
Submitted to SLOW ’05

PERFORMANCE DIRECTED ENERGY MANAGEMENT USING BOS

Pratap Ramamurthy, Ramanathan Palaniappan

Computer Sciences Department
University of Wisconsin-Madison

ABSTRACT

One of the major challenges in today’s computing world
is energy management in portable devices and servers.Power
management in portable devices is essential to increase bat-
tery life. High end server systems use large clusters of ma-
chines that consume enormous amount of power. Previ-
ous research has devised both software and hardware tech-
niques for memory energy management but has overlooked
the performance of applications in such environments. The
result is that some of these techniques slowed down an ap-
plication by 835%. In this paper, we look at software tech-
niques for memory energy management without compromis-
ing on performance. The paper conceives of a new ap-
proach calledBOS - Ballooning in the OSinspired from the
VMware ESX server. The BOS approach consists of a kernel
daemon which continuously monitors the accesses to mem-
ory chips and disk I/O. Based on the profiled information,
the BOS daemon decides about powering down/up chips.
Powering down is emulated within the kernel using mecha-
nisms such as page migration and invisible buddy. Results
indicate that chips with more number of allocated pages
may not always be the most frequently accessed ones. A
study has been done analyzing the effect of decreased mem-
ory size on disk activity and based on the study, a threshold
based policy is proposed which is found to settle in the op-
erating point for a simple application. A single page migra-
tion incurs a cost of approximately 13µs and is one of the
bottlenecks in the BOS approach.

Keywords: Ballooning, BOS, invisible buddy, power,
page migration, buddy allocator.

1. INTRODUCTION

People have been trying to increase memory speeds to keep
up with processor speeds. Speed is the only issue as long as
we are concerned with desktops and high end servers. But
when we delve into the realm of handheld devices and lap-
tops, a new constraint comes into the picture, namely power
expenditure. Mobile devices are equipped with batteries to
supply power and hence, it would be better if this battery
power is utilized effectively. Researchers have proposed
many solutions to conserve power in system components

like processor, disk drives, flash, cache and main memory
from a hardware perspective, but few people have explored
it from a software standpoint. This project tries to build a
power and performance aware module within an operating
system that controls the main memory and disk power con-
sumption with due consideration for performance.

2. MOTIVATION

Handheld and portable devices these days come with guar-
antees of more than 24 hours of battery life. The size and
the weight of these devices depend very much on the battery
required. Hence, saving power in such devices will lead to
compact battery sizes with longer lifetime. Popular inter-
net servers like google.com and search.msn.com have set up
huge data centers called farms which dissipate lot of power
and hence, special cooling techniques have to be installed
even for normal operation. All these end up with additional
costs. Therefore, reducing energy/power consumption by
systems becomes an important issue.

Current hardware technologies allow various system com-
ponents to operate at different power levels and correspond-
ing performance levels. Hardware devices are so complex
that billions and billions of transistors make up the circuit
thereby increasing power consumption. This has motivated
hardware vendors like Intel and RAMBUS to include power
saving modes into their processors and memory chips re-
spectively. Other places where power could be saved in-
clude the power aware displays (CRT/LCD). In the power
saving mode, the device consumes less power at a reduced
clock speed. One fine example is the CPU switching to
low power-low performance circuits in power conservation
mode. Recently there has been an increased interest in soft-
ware techniques to save power in systems. The software
approaches include resourceful use of devices and utilizing
the hardware based power saving modes. These techniques
involve decision making using heuristics and then operating
in a power efficient mode. Quite obviously, all these power
saving modes have a performance penalty associated with
them. The basic premise should behow to conserve power
without significantly hurting the performance of the system.

Previous research has shown that by judiciously exploit-
ing the various power levels and depending on the work-

1

Submitted to SLOW ’05

load, it is possible to have energy-limited systems built from
high performance and high-peak power components with a
minimal impact on the battery life of the device. A subtle
point overlooked in previous research [1,2,3] is that memory
energy management has been addressed disjointly without
due consideration for disk power consumption. This pa-
per takes the view that the memory and the disk are closely
coupled. A reduction in the available memory pages might
potentially lead to more disk I/O. This implies that consider-
ing the totality of memory and thrashing effects would be a
more accurate way of looking at it. In previous approaches,
although experiments boast of saving 50%-70% of mem-
ory power, no mention is made about the thrashing effects
in these situations. We feel a balance should be achieved
between the memory and the disk. This balance is termed
as theoperating point of memory. Thus, our approach is to
find an optimal operating point (for eg., the number of chips
in the ON state) above which any further increase in the
number of available pages will neither enhance performance
nor reduce power consumption. The notion of power con-
sumption in this paper includes the power dissipated by the
memory subsystem as well as the power spent due to thrash-
ing. Previous research [6] has shown that energy aware al-
gorithms can reduce the hard disk power consumption by
a significant amount with large memory sizes. The power
aware algorithm explained in this paper continuously mon-
itors the memory activity to make intelligent decisions.

In section 3 we give an overview of the BOS approach
followed by related work in section 4. In section 5 we dis-
cuss the main BOS architecture. In section 6 we discuss the
BOS implementation , the mechanism of power up/down of
a chip which involves page migration and also some novel
techinques like invisible buddy. In section 7 we discuss the
various policy issues. In section 8 we discuss the studies
done for resolving policy issues and the working of the OS
in steady state is shown. We conclude in section 9 summa-
rizing the paper.

3. BOS APPROACH

The software technique developed in this paper is called as
the BOSapproach which stands forBallooning in the OS.
BOS technique was inspired from the ballooning technique
implemented in the VMware ESX server[8]. The basic BOS
premise is as follows:

BOS premise: Dynamically resize the memory based on
memory traffic and disk I/O to hover around an optimal
memory size where in power consumption and system per-
formance will be balanced.

3.1. Disk Activity as Performance Measure

The BOS technique consists of a kernel level daemon (which
we refer to as theBOS daemon) that is constantly in search
for this elusive yet feasible operating point. The perfor-
mance metric considered in this paper is thedisk activityand
one inherent feature of the BOS approach is that disk power
is indirectly saved without explicitly transitioning theminto
low power mode. The BOS daemon dynamically increases
the memory size whenever it finds a pronounced increase in
disk activity thereby reducing the energy spent in unneces-
sary disk seeks. When memory size is reduced below a cer-
tain limit, disk I/O will start to increase as data which were
previously cached would now be out of the cache and hence,
more memory accesses will result in disk I/O. This means
that increased disk I/O will potentially increase the response
time of an application. Thus, considering the amount of disk
activity as the basis of performance seems to be a reasonable
approximation.

3.2. BOS details

BOS consists of a kernel level daemon that continuously
monitors memory and disk activity to make policy deci-
sions. The BOS approach uses a ”two threshold” policy
to make power down/power up decisions. When disk activ-
ity lies below a low thresholdα, power down is triggered
while if it lies above a high thresholdβ, chips are powered
up to ease the memory pressure. On the other hand, if the
disk activity lies between the two thresholds, then no action
is taken as this signifies that the system is in equilibrium.
This approach also prevents the potential oscillatory behav-
ior that arises in systems due to a hysteresis loop.

The BOS daemon does not actually power down the
chips but instead emulates that effect within the kernel. This
is achieved through suitable mechanisms as page migration,
invisible buddy explained in later sections. Using mecha-
nisms like page migration means that powering down in-
volves overheads and hence the thresholds selected play an
important role in the overall system performance.

Experimental results show that chips with more number
of allocated pages may not necessarily be the most accessed
ones. Chips with very few allocated pages were accessed
heavily over the entire period. This means that powering
down those chips will impose a performance penalty as pro-
cesses accessing those chips will be blocked until migration
has been done. Though this kind of a policy for select-
ing chips to be powered down imposes less migration over-
heads, the fact that it directly affects system performance
motivated us to choose an alternate approach based on chip
access pattern. Results show that the threshold based policy
works well for a small application that continuously dirties
the pages in memory. But the big question is how to set the
thresholds? The thresholds set vary depending upon the ap-

2

Submitted to SLOW ’05

plication workload and hence, having dynamically varying
thresholds could solve some of the problems. Also, results
indicate that the costs of migration (at a probabilistic level)
depends on the number of applications currently active and
an increase in the number of applications increases the mi-
gration costs. The average time required to migrate a page
was found to be around 13µs.

The strength of the BOS approach lies in its ability to
balance memory and disk power consumption with the help
of simple thresholds. Another important point is its global
approach to solving the problem rather than the per pro-
cess solution adopted in previous research. A per process
approach imposes nap down1 overhead for every context
switch which could vary based on the number of applica-
tions currently active, while in contrast, the BOS approach
uses a fixed sampling interval which is defined as anepoch.
Though this might take some time to enter the operating
range, over long timescales, the BOS daemon would tune
to the application demands. The potential drawback of the
BOS approach is its delicate threshold based policy which
might breakdown under different application workloads and
the migration cost is another additional source of overhead.

4. RELATED WORK

People have devised hardware and software techniques for
saving power in systems. [1] deals with page allocation
policies that can be employed by an informed operating sys-
tem to complement the hardware power management strate-
gies. It deals with mechanisms for optimal placement of
data and code on chips so that less number of memory chips
is in use at any point in time. [2] is a software approach to
memory energy management in which a simple BUT(Bank
Usage Table) is used to keep track of accesses to memory
banks on a per process basis. Its premise is that banks ac-
cessed previously are more likely to be accessed again and
hence they will be switched ON while other banks can be
pushed to a low power mode. [3] proposes two approaches,
viz., a hardware and a OS based approach to memory en-
ergy management. The paper identifies mechanisms that
will estimate the page miss ratio on the fly which can then
be used to steer the page allocation for a process. This in-
formation is subsequently used for memory energy manage-
ment. A power aware virtual memory layer was designed in
[4] which tried to reduce the power expended by allocating
all the pages of a process into minimum number of chips.
The authors described aworst-fit algorithm to accomplish
this. The advantage with this approach is that on a context
switch, one needs to switch on chips that are only needed for
the current process since they contain all the required pages.
But the authors did not consider the case where in all the
chips of a process were completely filled and if a request for

1moving to a low power mode

a new page came, one had to dynamically switch on one of
the chips in low power mode. The paper did not quantify the
frequency of such failed allocation requests. The paper also
used techniques like page migration to forcibly increase the
locality of accesses to the chips. [5] proposed a pure hard-
ware based approach to memory and disk power conserva-
tion with execution time as the performance metric. An ob-
servation made by [5] was that an application’s performance
running on a power aware system degraded by 835%. This
observation was the main motivation to our BOS daemon
considering not only the chip access pattern but also the cor-
responding increase in disk I/O. Our approach draws from
[2] and [4] in that we monitor accesses to memory chips
and we also use page migration to achieve our goals, but it
is radically different from both in the following ways.

1. The most important contribution of the BOS approach
is its ability to dynamically resize memory by com-
pletely powering down2 chips rather than transition-
ing them into low power modes temporarily.

2. In [2] the decisions are based on the most recent ac-
cess observed but the BOS approach makes use of
history over a number of epochs. This effectively
eliminates the powering down decisions caused due
to spikes3 in memory accesses.

3. Both [2] and [4] operate at a per address space level
and hence they optimize local performance but our
approach takes a global view of memory and thus
tries to optimize the overall performance of the sys-
tem.

5. BOS ARCHITECTURE

The BOS architecture is shown in Figure 1. The BOS dae-
mon is a kernel level daemon that wakes up periodically and
performs some actions based on the activity in the previous
epoch. The initial step of the daemon is to collect system
parameters such as:

1. Collecting information about disk activity in the pre-
vious epoch.

2. Determining accessed chips in the previous epoch.

Disk I/O information is used to decide whether this is an
appropriate epoch to power down/power up a chip and the
latter information is used to select the victim chip, in case,
a power down decision is made.

If a power down decision is made by the BOS daemon,
all the pages in the victim chip are traversed and suitable
processing is done for each type of page. If the page is

2we emulate power down due to hardware constraints
3random accesses by an application

3

Submitted to SLOW ’05

Figure 1:BOS Architecture: Kpowerd is the BOS daemon

an allocated page, then it is migrated to a new place. On
the other hand, if it is a free page, then the invisible buddy
technique is used to prevent the page from being allocated.
Once all the pages in the chip have been traversed, thechip
power tableis updated to reflect the new state of the chips.
The chip power table maintains a single bit for each chip
indicating whether it is powered on or off.

6. BOS IMPLEMENTATION DETAILS

6.1. Power Down Mechanisms

The power down mechanisms were emulated within the ker-
nel instead of actually powering down the chips. This meant
that one had to clearly define the state of a powered down
chip. The implementation was done based on the following
definition for a powered down chip.

Definition: A chip in the OFF state is defined as one whose
pages are totally invisible to the kernel. These pages must
not be accessed by any process in the system which implies
that they must not be allocated to any system processes by
the kernel. In other words, the kernel should believe as if
it had one memory chip less.

Thus, the major challenge in the implementation involved
devising mechanisms to emulate the above effect within a
kernel that has the notion of a statically fixed size memory.
The following mechanisms were used to power down4 the
chips.

• Page Migration

• Invisible Buddy

4power down => emulating power down

6.1.1. Page Migration

A chip to be powered down consists of both free pages and
allocated pages. Two mechanisms were thought of to deal
with allocated pages. The first method dealt with them by
simply flushing the pages to disk5 and then unmapping
the pages. One potential problem with this method is that
the linux kernel does a lazy writeback of pages and hence
one cannot be assured that the pages were indeed forced to
disk. Another issue is that, if the chip contained a ”hot”
page, flushing it to disk creates a performance penalty for
future accesses. An alternative to the above solution that
potentially overcomes both the problems is Page Migration.
When an allocated page is encountered within a victim chip,
the page is migrated to a new location on a different chip and
all the processes that map to the current page are adjusted
so that they map to the new page6. This method has the
advantage that it reduces disk activity and additionally, any
hot page in the victim chip will still be resident in the main
memory but in a different location. This solution poses no
problem for uniprocessor machines but it might not scale
well with multiprocessor machines which have NUMA is-
sues. Page migration is illustrated in Figure 2.

Figure 2: Illustrating Page Migration. The dotted arrows
represent the new remapped pointers.

Page Migration Algorithm

1. Get a free page from the kernel.

2. Transfer data to the new page.

3. Remap page table entries to point to the new page.

4. Update the page cache/ swap cache as necessary.

5. Update the buffers associated with the page to point
to the new page.

6. Modify the LRU lists.

5if they were dirty
6Linux 2.6 rmap facility is used to remap the pages

4

Submitted to SLOW ’05

In order to migrate a page, a free page is required. This
is accomplished by requesting a free page from the kernel.
In the pathological case that the kernel offers a page on the
same chip, the new page is pinned and the request is re-
peated. Considering the worst case scenario wherein there
is only one allocated page to be migrated while all others
being free pages on a chip, if the kernel continuously allo-
cates pages from the same chip, there should be a point at
which the kernel allocates pages from a different chip since
all pages in the current chip would have already been allo-
cated to the BOS daemon.

Once the page has been allocated, the data is transferred
using a singlememcpyoperation. The page table entries of
all processes that map to the current page are modifiied to
point to the new page. Pages can be classified as:

1. File pages

2. Anonymous pages

3. Swapcache pages

File pages refer to those which contain data read from a
file or those that have a backing store. Anonymous pages are
formed when a user mallocs or in general, they refer to dy-
namically allocated memory. Swapcache pages are anony-
mous pages that have a valid swap space and hence a valid
swap entry.

If a page is a file page or a swapcache page, then the
page cache or the swapcache7 must be updated respec-
tively to reflect the new page location. Pages contain buffers
which are referenced by their location on the disk. In linux
2.6, the buffer cache and the page cache are unified and
hence, there is only a single buffer associated with a page.
This buffer must be updated so that it points to the correct
page which contains its data. The above steps ensure that
any future access to the data will be automatically diverted
to the new page and hence effectively, we have backed up
the page.

6.1.2. Denying access to migrated pages

The question that remains is how to ensure that the old page
is prevented access to any of the other processes in the ker-
nel and to the kernel itself ? This question arises since it
is equally possible that the swap daemon could reclaim the
page which could be later reallocated to a process thereby
violating the definition of a powered down chip. A page
could be touched by the swap daemon if and only if it is
in the LRU lists. Thus, removing a page from the LRU list
makes it invisible to the swap daemon and hence the page
will not be touched in the future. Unless the chip recovery
algorithm is run for this chip, the pages in this chip will be
inaccessible to the rest of the world.

7a radix tree of pages

6.1.3. Invisible Buddy Technique

The previous section detailed out how to handle the allo-
cated pages. In this section, we come up with a new tech-
nique called as theInvisible Buddyto prevent free pages in
the victim chip from being allocated. A new bit called as
thePower bithas been added to every page. When the BOS
daemon encounters a free page during the powering down
of a chip, it sets the Power bit signifying that this page has
been powered down and hence should not be allocated by
the buddy allocator. When the buddy tries to allocate a page
that resides on a powered down chip, a small snippet of code
that imposes minimal overhead diverts the allocation to the
next buddy in the list. If all pages within the current order
have the Power bit set, then the allocation is diverted by in-
crementing the order. The buddy technique of splitting and
coalescing pages makes sure that this scheme works.

6.2. Chip Recovery Mechanisms

These mechanisms deal with powering up of a chip based on
a decision by the BOS daemon. Two cases have to be con-
sidered depending upon whether the page was a free page
or a migrated page.

Free Pages:The Power bit has to be cleared so that
future allocations can be done on this page.

Migrated Pages:Since these pages have been removed
from the LRU lists, there is no way that the kernel can add
them to the buddy lists. Hence, the BOS daemon forcibly
adds these pages to the buddy, thereby making these pages
visible. When a chip is powered up, there will be a flurry of
free pages available to the kernel which can relieve it of the
memory pressure.

Recovery is always done from the end of the chip. This
is due to the assumption made by the buddy allocator that if
a list entry of ordern is in the free list, then all pages follow-
ing it upto a total of2n pages will be free. The buddy alloca-
tor stores only the beginning8 of a list of 2n free pages and
hence if we recover from the beginning of a chip, the follow-
ing inconsistency may arise. The BOS daemon could clear
the Power bit of a list head after which it could be desched-
uled immediately. In the meantime, since the list head’s
Power bit has been cleared, all the contiguous pages follow-
ing it could have been allocated to a process even though
all the Power bits in the list have not yet been cleared. This
creates some form of inconsistency within the system and
hence recovery was decided to be done from the last. Now,
if a block of free pages is made available, then one can be as-
sured that all2n contiguous pages will also have their Power
bits cleared. The Power bit was set in all the pages rather
than only in the list head, since any page could become a
list head at any point of time due to the split and coalesce
technique of the buddy allocator.

8referred to as the list head

5

Submitted to SLOW ’05

6.2.1. Partial Recovery

It is not always possible to completely power down a chip.
Some of the pages could be locked or under I/O. There are
two ways of solving this problem.

Chip Abort: The first solution is to abort the power
down process and recover the pages pinned so far.

Wait and Pounce:The BOS daemon loops on the page
for a while until a timeout period to check if the page gets
unlocked. If the timer expires before the page is unlocked,
then the chip is recovered and the power down process is
aborted.

7. BOS POLICIES

BOS must deal with two kinds of policies:

1. Determining when to power down/up chips.

2. Selecting the victim chip.

In this section, we explain in detail the mechanism used
to track memory accesses and the policy used for select-
ing victim chips while the base policy of deciding when to
power off /on will be explained in section 8. The chip to be
powered down can be selected based on two different poli-
cies.

1. Chips that have the least number of allocated pages
with the assumption that they will be accessed less
frequently and moreover, the costs of migration will
be less.

2. Chips that have been least frequently accessed in the
previous epochs.

The latter policy has been implemented in the BOS dae-
mon and is explained in section 8. To track the least fre-
quently accessed chip, information is required about the ac-
cess history of every chip in the system over a period of
time. Generally, any page hit bypasses the operating system
and takes place in the hardware while only page faults trap
to the kernel. This kind of a design poses a problem as we
will not be able to monitor the chip accesses when no page
faults occur. Hence, a mechanism has to be devised that will
filter these accesses to the BOS daemon. Two mechanisms
were devised and they are explained below in detail.

7.1. Page Present Bit

All page table entries contain a PTPRESENT bit which in-
dicates whether the corresponding page is present in mem-
ory or not. The hardware checks this bit and on finding it
cleared, will trap to the page fault handler. This could be ex-
ploited to trap the first access of a page to the kernel. During

every epoch, the BOS daemon will clear the PTPRESENT
bit of all the page table entries and hence the first access to
any page in that epoch will trap to the kernel.

7.2. Page Accessed Bit

All page table entries contain a PTACCESSED bit which
is set by the hardware whenever the page is accessed. The
BOS daemon wipes off these bits during the beginning of
each epoch and examines them at the end of the epoch. De-
pending upon whether the bits have been set or reset, one
can determine whether the page was accessed or not. Using
the above mechanisms, access to chips can be easily traced
out. Based on this, the BOS daemon uses a history based
policy to determine the victim chip.

7.3. History Based Policy

A 32 bit history is maintained for every chip in the system.
A 1 in thei th bit of chipj indicates that chipj was accessed
32 - i epochs prior to the current epoch. Thus, the 32nd
bit represents the most recent epoch. During every epoch,
all the bits are shifted right by one and the most recent bit
gets into the most significant bit. Hence, at any point of
time, the chip which contains the least numeric value in its
history is the least frequently accessed one. Note that only
the first access to a chip is considered rather than the number
of accesses to each chip in every epoch.

8. EXPERIMENTAL RESULTS

Figure 3:Distribution of application pages across the chips.

The experiments shown in Figures 3 and 4 were con-
ducted on a Dell Latitude laptop9 with 256 MB of RAM
contained in 16 chips. Kernel code and data were allocated

9Pentium 4 - 3.2 GHz

6

Submitted to SLOW ’05

Figure 4:Chip access pattern

on chip 010 and hence it was excluded from powering down
by the BOS daemon. The remaining experiments were con-
ducted on a Dell Latitude laptop with 512 MB RAM and
hence a total of 32 memory chips.

As explained in section 7, BOS must follow a policy in
determining the target chip to power down. Figure 3 shows
the distribution of application pages to the various chips.
X-windows applications were selected as the workload for
the prime reason that these applications have huge mem-
ory requirements. The graph in Figure 3 was generated by
exploiting the on-demand paging behavior of the OS. The
page fault generated on the first access to a file or anony-
mous page is intercepted and accounted as explained in sec-
tion 7.1. It can be seen that allocation of pages occurs in
a clustered fashion with some chips being heavily allocated
when compared to that of the others. This shows that pages
are not allocated to the chips in a uniformly distributed man-
ner. From this graph, one might jump to a conclusion that
chips like 10 or 12 could be potential candidates for power-
ing down as they have less number of allocated pages and
moreover, the overhead due to page migration might be less,
but Figure 4 gives a different picture.

Figure 4 shows the chip access pattern for the same
workload in Figure 3 over a number of epochs. The graph in
Figure 4 was obtained using the chip access pattern mecha-
nism explained in section 7.3. The reverse mapping facility
is used to retrieve the page table entries that map to a page
and their PTACCESSED bits are cleared in every epoch
as explained in section 7.2. An examination of the bits in
the next epoch gives an overview of the chips that were ac-
cessed in the previous epoch.

The two graphs together lead to an interesting observa-
tion. Chips 10 and 12 have only a few pages allocated to
them; in contrast, they have been accessed frequently over
the entire time range. On the other hand, chip 15 which
consists of 10 times more allocated pages than chips 10 or
12 was not accessed that frequently in commensurate with
its number of allocated pages. This leads us to the impor-
tant conclusion that chips with more allocated pages need
not be the most heavily accessed ones. This conclusion has
an important effect on the policy that we adopt for select-

10initial 1252 pages

File Size (MB)
chips OFF 100 200 300 400

0 8291895 15475297 23767297 53705193
10 8236489 16815762 25526496 56236439
15 8366292 17270871 27947219 60346511
20 8517397 17125774 28328536 60642874

Table 1: Table showing thet1 values for the various file
reads in microseconds.

ing the victim chips. Selecting chips that have less number
of allocated pages but ones which are heavily accessed may
not be a good choice as we will block the processes11 ac-
cessing these pages for the entire time period of the power
down process. This directly has an impact on the applica-
tion performance as it will significantly increase their exe-
cution time. A policy based on access pattern will not have
this problem as the chip being selected will be the one that
has been less frequently accessed and hence probabilisti-
cally speaking, the chances of a request to a page in that chip
during the power down process is very low. The cost of mi-
gration might be very high because the chip might have been
completely allocated. A single page migration on a Pentium
4 3.2 GHz processor takes around 13µs which means that in
the worst case scenario of migrating an entire chip, the total
migration time would be around 53ms. Thus, while the allo-
cation based policy may affect application performance, the
access history based policy may have high migration over-
head. The BOS approach trades off migration overhead for
application performance.

Figure 5:File access time under varying page cache sizes

The graph in Figure 5 shows the variation in file access
time on repeated access to the same file. A file was read
into the cache and the same file was accessed immediately

11during migration, pages are locked

7

Submitted to SLOW ’05

without flushing the cache. This experiment was repeated
for varying file sizes with different levels of cache size. The
bars shown in the graph represent the time for the subse-
quent accesses (t2) while the initial time values (t1) are
shown in table 1. It can be seen thatt2 values for smaller
cache sizes are much higher that those for larger cache sizes
since the BOS daemon had pinned most of the free pages,
thereby causing eviction of the initially read pages. When
we compare thet1 values for the various experiments with
their correspondingt2 values, there seems to be a remark-
able dip in thet2 values. Thought we expect an LRU kind
of a behavior from the file system, the ext2 journaling file
system follows a 2Q replacement policy which has affected
the results.

8.1. Impact of available memory on disk activity

Figure 6:Memory size vs. Thrashing effect

In order to study the effects of memory resizing on the
resultant disk I/O, an experiment was administered wherein
chips were powered down by the BOS daemon at regular in-
tervals of 30 seconds. This means that the available memory
size was decreasing with time which gradually increased
the memory pressure. The application used in this exper-
iment wastom1which periodically dirties 56K12 pages and
sleeps for 30 seconds13. This application was chosen be-
cause it creates disk I/O proportional to the memory pres-
sure. Each data point in the plot of Figure 6 was obtained
every 5 seconds. This explains the relative inactivity be-
tween the spikes and the spikes indicate the actual I/O when
the application wakes up. The spikes also indicate the time
at which the power down takes place. As memory pressure
is increased, we can see the disk I/O increasing gradually

1256K pages = 14 * 4K * 4K bytes= 14 * 16 MB => 14 chips
13arbitrary sleep time

and when the available memory is decreased further beyond
13 chips, the disk I/O increases non linearly. As we join the
peaks of the spikes, we can clearly distinguish 3 different
operating regions. The first region has very low I/O because
of low memory pressure. The I/O begins to increase in the
second region where the balance between memory and disk
is achieved. In the third region, it asymptotically rises to
infinity.

8.2. A Threshold Based Policy

From the above discussion, we would like to operate be-
tween the first and the second regions where the balance
between available memory, required memory and disk I/O
is achieved. We propose a simple two level policy to make
a decision.

IF (# disk access< α)
powerdown()

ELSEIF (# diskaccess> β)
powerup()

ELSEIF (α <= # disk access<= β)
take no action()

α, β -> thresholds,α < β

In this policy we make sure that the disk I/O is maintained
within α andβ under steady state conditions.14.

8.2.1. Dynamic response

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700

D

is
k

A
cc

es
se

s

Time(s)

Dynamic Response

’steady_state.new’

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700

D

is
k

A
cc

es
se

s

Time(s)

Dynamic Response

’steady_state.new’

Figure 7:I/O response of the threshold policy

The dynamic disk I/O response of the system running
the same application is shown Figure 7. In this policyα =
250 andβ = 50015. The system settles betweenα andβ as
expected.

14Steady state condition is defined as the state in which the application
does not increase or decrease its memory requirements by itself and no new
application is started

15α andβ were manually set

8

Submitted to SLOW ’05

8.2.2. Drawbacks of the threshold based policy

The thresholds were static and were manually selected and
would not respond properly for an application with vary-
ing memory requirements. Also, this policy does not differ-
entiate between disk I/O caused by an application writing
to disk and I/O caused due to thrashing. But considering
portable devices which mainly run only one application or
few at best, a static policy would be good enough to achieve
the desired effect. For high end servers a dynamic policy
should do better.

8.3. How to verify power down?

Since we are not actually powering down the chips, we need
to verify that our mechanism for power down indeed pre-
vents access to those pages. Every physical page in the sys-
tem consists of amappingfield. This field is set to NULL
whenever the page is not used by any application or the ker-
nel. The BOS daemon also sets this field to NULL once it
migrates a page. An experiment was conducted in which
the X-server and applications like mozilla, open office and
kiconedit were run. 10 chips were powered down by the
BOS daemon and the pages in those chips were monitored
periodically by checking themappingfield. Themapping
field was found to be NULL for all the pages in the pow-
ered down chips which indicates that these pages have not
been allocated to any of the system processes. This effec-
tively proves that the power down was emulated perfectly
within the kernel.

Figure 8: Power down costs vs. # active pages when 10
chips are powered down

8.4. Quantifying the cost of power down:

To quantify the cost of power down, the number of migra-
tions was profiled when 10 chips and 15 chips were powered
off. The applications were started immediately after the sys-
tem booted and the daemon was started after that. This en-
sured that the daemon got a chance to migrate the pages

Figure 9: Power down costs vs. # active pages when 15
chips are powered down

of the applications that were under consideration. From
Figures 8 and 9, it can be seen that as more applications
are run, the number of migrations increases, which clearly
shows that migration could become a major bottleneck of
the BOS architecture. The final bar in Figure 9 is a lucky
case because the daemon chose chips that had pages other
than the ones which contained the pages of the workload.
In general, we can infer that as the number of active pages
increases, the average number of migrations increase pro-
portionately.

9. CONCLUSION

This paper addressed the problem of memory energy man-
agement in computer systems. A totally different approach
to power conservation was proposed by viewing the entire
memory instead of a per process abstraction. This approach
which we call as theBOS, tries to optimize the global per-
formance of the system with little or no overhead. The BOS
approach makes use of page migration and invisible buddy
techniques to emulate powering down of chips within the
kernel. Different policies were proposed to select the victim
chips and the one based on chip access pattern was imple-
mented trading off migration for application performance.
An empirical study was conducted to study the relationship
between available memory size and disk accesses. Based
on the study, a simple threshold based policy was proposed
with thresholds tuned to a particular application.

The BOS approach depends on thresholds to fare well.
The thresholds used in this paper are appropriate for the
given workload and they seem to perform well by settling in
the operating region. But the thresholds might vary with ap-
plication depending on its memory consumption behavior.
Since the BOS approach will possibly be used in handheld
devices and iPods that potentially have one or few applica-
tions active most of the time, manually setting thresholds
should not be a problem. In any case, one could think of

9

Submitted to SLOW ’05

dynamically varying thresholds that adapt themselves to the
current workload. This could be more appropriate for high
end servers which have varying levels of demand. Page
migration is one of the costs associated with the BOS ap-
proach, but migration helps us in retaining the pages in main
memory for a longer period of time thereby reducing the
number of page faults. Future work on this project may
involve devising a more dynamic policy for making power
down/up decisions, implementing variable epoch intervals
and actually implementing power down/up.

10. ACKNOWLEDGEMENTS

We thank Prof. Remzi H. Arpaci-Dusseau for his excel-
lent guidance throughout the project. We would also like
to thank Muthian Sivathanu, Vijayan Prabhakaran and Lak-
shmi Bairavasundaram for their invaluable thoughts and dis-
cussions on this project. We also thank Amit Jhawar for
helping us with the resources.

11. REFERENCES

[1] Alvin R.Lebeck, Xiaobo Fan, Heng Zeng and Carla
Ellis, Power Aware Page Allocation, ASPLOS 2000.

[2] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vi-
jaykrishnan and M.J. Irwin,Scheduler-based DRAM
Energy Management, 39th Design Automation Con-
ference, June, 2002.

[3] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan,
Anand Raghuraman, Yuanyuan Zhou and Sanjeev Ku-
mar,Dynamic Tracking of Page Miss Ratio Curve for
Memory Management, ASPLOS 2004.

[4] Hai Huang, Padmanabhan Pillai and Kang G. Shin,
Design and Implementation of Power-Aware Virtual
Memory, USENIX 2003.

[5] Xiaodong Li, Zhenmin Li, Francis David, Pin Zhou,
Yuanyuan Zhou, Sarita Adve and Sanjeev Kumar,
Performance Directed Energy Management for Main
Memory and Disks, ASPLOS 2004.

[6] Athanasios E. Papathanasiou and Michael L. Scott,
Energy Efficiency through Burstiness, IEEE Work-
shop on Mobile Computing Systems and Applications
2003.

[7] John Zedlewski1, Sumeet Sobti1, Nitin Garg,
Fengzhou Zheng, Arvind Krishnamurthy and Ran-
dolph Wang,Modeling Hard-Disk Power consump-
tion, FAST 2003.

[8] Carl A. Waldspurger,Memory Resource Management
in VMware ESX Server, OSDI ’02, 2002.

10

