
Auto-Labeling for Fun and Profit

Matt Elder Bill Harris
University of Wisconsin - Madison
{elder, wrharris}@cs.wisc.edu

CS 736: Advanced Operating Systems Final Presentation



Introduction Flume Boat Evaluation Conclusion

Outline

1 Introduction

2 Flume

3 Boat
Dataflow Constraints
Specification Constraints

4 Evaluation

5 Conclusion



Introduction Flume Boat Evaluation Conclusion

DIFC

DIFC: Decentralized Information Flow Control
Approaches, granularities of DIFC:

The variable level, enforced by static analysis and type
systems (JIF, JFlow), taint analysis

The process, system object level, enforced by OS mechanisms
(Asbestos, HiStar, Flume)



Introduction Flume Boat Evaluation Conclusion

DIFC Mechanisms

System maintains a security label for every process, file.

Label is a set of tags: randomly generated integers.

An IPC instance from p to q depends on the labels of p and q.

Processes can:

Create tags
Add or subtract tags from labels
Add or subtract privileges from processes



Introduction Flume Boat Evaluation Conclusion

A toy example



Introduction Flume Boat Evaluation Conclusion

A DIFiCult problem

DIFC programmers must be conscious of the current label sets
and privilege sets of all processes and files.

Guarantees that that code satisfies security and functionality
requirements are difficult to think about.



Introduction Flume Boat Evaluation Conclusion

Our solution

1 Read a high-level specification describing a security policy.

2 Represent a specification as constraints over label variables.

3 Solve the constraints.

4 Rewrite source code, incorporating solution.



Introduction Flume Boat Evaluation Conclusion

Outline

1 Introduction

2 Flume

3 Boat
Dataflow Constraints
Specification Constraints

4 Evaluation

5 Conclusion



Introduction Flume Boat Evaluation Conclusion

Flume background

We’ve implemented our programming system on top of Flume

Flume is a complete DIFC system; today, we focus on sockets



Introduction Flume Boat Evaluation Conclusion

Sockets illustrated

flume_socketpair(&fd,
&their_tok)

...
spawn(&their_tok, ...)
...
write(fd)

fd = flume_claim_socket(tok)
...
x = read(fd)



Introduction Flume Boat Evaluation Conclusion

Flume Basics

Flume always ensures that the file descriptor label equals the
process label.

If P writes to Q, it ensures that SP ⊆ SQ .

Processes with privileges may add or drop security tags.



Introduction Flume Boat Evaluation Conclusion

Outline

1 Introduction

2 Flume

3 Boat
Dataflow Constraints
Specification Constraints

4 Evaluation

5 Conclusion



Introduction Flume Boat Evaluation Conclusion

Solution: A (slightly) deeper look

A multi-phase solution:

1 Generate constraints relating program points

2 Generate constraints representing the user specification

3 Munge those constraints together

4 Solve the constraints

5 Rewrite code reflecting the solution



Introduction Flume Boat Evaluation Conclusion

Intraprocess analysis

pid = spawn()
if (...)
write(...)

else
...

spawn(...)

1 For every relevant program point, generate a variable.

2 Use standard dataflow (compile-time) analysis to determine
relevant pairs (u, v).

3 In above example: (1, 2), (1, 3), (2, 3).



Introduction Flume Boat Evaluation Conclusion

Intraprocess constraints

S+ is the set of positive privileges

S− is the set of negative privileges

For each pair, generate constraints:

v ⊆ u ∪ S+

u ⊆ v ∪ S−



Introduction Flume Boat Evaluation Conclusion

Program Annotations

Programs must be annotated with extra “advice” for the analysis:
a family name for each spawn program point and the destination
family for each write.

spawn(arglist) becomes
spawn("familyname", arglist)

write(arglist) becomes
write("familyname", arglist)

"familyname" must be a constant in both instances



Introduction Flume Boat Evaluation Conclusion

Specification Language

Defines relationships between process families and across
child-parent relations.
Examples:

A : B: A processes may spawn B processes.

A -> B: An A process can reach B processes.

A !-> B: An A process can never reach B processes.

B !-> B: Two B processes can never reach each other.



Introduction Flume Boat Evaluation Conclusion

Specification Language (more examples)

A -> *B: An A process can reach its B children.

A !-> \B: An A process can never reach B processes that
aren’t its children.



Introduction Flume Boat Evaluation Conclusion

Specification Constraint Generation

First, generate a forest of representative processes:

1 Every family is represented by at least one process.

2 Every process that might spawn a B process has two B
children.



Introduction Flume Boat Evaluation Conclusion

Specification Constraint Generation

If the spec file says that process P in this forest can reach
process Q, then generate the constraint (u ⊆ v) for every pair
of program points u in P and v in Q where P might write to
Q.

If the spec file says that process P cannot reach Q, then
generate the constraint (u 6⊆ v) for every pair of program
points u in P and v in Q.



Introduction Flume Boat Evaluation Conclusion

Solving Constraints

Now have a set of constraints all of the form A ⊆ B ∪ C or
A ⊆ B or A 6⊆ B

Work by Rehof and Mogenson directly implies that a solution
is NP-hard to find in general

We “cheat” using extra knowledge from the problem domain



Introduction Flume Boat Evaluation Conclusion

Solving Constraints

1 The constraints from analysis of the control flow graph and
the analysis of the specification are combined, and the
resultant constraint system is solved:



Introduction Flume Boat Evaluation Conclusion

Solving Constraints

1 The constraints from analysis of the control flow graph and
the analysis of the specification are combined, and the
resultant constraint system is solved:



Introduction Flume Boat Evaluation Conclusion

Outline

1 Introduction

2 Flume

3 Boat
Dataflow Constraints
Specification Constraints

4 Evaluation

5 Conclusion



Introduction Flume Boat Evaluation Conclusion

Implementation

Implemented as Boat, a CIL extension. Consists of modules for:

Analyzing an annotated program

Parsing a specification

Solving constraints

Rewriting code (incomplete... for now)



Introduction Flume Boat Evaluation Conclusion

FlumeWiki

FlumeWiki: a security conscious version of MoinMoin:



Introduction Flume Boat Evaluation Conclusion

FlumeWiki code

The relevant snippet from the original cgilaunch.c:

rc = flume_socketpair (&input, &fdhandles->val[0], ...);

/* setup CGI’s labelset */
S_label = label_alloc (1);
rc = label_set (S_label, 0, S_handle);
labs = labelset_alloc ();
rc = labelset_set_S (labs, S_label);

/* spawn the CGI */
rc = flume_spawn_legacy (labs, fdhandles, ...);
/* send form information to cgi */
if (cgl_form_len ()) {

rc = write (input, ...);
}



Introduction Flume Boat Evaluation Conclusion

BoatWiki specification

wikilaunch wiki;
wikilaunch:wiki;

wikilaunch -> wiki;
wiki !<-> wiki;



Introduction Flume Boat Evaluation Conclusion

BoatWiki code annotations

/* setup CGI’s labelset */
rc = flume_socketpair (&input, &fdhandles->val[0], ...);
rc = flume_spawn_legacy ("wiki", fdhandles, ...);

/* send form information to cgi */
if (cgl_form_len ()) {
rc = write ("wiki", input, ...);

}



Introduction Flume Boat Evaluation Conclusion

Outline

1 Introduction

2 Flume

3 Boat
Dataflow Constraints
Specification Constraints

4 Evaluation

5 Conclusion



Introduction Flume Boat Evaluation Conclusion

Conclusion

We have designed a simple, high level specification language
that can specify many security policies

Flume code can be generated efficiently and automatically
from these policies



Introduction Flume Boat Evaluation Conclusion

EOP

Thank you for playing! Any questions?



Introduction Flume Boat Evaluation Conclusion

(Appendix) BoatWiki generated code

int parent[2] = { 0, -1 };
int child[2] = { 0, -1 };
int per_spawn[2] = {0, -1};
int boat_buf2[1] = {-1};
...
boat_pre_spawn(parent, child, per_spawn);
rc = flume_spawn_legacy(fdhandles, ...);
tmp___3 = cgl_form_len();

/* send form information to cgi */
if (tmp___3) {
boat_pre_write(boat_buf2);
rc = write(input, ...);


	Introduction
	

	Flume
	Boat
	Dataflow Constraints
	Specification Constraints
	

	Evaluation
	Conclusion

