when

(or if) the failure occurred. Obviously, for a system to ac-
tually meet the claim of reliability, this is an unacceptable
mode of operation.

There are two issues that need to be addressed in or-
der to solve this problem. The first is a need for a new
disk failure model. No longer can we assume a fail-stop
model, and so we develop a new paradigm that takes into
account the gray area of silent failures. The second issue
is one of detection and notification. The data corruption
must first be identified and then the user and/or file system
must be notified of the occurrence.

In this paper, we describe a new file system, which
deals with several of the aforementioned problems. This
system, named Second Extended File System with Check-
summing or ext2c, is a modified version of ext2 that uses
checksums to verify the correctness of file data.

The paper will proceed as follows: in Section 2 we
describe our failure model, then in Section 3 we outline
ext2c and our checksumming mechanism. Performance is
addressed in Section 4. Section 5 considers further work
to improve ext2c. Section 6 discusses related work and in
Section 7 we conclude.

2 Fault Model

For a disk failure model to be accurate, it must take into
account all the ways in which a disk can fail. Examples
are:

• Full disk failure: entire disk stops working, can be
permanent or temporary.

1



• Partial disk failure: latent sector errors, sectors of a
disk go bad, can also be permanent or temporary.

• Data corruption caused by improper disk operation.
This includes misdirection (data written to the wrong
block) and phantom writes (the disk returns that the
write completed, but it did not actually complete)[6].

These errors can all cause data to be lost or corrupted
without the user’s or file system’s knowledge.

Keeping the above types of errors in mind, a more ac-
curate failure model is one in which a disk can fail silently
or experience data corruption at anytime with no indica-
tion that the data may be incorrect. Using this fault model,
we designed a system to handle several of these types of
failures.

3 EXT2C

The goal of ext2C is to detect silent data corruption and
notify the user when it occurs. To facilitate this goal, we
have modified ext2 to compute and store checksums. The
file system operates by computing a checksum whenever
data is written and storing that checksum in a file. When
data is read, a new checksum is calculated and then com-
pared to the stored one. If the checksums do not match,
an error is returned to the user.

3.1 Checksum Granularity

Various design choices of where and how to store check-
sums are discussed in the paper by Sivanthanu, et. al.
[8]. We chose to compute checksums on a block by block
basis, per data file, and then store those checksums in a
separate file. The checksum files are named according
to their respective data files’ inode numbers, and these in
turn are stored in a checksum directory. Each checksum
is 20 bytes in length, and can be indexed by the block
number of the block in the file that it represents. Figure 1
demonstrates the creation of a checksum.

3.2 EXT2C Write

When compared to other implementations, there are sev-
eral advantages to computing checksums in this manner.
To begin with, the granularity of the checksum is such that

Figure 1:Checksum Creation. This figure shows the series of
steps that happen when a block is written to a file.

certain blocks of a file can be pinpointed without invali-
dating the entire file. Additionally, a block of a file can be
updated without having to read the entire file (to compute
a checksum over it).

There are also advantages to storing the checksums in
a separate file as opposed to storing them within the file
data. This implementation is simpler than attempting to
store the checksums inline (within each block) or in some
part of the inode or its indirect blocks, because there is no
need to modify the any of the structures of the file sys-
tem. Also, because of the size of each checksum, about
two hundred blocks of a file can be read using only one
block of the checksum file. This is obviously advanta-
geous for long, sequential reads. Though other solutions
have definite advantages, such as ease of access, we de-
cided to forgo the gains (and added complexity) of their
implementation and leave them as further work and opti-
mization to the system.

3.3 Computing the Checksum

To compute the checksum over a block of data, we use
the SHA-1 secure hash function[2].1 Our main reason for
using such a hash function is to minimize the possibil-

1Although it has recently been confirmed that some collision attacks
exist on SHA-1, these attacks do not make it easy to find a collision for
an arbitrary hash value. So, it is still adequate for our purposes.

2



ity of a collision of checksum results, and additionally, to
have a fixed size output for a variable size input. SHA-1
produces a digest of 160 bits, which is highly unlikely to
collide with another hash of a different input.

3.4 Changes to EXT2

We decided to use ext2 as a basis for our implementa-
tion because of its simplicity. Further work could be done
in extending this concept to other file systems or even to
VFS, which would be another compelling project.

To add checksumming to ext2, we wrote our own wrap-
per functions for the normal ext2 read and write calls. We
then modified the mapping from the system call read and
write to point to our new functions. Both of the new func-
tions work generally in the same manner.

3.5 EXT2C Write

The write function first calls the regular ext2 write call. It
then determines the number of blocks changed in the file
and the index of the first changed block. The newly writ-
ten data is then read in, and a checksum is computed over
each block. At this juncture we do not check the validity
of the old checksum because it is being written over and
so it should not matter if the data has been corrupted. We
then open up the checksum file and write the new check-
sum to the appropriate place (which is the index of the file
block * 20 bytes). We do this for each changed block in
the file, and then we close the checksum file and return
the result of the initial ext2 write.

The additional overhead in this function is the open-
ing and closing of the checksum file, the computation and
writing of the checksum to the checksum file, and the ex-
tra read that pulls in the newly written data.

3.6 EXT2C Read

Analogous to ext2c write, the read function first performs
a regular read call. Then the function computes the num-
ber of blocks that are being read and the index of the first
block and then reads each of those blocks in one at a time.
As each block is being read in, a checksum is computed
on that block and then it is compared to the correspond-
ing checksum from the checksum file. If the checksums

Figure 2:Read Operation. This figure shows the series of steps
that occur during the ext2c read.

do not match, an error message is thrown2 and the read
does not complete. If the two match, however, the opera-
tion proceeds and at the end of the function the result of
the initial ext2 read call is returned. Figure 2 outlines the
steps taken by the ext2c read function.

The added overhead incurred by the read function is
similar to that of the write function. There is an extra
data read, the read of the checksum, the computation of a
checksum and the open and close of the checksum file.

3.7 Reading Unwritten Data

In a few cases the Linux file system semantics allow for
reading data from a file that has not be written. If the file
pointer is advanced beyond the end of a file and the file is
written to at that point, then the data in-between the old
end of the file, and the start of the new write can be read.
For example, one can create a new file, seek to byte 4096
and write data. The semantics state that a read from the
first 4096 bytes should return all 0’s.

Originally, this created a problem for us. Our initial im-
plementation only updated checksums for blocks of the

2If the match fails, the read call will return -1 and errno willbe set to
ECHECKSUM.

3



file that had changed. However, in one of these spe-
cial writes, the automatically extended part of the file is
changing as well. Consider the above example where a
file is created and data is written to the second block of
the file. The checksum gets written for the second block
of the file, but not the first. Now, if we try and read from
the first block of the file, we will get a checksum mis-
match.

The solution, is to detect during writes when this situa-
tion occurs. We do this by monitoring the effect of a write
on a file’s length. If this creates any new blocks, then the
code considers the new blocks to overlap with the write as
well.

3.8 Targeted Problems

Ext2c can completely or partially detect the following
problems: bit rot, phantom writes, misdirection and mali-
cious writes. Bit rot, or the spontaneous flipping of bits, is
completely detectable because we have the guarantee that
the checksum has been written to disk. Therefore, when
the data is read from disk, the checksum that is computed
over the data will not match the stored checksum.

With the latter three problems, we no longer have the
guarantee that the checksum is written to disk. With phan-
tom writes, if the checksum is written but the data is not,
then the error is detectable. However, if both are not writ-
ten, or if the data is written but the checksum is not, then
the data corruption will not correctly be detected. Misdi-
rection is similar; if the checksum is written correctly then
ext2c will detect the corruption, otherwise the data will be
silently corrupted. The detection of malicious writes de-
pends on the nature of the malicious entity. If the ma-
licious entity directly modifies the disk, then the write
is similar to bit rot, and ext2c can detect the corruption.
However, if the malicious entity is either smart enough to
write checksums, or somehow uses our modified read and
write functions than the error will be undetectable.

In summary, ext2c can detect most normal (i.e unma-
licious) error occurrences. However, because the check-
sums are also stored on disk, it is clear that the same types
of problems plaguing data are extendible to the check-
sums themselves. A solution to this problem would be to
store the checksums somewhere else, such as nonvolatile
memory. We leave this problem as further work.

4 Results

In this section, we first look at how we evaluated the cor-
rectness of our implementation. That is followed by an
analysis of the performance of ext2 versus ext2c.

In our performance section, we closely examine the
costs of individual small operations. Then, we see the re-
sults of some benchmarks that better capture the behavior
of real workloads.

Our experiments were conducted on a Pentium III 700
MHz machine with 128MB of memory. The disk running
our file system is a Western Digital Protègè3 that runs at
5400 RPM. Both file systems use a block size of 4 KB.
Ext2c is based on the implementation of the Second Ex-
tended File System (ext2) in the 2.6.11.6 version of the
Linux kernel.

4.1 Implementation Correctness

In order to verify that our implementation is correct, we
subjected the file system to a variety of workloads. In
order to cover all bases, there are several read/write situa-
tions to consider:

• I/O’s aligned with the block boundary

• I/O’s smaller than a block

• I/O’s larger than a block

• I/O’s that cross block boundaries

• I/O’s that extend files

• All combinations of the above

We first tested all of the above for writes. We verified
that for the writes issued, the correct blocks were identi-
fied as needing updates, and that the appropriate places in
the checksum file were updated. Then, we did the same
for reads. This time also verifying that the checksums
matched the hash of the data stored.

As an additional assurance of correctness, we were able
to run all of the benchmarks mentioned later in the paper
without any checksum errors.

We also needed to ensure that ext2c accurately detects
when checksums do not match data.

3Model Number: WD100EB-00BHF0

4



Overhead Costs EXT2 vs. EXT2C

0

2

4

6

8

10

12

Read 1 Block Write 1 Block Read 10 Blocks Write 10 Blocks

M
ill

is
ec

o
n

d
s

EXT2
EXT2C

Figure 3:Cold Cache Small Read/Write. This graph shows the
comparative costs of small reads and writes in ext2 and ext2c.

Since we did not change any of the on disk formats
from ext2, ext2c file systems can be mounted as ext2 file
systems. When mounted this way, data can be altered
without the checksums being updated. Additionally, a
checksum file can be edited just like any other file.

We used these combined abilities to inject errors into
the file system. Ext2c successfully detected errors both
when the checksums were corrupted as well as when the
data was corrupted.

4.2 Small Scale Performance

An important aspect of ext2c to study is the breakdown
of the cost of individual operations as compared to ext2.
Since our file system is an extension of ext2, it makes the
perfect baseline. It is identical in every respect to ext2c,
with the exception of the additions mentioned in Section
3.

4.2.1 Cold Cache Behavior

First, we consider the cold cache behavior of reads and
writes. In these benchmarks, every read has to retrieve
data from the disk and every write must to commit its data
to the disk.

Figure 3 shows the results of an experiment in which
we perform 1 and 10 block reads and writes. The opera-

tions are performed on 80KB files.
Reading and writing single blocks takes about 3 times

longer in ext2c. Some of this extra time is expected, be-
cause we are accessing extra data on the disk, namely the
checksum file. The reason the cost is 3 times as expensive
is mainly due to the disk’s positioning time when moving
from the data block to the checksum block.

The fact that the time is dominated by positioning also
explains why 10 block operations are very similar to the
single block operations. The time it takes to access the 9
additional data blocks is not significant when compared to
the repositioning of the disk in order to read the checksum
block. Also, it should be noted that in this case the check-
sum block on disk only needs to be accessed once. The
first checksum block is cached on its initial use, and it is
then reused from memory for the subsequent data blocks.

This suggests that performance is highly sensitive to the
position of the checksum file relative to the regular data.
Due to this fact, a method for placing checksum files near
data is highly desireable.

4.2.2 Warm Cache Behavior

As a consequence of our implementation, checksum con-
sistency is maintained not only on the disk, but in the
memory cache of disk blocks, as well.

This leads to the question, how expensive is maintain-
ing checksums in memory? In Figure 4, the ‘Normal
Read’ bar represents the time it takes to complete ext2
reads. The other sections of the bar represent components
of additional cost needed to perform an ext2c read. Thus,
the full bar is the total time required for an ext2c read.

The first added cost, is the time it takes to perform the
open and close on the checksum file. Though this is not
a large amount of the total cost, we could probably elimi-
nate it, by only open/closing the checksum file on the data
file’s open/close.

Reading from the checksum file and the extra read from
the data file make up the next component of cost. Not
much can be done to reduce this cost. The data needs to
be read from the file to feed as input to the hash function.
The hash also needs to be read to verify the file data.

The last component is by far the most significant.
Checksumming the data takes about ten times as long as
servicing a normal read from cache. This suggests that the

5



Warm Cache Reads

0

50

100

150

200

250

300

350

400

450

Read 1 Block Read 10 Blocks

M
ic

ro
se

co
n

d
s

Checksum Calculation

Extra Data Read + Checksum
Read
Open/Close Checksum File

Normal Read

Figure 4: Warm Cache Small Reads. This graph shows the
break down of costs in a cached read. The bottom bar represents
the time it takes to do a normal ext2 read. The next bar is the
extra time required to open and close the checksum file. The next
shows the costs for performing additional memory copies of the
data and the checksum. The final shows the cost for calculating
the checksum.

hash function is a significant bottleneck for in memory file
operations.

The hash function’s time is not as significant when
compared to how long it takes to service a disk request,
so its efficiency was not something we initially consid-
ered. However, these results suggest that an efficient hash
function is important to cache performance.

4.3 Large Scale Performance

While small scale micro-benchmarks are useful for deter-
mining how the mechanics of a file system perform, they
do not give a good picture of the impact of those results.

To better understand the impact of performance losses,
we take a look at benchmarks that represent more realistic
workloads.

4.3.1 PostMark

PostMark[4] is a benchmark designed to simulate real-
istic small file workloads. It performs random pairs of
create/delete and read/append operations in order to limit

PostMark Component EXT2 EXT2C
Total Transactions 5000 2500
Create 500 500
Read 2499 1249
Append 2483 1241
Delete 628 628

Figure 5: PostMark Results (transactions / second) The
results of running PostMark for 10,000 transactions, even
read/append bias. The numbers are a measure of operation
throughput.

the influence of file system caching and read-ahead tech-
niques.

The results from our test are presented in Figure 5. Cre-
ate and delete operations perform at the same rate for both
file systems, because ext2c does not perform any addi-
tional work for these operations.

For both the read and append operations, ext2c accom-
plishes about half of throughput as ext2. This is fairly ex-
pected. Ignoring the effects of caching, checksumming
approximately doubles the number of I/Os required to
complete reads and writes. The reason why the perfor-
mances losses as not as bad as seen in Section 4.2.1, is
mainly because PostMark creates small files which tended
to have their checksum files closer to file data. This made
the disk operations closer to sequential and hence, more
efficient.

This has several implications. Small file workloads are
rather common for file systems. So, a loss of one half
the throughput could be a heavy detraction from the de-
sire to use ext2c. However, many people are willing to
tolerate extra latencies to gain the benefits of network
file systems[7], so if the benefits of checksumming are
equally desired, this is a reasonable trade off to make.

4.3.2 Large Sequential Reads

Another important file system workload is large sequen-
tial operations. This is typically when disks reach their
best performance, because positioning time is amortized
over long data accesses. Current disk technology typically
performs much worse with respect to random accesses.

It has already been seen that extra postioning time is
introduced in ext2c when the file system moves from ac-
cessing data to acessing checksums. Since a single check-

6



Sequential Reads

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500

Blocks (4096 bytes)

M
ill

is
ec

o
n

d
s

EXT2
EXT2C

Figure 6: Sequential Reads. Demonstrates the ext2 vs. ext2c
times for large reads. Ranges from size 40 blocks to 400 blocks.

sum block holds checksums for over 200 data blocks,
caching the checksum block will allow ext2c to amori-
tize its extra positioning time, as well. Since checksums
are treated as any other file, accesses to them benefit from
from all of the caching technicues employed by ext2.

This is demonstrated in Figure 6. There is a fixed addi-
tional cost for using ext2c for large reads. This fixed cost
mostly represents postioning time to retrieve the check-
sum block for the first time. Then, the checksum block
stayes in memory cache for the next 200 data block reads.

Checksumming during large sequential operations is
relatively cheap. For workloads that involve these oper-
ations (archival, large media storage), it is much easier to
justify the price of checksumming.

4.3.3 TPC-B

TPC-B[1] is a benchmark designed to represent Database
Management System workloads. As such, it simulates
the workload of several clients connecting to a backend
and making transactional requests, like those of a bank
or ATM. The results can be interpreted to determine how
much load a server can handle.

Figure 7 displays the results of running the TPC-B
benchmarks with 500 and 1000 transactions. In this case,
ext2c performs only slightly worse than ext2. We can
attribute the good performance to effective caching of
checksum blocks. Thus, seeks to the checksum files are

Figure 7:TPC-B. The results of the TPC-B benchmark run both
on the ext2 and ext2c file system. TPC-B is a transactional pro-
cessing benchmark.

amortized over large data reads.
This suggests that ext2c can handle transactional work-

loads as well as it handles large sequential reads. This
is promising, because transactional workloads occur in
places such as banks, where data integrity is critical.

5 Further Work

Throughout the paper we have briefly mentioned further
optimizations and improvements that could be made to
ext2c, we discuss them in more detail here.

Our performance results have shown that the overhead
experienced by ext2c over ext2 is primarily related to rota-
tional positioning time of the disk to access the checksum
files. In light of this finding, it is clear that further study
of the effects of varying the locations of the checksum
files needs to be made to develop an optimal positioning
scheme. A method of positioning the checksums on disk
could greatly reduce the disk access overhead and so re-
duce the overall time taken by reads and writes.

Another source of CPU bound overhead is the hashing
function used to compute the checksums. Further work
could be directed at finding a more efficient hash function
and so reduce that cost.

An additional optimization mentioned in the perfor-
mance section would be to open and close the checksum

7



files along with the data files, instead of within the read
and write functions. This would cause a small reduc-
tion in the overhead of reading and writing (as shown in
the performance section). However, opening and closing
the checksum file along with the data file might make a
big difference if the file is left open for awhile and many
read/write operations are performed on it.

6 Related Work

A lot of related work has been done to solve or recover
from disk failures. Some implementations, however, have
a more complex goal then just the detection of data cor-
ruption.

File systems such as I3FS[3] and PFS[10], seek to pro-
tect against malicious data change. File systems and data
integrity can be seriously compromised through attacks
on the system and these two file systems use checksum-
ming and other techniques to identify such breaches of
security and verify correctness of data. Though we do
mention that we can partially detect malicious writes, this
is obviously not our main concern with respect to the im-
plementation of ext2c.

There are also systems that are more comparable to
our goals. The Solaris Dynamic File System[11] and
RUSTY[6] are both file systems, whose primary aim is
to verify data integrity in the face of disk related errors.
Both use checksumming and transactional updates or data
replication in addition to other policies to provide a sense
of security of data to the user.

There are other systems that use different techniques to
ensure data persistence. Systems such as RAID[5] and D-
GRAID[9] attempt to solve disk problems by relying on
strength of numbers. These systems utilize many disks,
as well as schemes of data replication or parity to prevent
data loss. Typically, however, these systems are designed
with the fail-stop model of fault detection in mind an so
are only applicable when a full disk fails. Therefore, ar-
rays of disks are unlikely to notice silent data corruption
and so cannot give a complete guarantee on the correct-
ness of data. It is important to emphasize, however, that
the goals of these types of systems are more along the
lines of reliability of disks and performance, and so it is
natural that do not guarantee the correctness of data.

7 Conclusions

We have added additional functionality to the ext2 file
system to enable us to give certain guarantees to the user
about the correctness of his/her data. Our aim is to ensure
that the data read by the file system is not corrupted. To
accomplish this goal, we first developed a more realistic
fault model for disks that accounts for the fact that disks
can corrupt data silently. We then followed this model
by adding checksumming to ext2 to create a new file sys-
tem ext2c. Ext2c works by checksumming data that is
written to disk and then when reading data back, it com-
putes a new checksum and compares it against the stored
checksum. If the two checksums do not match, then the
data has become corrupted on disk and an error message
is returned to the user. In this manner we provide certain
guarantees to users about their data.

Through testing with PostMark we have discovered that
ext2c has generally half the throughput of ext2 on small
files. This is due mainly to the cost of positioning the disk
to read from the checksum files. We find that on large se-
quential I/Os, however, that the positioning cost is amor-
tized, and so the additional cost over ext2 in sequential
I/O is fixed. The same is reflected in the TPC-B bench-
mark. Additionally, all of our benchmarks served to test
the correctness of ext2 as well as the performance. Over-
all, it is clear that there are some performance losses in
using ext2c, but under workloads where caching is effec-
tive, the loss of performance is modest.

As further work, we could optimize our implementa-
tion in several ways in order to improve its performance.
The most important improvement would be to find an op-
timal placement for the checksum files on disk to reduce
the positioning time of the disk. A second valuable opti-
mization would be to find a more efficient hashing func-
tion so as to lower CPU costs when updating checksums
in memory.

In general, we have found that checksums help to val-
idate data at the cost of some throughput. As with ev-
erything, the usefulness of our file system is determined
by trade offs based on the user’s priorities. Depending on
the workload required, the cost of added integrity may be
high, but for the right workloads, integrity can be gained
at a cheap cost.

8



8 Acknowledgments

We would like to acknowledge Remzi for his excellent
suggestions and guidance. We would also like to thank
Vijayan Prabhakaran for providing help and access to
benchmarks.

References
[1] Transaction processing performance council. tpc-b.http://

www.tpc.org .

[2] P. A. DesAutels. Sha1: Secure hash algorithm., 1997.www.w3.
org/PICS/DSig/SHA1_1_0.html .

[3] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: AnIn-
Kernel Integrity Checker and Intrusion Detection File System. In
Proceedings of the 18th USENIX Large Installation System Ad-
ministration Conference (LISA 2004), pages 69–79, Atlanta, GA,
November 2004.

[4] J. Katcher. Postmark: A new file system benchmark. Technical
Report TR3022, Network Appliance Inc., October 1997.

[5] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for re-
dundant arrays of inexpensive disks (raid). In H. Boral and P.-Å.
Larson, editors,Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data, Chicago, Illinois, June
1-3, 1988, pages 109–116. ACM Press, 1988.

[6] V. Prabhakaran, N. Agrawal, L. Bairavasundaram, H. Gunawi,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. RUSTY file systems.
Draft, April 2005.

[7] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and implementation of the Sun Network Filesystem. In
Proc. Summer 1985 USENIX Conf., pages 119–130, Portland OR
(USA), 1985.

[8] G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing
File System Integrity Through Checksums. Technical Re-
port FSL-04-04, Computer Science Department, Stony Brook
University, May 2004. www.fsl.cs.sunysb.edu/docs/
nc-checksum-tr/nc-checksum.pdf .

[9] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, andR. H.
Arpaci-Dusseau. Improving storage system availability with D-
GRAID. In Proceedings of the USENIX FAST ’04 Conference on
File and Storage Technologies, pages 15–30, San Francisco, CA,
March 2004. University of Wisconsin, Madison, USENIX Associ-
ation.

[10] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying filesystem
protection. pages 79–90.

[11] G. Weinberg. Solaris Dynamic File System.http:
//members.visi.net/˜thedave/sun/DynFS.pdf

9


