Auto-Labeling for Fun and Profit

Matt Elder Bill Harris
University of Wisconsin - Madison
{elder, wrharris}@cs.wisc.edu

CS 736: Advanced Operating Systems Final Presentation

Introduction

Outline

o Introduction

Introduction
©0000

DIFC

DIFC: Decentralized Information Flow Control
Approaches, granularities of DIFC:

@ The variable level, enforced by static analysis and type
systems (JIF, JFlow), taint analysis

@ The process, system object level, enforced by OS mechanisms
(Asbestos, HiStar, Flume)

Introduction
0@000

DIFC Mechanisms

@ System maintains a security label for every process, file.
@ Label is a set of tags: randomly generated integers.
@ An IPC instance from p to g depends on the labels of p and gq.

@ Processes can:

o Create tags
e Add or subtract tags from labels
e Add or subtract privileges from processes

Introduction

[ele] lele]

A toy example

The Intertubes

{}

trusted process

{b}->{}

untrusted process

{b}

secret.txt

{b}

Introduction
[ee]eY To)

A DIFiCult problem

@ DIFC programmers must be conscious of the current label sets
and privilege sets of all processes and files.

@ Guarantees that that code satisfies security and functionality
requirements are difficult to think about.

Introduction
ooooe

Our solution

@ Read a high-level specification describing a security policy.
@ Represent a specification as constraints over label variables.
© Solve the constraints.

@ Rewrite source code, incorporating solution.

Flume

Outline

© Flume

Flume
®00

Flume background

@ We've implemented our programming system on top of Flume
@ Flume is a complete DIFC system; today, we focus on sockets

Flume
oceo

Sockets illustrated

o (e)—— (@) —|

flume_socketpair (&fd, fd = flume_claim_socket (tok)

&their_tok) e
e x = read(fd)
spawn (&their_tok, ...)

write(£fd)

Flume
ocoe

Flume Basics

@ Flume always ensures that the file descriptor label equals the
process label.

o If P writes to Q, it ensures that Sp C Sq.

@ Processes with privileges may add or drop security tags.

Outline

© Boat

@ Dataflow Constraints
@ Specification Constraints

Boat
°

Solution: A (slightly) deeper look

A multi-phase solution:
© Generate constraints relating program points
@ Generate constraints representing the user specification
© Munge those constraints together
@ Solve the constraints

© Rewrite code reflecting the solution

Intraprocess analysis

pid = spawn() @
if (...) 1 Core)
write(...)
else 2 p
spawn(...) ’
©,

© For every relevant program point, generate a variable.

@ Use standard dataflow (compile-time) analysis to determine
relevant pairs (u, v).

@ In above example: (1,2),(1,3),(2,3).

Intraprocess constraints

@ ST is the set of positive privileges
@ 57 is the set of negative privileges

@ For each pair, generate constraints:

vCuUS™T
uCvuUS™

Program Annotations

Programs must be annotated with extra “advice” for the analysis:
a family name for each spawn program point and the destination
family for each write.
o spawn(arglist) becomes
spawn("familyname", arglist)
o write(arglist) becomes
write("familyname", arglist)

"familyname" must be a constant in both instances

Specification Language

Defines relationships between process families and across
child-parent relations.
Examples:

@ A : B: A processes may spawn B processes.
@ A -> B: An A process can reach B processes.
@ A !'-> B: An A process can never reach B processes.

@ B !-> B: Two B processes can never reach each other.

Boat
00®00

Specification Language (more examples)

@ A -> *B: An A process can reach its B children.

@ A !'-> \B: An A process can never reach B processes that
aren’t its children.

A

Boat
000®0

Specification Constraint Generation

First, generate a forest of representative processes:
@ Every family is represented by at least one process.

@ Every process that might spawn a B process has two B
children.

A

Boat
ooooe

Specification Constraint Generation

@ If the spec file says that process P in this forest can reach
process @, then generate the constraint (u C v) for every pair
of program points v in P and v in Q where P might write to
Q.

o If the spec file says that process P cannot reach @, then
generate the constraint (v Z v) for every pair of program
points v in P and v in Q.

Solving Constraints

@ Now have a set of constraints all of the form AC BU C or
ACBorA¢ZB

@ Work by Rehof and Mogenson directly implies that a solution
is NP-hard to find in general

@ We “cheat” using extra knowledge from the problem domain

Solving Constraints

@ The constraints from analysis of the control flow graph and
the analysis of the specification are combined, and the
resultant constraint system is solved:

Solving Constraints

@ The constraints from analysis of the control flow graph and
the analysis of the specification are combined, and the
resultant constraint system is solved:

MIRACLE

OLCURS .

“1 think you should be more explicit here in
step two.”

Evaluation

Outline

@ Evaluation

Evaluation
[Jelelelo)

Implementation

Implemented as Boat, a CIL extension. Consists of modules for:
@ Analyzing an annotated program
@ Parsing a specification
@ Solving constraints
°

Rewriting code (incomplete... for now)

FlumeWiki

Evaluation
0®000

FlumeWiki: a security conscious version of MoinMoin:

Port 80

httpd

P>

wikilaunch

—>

wiki.py

httpd

>

wikilaunch

wiki.py

Evaluation
00e@00

FlumeWiki code

The relevant snippet from the original cgilaunch.c:

rc = flume_socketpair (&input, &fdhandles->vall[0], ...);

/* setup CGI’s labelset */

S_label = label_alloc (1);

rc = label_set (S_label, 0, S_handle);
labs = labelset_alloc ();

rc = labelset_set_S (labs, S_label);

/* spawn the CGI */
rc = flume_spawn_legacy (labs, fdhandles, ...);
/* send form information to cgi */
if (cgl_form_len ()) {
rc = write (input, ...);

Evaluation
000®0

BoatWiki specification

wikilaunch wiki;
wikilaunch:wiki;

wikilaunch -> wiki;
wiki !'<-> wiki;

Evaluation
ooooe

BoatWiki code annotations

/* setup CGI’s labelset */
rc = flume_socketpair (&input, &fdhandles->val[0], ...);
flume_spawn_legacy ("wiki", fdhandles, ...);

rc

/* send form information to cgi */
if (cgl_form_len ()) {
rc = write ("wiki", input, ...);

Conclusion

Outline

© Conclusion

Conclusion
®00

Conclusion

@ We have designed a simple, high level specification language
that can specify many security policies

@ Flume code can be generated efficiently and automatically
from these policies

Conclusion

oeo

Thank you for playing! Any questions?

Conclusion
ooe

(Appendix) BoatWiki generated code

int parent[2] = { 0, -1 };
int child[2] = { 0, -1 };
int per_spawn[2] = {0, -1};
int boat_buf2[1] = {-1};

boat_pre_spawn(parent, child, per_spawn);
rc = flume_spawn_legacy(fdhandles, ...);
tmp___3 = cgl_form_len();

/* send form information to cgi */
if (tmp___3) {
boat_pre_write(boat_buf2) ;
rc = write(input, ...);

	Introduction
	

	Flume
	Boat
	Dataflow Constraints
	Specification Constraints
	

	Evaluation
	Conclusion

