
Boat: Automatic Generation of Policy Code for Flume

Bill Harris
wrharris@cs.wisc.edu

Matt Elder
elder@cs.wisc.edu

May 16, 2008

Abstract

Distributed Information Flow Control (DIFC) is a system-
level security mechanism that can simplify program secu-
rity but requires that a programmer supply policy code in
any programs it helps to secure. Writing this policy code
is not a simple matter, and is thus likely to consume sig-
nificant programmer attention and introduce bugs.

Thus do we implement Boat, a means to simplify DIFC
programming. Boat reads a program’s C source and a pol-
icy specification, generates from these a system of con-
straints, and solves those constraints to generate instru-
mentation for the original C source. Thus, Boat augments
the original program with added code to ensure that its
DIFC policy matches the programmer’s specification.

1 Introduction

Security-conscious systems and applications implement
information flow control systems as mechanisms for en-
suring that sensitive data does not reach undesired parts of
the system or the outside world. Traditional Mandatory
Access Control (MAC) [8] implements security policies
directly in the system. MAC is effective but inflexible, as
only a system administrator can define a security policy
for the system to hold.

Distributed Information Flow Control (DIFC) systems
[1, 10, 3] provide an attractive alternative, as they permit
each application to define and enforce its own security
policies by detailing what data is sensitive and how that
data may be propagated. Such systems are flexible and
powerful, but complex. For every system object such as
a process or file, the system maintains a securitylabel in-
dicating what data the process may receive and transmit,

and privileges indicating how the process may adjust its
label. Programmers must be ever aware of these mech-
anisms to ensure that their code is both functionally cor-
rect and secure. Even the simplest policies can quickly
become difficult to program and it is difficult to ensure
that such code matches the programmers high-level de-
sired policy.

To solve this difficulty we proposeBoat, a high-level
specification language for security policies and a sup-
porting source-to-source compiler. A Boat specification
consists of a policy specification file and a small num-
ber of annotations in the source program. The program-
mer directly specifies the functionality and security re-
quirements for their program in our high level language.
Boat then analyzes the program and specification, repre-
sents both as constraints over Flume labels, and generates
Flume code that enforces the desired policy.

We have implemented Boat as an extension to CIL [5],
a C parser and front-end. Our extension takes as input
both the source programs to be analyzed and the specifi-
cation, generates and solves constraints, and carries out a
source-to-source translation. This translation instruments
the code with the appropriate calls to the Boat runtime
library, ensuring that it follows the specified policy. We
have used Boat to analyze FlumeWiki, which is itself a
version of MoinMoin Wiki [4]. We are able to succinctly
express a desired policy of FlumeWiki in Boat’s specifi-
cation language and to use Boat to generate all necessary
code for setting labels before all relevant calls.

2 Related Work

Numerous systems have implemented DIFC at the granu-
larity of processes and system objects. Asbestos [1] main-

1

mailto:wrharris@cs.wisc.edu
mailto:elder@cs.wisc.edu


tains two labels for every process: a receive labelR and
a send labelS. A label is a set ofcompartments; a com-
partment can be any value in the set[0, . . . , 3]. An IPC
send from processp to q succeeds if and only ifpS is a
subset ofqR and every compartment value inpS is less
than or equal to the corresponding compartment value in
qR. If the send succeeds,qS is then automatically updated
by the system to be “at least as high” aspS . In this way,
receive labels encode policies while send labels encode
current states.

Flume [3] simplifies and extends Asbestos. It simpli-
fies by maintaining for every process a single label and
reduces IPC checks to simple set inclusion, not individ-
ual value comparison. It extends Asbestos by allowing
the application to maintain for each IPC channel an end-
point. The label of an endpoint may differ (within con-
straints) from the label of the process, and Flume makes
IPC checks on the labels of endpoints. Flume also main-
tains anintegrity label for every entity. Integrity labels
allow applications to succinctly specify policies such as
Processp can only take input that originated from these
entities: . . .. More practically, Flume is implemented as
a user-space process accompanied with a Linux Security
Module, allowing it to work atop existing systems. In the
current version of Boat, we focus on generating security
labels and enforce that the security labels of all endpoints
always equal that of the process. However, we plan to
employ integrity labels and endpoints in future work.

Dataflow analysis [6] is a standard static analysis tech-
nique that we employ for reasoning about relevant pro-
gram points.

In [7], Rehof and Mogenson definedefinitesystems of
constraints over lattice elements, present an algorithm for
solving all definite constraint systems, prove that any sys-
tem that is not definite is NP-hard to solve, and give nec-
essary and sufficient conditions for a system to be definite.
We apply their work to show that the constraint systems
generated by our analysis are not definite and extend their
algorithm with heuristics to derive an algorithm that runs
reasonably well on our test cases. Constraint solving has
been used as the basis for many program analyses; for ex-
ample, subtyping constraints and lattice inequalities are
used to infer type qualifiers in CQual [2].

3 Flume

Boat defines an annotation language that accompanies C
programs. Programmers express their high-level security
policy as a specification file and a few small program an-
notations. Boat then generates calls to the Flume API that
enforce the policy at runtime. Thus, some background in
Flume is necessary to discuss Boat.

Flume is a complete system for enforcing DIFC. It is a
primarily user-space program (called thereference mon-
itor) that interposes itself on communication between a
security-critical program and the environment, including
other processes and system resources. We here summa-
rize key Flume functionality; the interested reader should
examine [3] for more details.

3.1 Labels and Tags

Flume maintains for every process and file a set oftags,
called alabel, along with information on what tags a pro-
cess may add and remove from its label. A process may
request from Flume a fresh tag, which is simply a random
unsigned long integer. Flume grants the tag to the process
along with privileges to add and remove the tag from its
label. The process may then add the tag to the labels of
processes, and possibly grant them the privilege to add or
remove the tag from their own labels.

3.2 Pipes

The primary aim of Flume is to allow applications to en-
force security policies as they see fit. To do so, it can-
not merely provide facilities for manipulating tags. Flume
must ensure that these tags are respected during IPC. To
do this, Flume maintains a notion of what processes are
confinedversus which areconfined. Flume allows an un-
confined process to communicate with the outside world
as it wishes, but assumes that any data sent to an uncon-
fined process is effectively leaked outside of the system.
In contrast, Flume carefully monitors all IPC of a con-
fined process. It employs a kernel module written in the
LSM [9] framework to monitor all relevant system calls
and prevent any communication that sidesteps the Flume
API. A confined process P may thus communicate with
its child process Q over a pipe as follows:

2



1. P calls flume socketpair(myfd,
theirtok, ...) to obtain a file descriptor
(myfd ) and a token (theirtok ). Flume creates a
label formyfd ; by default, the label is initialized to
the current label of the process. If the file is opened
for reading, thenSfd ⊆ Sp must hold, if it is open
for writing, Sp ⊆ Sfd must hold, and if it is open
for both, thenSfd = Sp must hold.

2. Flume providesspawn , its wrapper to the traditional
UNIX fork call. spawn takes as one of its argu-
ments a vector of descriptor tokens to grant to the
child at its birth. P thus passes the token to Q when
it spawns it.

3. Q calls flume claim token to exchange its to-
ken for the file descriptor that is the other end of the
pipe held by P.

4. The parent and child may then communicate. How-
ever, the file descriptors they use now actually point
to the Flume reference monitor. When P with de-
scriptorfd1 attempts a write to Q withfd2, Flume
will check if

Sfd1 ⊆ Sfd2

holds. If so, the message is passed. If not, the mes-
sage is buffered but will be issued if and when the
security labels satisfy the above condition. Notably,
unless the labels are equal, Flume cannot return an
accurate error code, as this could be used illegally by
P to glean information about Q when the labels dic-
tate that this should not be allowed. Thus, it is the
programmers responsibility to be sure that the cor-
responding labels exhibit the correct relation, which
they must accomplish without reliable dynamic feed-
back from the resource monitor.

3.3 Files

Flume includes a file system monitor that allows tags to
persist on files. When the Flume reference monitor de-
tects a file system request likeopen or mkdir , it for-
wards the request to a file system monitor. The file system
monitor stores persistent label information about each file
in the system; when access to a file is requested, it checks
the requester’s label against both the file’s label and the
requested action to determine if it will allow the access.

4 Constraint Generation

Flume thus reduces its decisions to evaluating subset ex-
pressions over labels. We propose that a programmer us-
ing the Flume system will have two desires that can thus
also be expressed as subset constraints over labels:

Security constraints: At some points in the program, the
programmer expects that data from one system ob-
ject cannot reach another system object.

Functionality constraints: At some points in the pro-
gram, the programmer expects data from one system
object to reach another system object without being
blocked by Flume.

The programmer must ensure that their code adheres to
these constraints along with the structural requirements
of a valid Flume program. One of our key contributions is
the notion of a static representation and solution of these
constraints.

4.1 Intraprocess Flow Constraints

The intraprocess structure of a single program implies a
set of constraints that encode how the process may change
its own labels. At any point of execution, a process has its
current security labelSp, a labelS+ containing all tags
that it may add toSp, and a labelS− containing all tags
that it my remove fromSp. Flume’s structure implies that,
between two points of interesta andb, the labels atb can
be nogreaterthan their value ata augmented by all labels
in S+ and nolesstheir value ata with all labels inS−

taken away.
More formally, we know a list of functions relevant for

Flume communication such asspawn andwrite . We
generate a control-flow graph (CFG) of the program. For
simplicity, we assume that every node in the graph corre-
sponds to a single instruction. For a program pointp in the
CFG that contains a call to a relevant function, we gener-
ate a label variableSp that represents the security label of
the process when it reaches this program point. Using a
standard dataflow analysis, we compute the setp̄ for ev-
ery relevant program pointp. The setp̄ is the set of all
relevant program points that can be the last relevant point
visited before visitingp on some execution path. For all

3



q ∈ p̄, we then generate the following two constraints:

Sq ⊆ Sp ∪ S+

Sp ⊆ Sq ∪ S−

These constraints encode the relationship between the la-
bels at a program point and the labels at its predecessors.

4.2 Specification Constraints

To use Boat, the programmer must annotate eachspawn
program point with a uniquefamily name, and name the
destination family for eachwrite . To permit this, the
first argument tospawn and write is a literal string
containing the required family name. That is, the spawn
corresponding to the process family “Foo” looks like
spawn("Foo", arglist...) , and a write to a pro-
cess in the family “Foo” looks likewrite("Foo",
arglist...) .

Boat uses these annotations to link the source code to
the programmer-defined specification file. A Boat spec-
ification has two parts: a list of process families, and a
set of family relationship statements. The list of process
families is presumed to contain all used families and to
be ordered by trustworthiness. Thus, Boat will prefer to
grant privileges to families listed earlier in the list.

Each relationship statement is: a family name, an op-
erator, an optional family modifier, and another family
name. The possible operators are: , -> , <- , and<-> ;
an arrow may be preceded by a! for negation. The state-
mentFoo:Bar means that processes in the family Foo
may spawn processes in the family Bar. That is, Foo is
Bar’s parent family.1 An arrow operator from a source
family to a target family means that a source process may
write to a target process;Foo<->Bar is a contraction of
Foo->Bar; Foo<-Bar . A negated arrow means that
a source process may not write to a destination process;
Flume will disallow their communication.

The right-hand family name may be preceded by a fam-
ily modifier: the child operator* , or the niece operator
\ . So, the statementFoo-> * Bar means that a Foo pro-
cess can write to any Bar process that it spawned, and the
statementFoo!->\Bar means that a Foo process can-
not write to any Bar process that it did not spawn. Finally,

1This probably should be determined directly from the source code.
We mean to add this feature soon.[[Add this to Future Work.]]

the statementFoo->Foo means that any Foo process can
write to any other Foo process,Foo!->Foo means that
no Foo process can write to any other Foo process.

Between parsing the policy specification and producing
policy constraints lies R-process generation. Representa-
tive processes, orR-processes, are the pseudo-processes
on which we state our constraint satisfaction problem. R-
processes are made necessary by the generally unbounded
nature of each process family: any single spawn point
may spawn an arbitrarily large number of processes, so
not all distinct processes can be directly represented. At
a high level, R-processes provide a way to embed some
form of universal quantification in our constraint satisfac-
tion system.

We build a forest of R-processes such that:

1. There exists in the forest at least one R-process for
each process family, and

2. For each parenthood relationParent:Child in
the specification, every R-process of family Parent
has two child R-processes of family Child.

We accomplish this by first finding each process fam-
ily which will be a root of some tree in this forest; that
is, any family which is not the child of any other fam-
ily. For each root family, we generate one R-process; we
generate other R-processes via simple recursive decent
down parent-child relationships. For example, Figure 1
shows the tree generated from the parenthood relations
Foo:Bar , Bar:Baz , andFoo:Frotz .

So, each R-process knows its process family name, its
parent R-process (unless it is a root), and its child R-
processes (unless it is a leaf). We can now piece together
the entire constraint system:

1. For each process family Foo, and for each R-process
P in Foo, generate a copy of the Foo family intrapro-
cess flow constraints specific toP .

2. For each pair of R-processesP andQ that the spec-
ification allowsP to write to Q, generate the con-
straint

Sp ⊆ Sq

for each program pointp ∈ P andq ∈ Q wherep
might write toQ andq might read fromP .

4



Figure 1: A forest of R-processes, with links between par-
ents and children.

3. For each pair of R-processesP andQ that the spec-
ification requireP not to write toQ, generate the
constraint

Sp 6⊆ Sq

for every pair of program pointsp ∈ P andq ∈ Q.

5 Constraint Solution

We have now generated the full set of constraints that we
would like to solve. The variables in each constraint are
sets of security tags, at a particular program point in a
particular R-process. Each constraint is in one of the fol-
lowing forms:A ⊆ B, A ⊆ B ∪ C, or A 6⊆ B.

Rehof and Mogensen have given necessary and suffi-
cient conditions for a finite semilattice constraint satisfac-
tion problem to be NP-complete, along with an algorithm
(AlgorithmD) to solve in polynomial time any such prob-
lem that is not NP-complete. [7] Among constraint satis-
faction problems on finite sets, a problem is NP-complete
if its relations are not closed under set intersection. For
example, the constraint formA ⊆ B is closed under set
intersection, because for any finite setsA,B, C, andD, if
A ⊆ B andC ⊆ D, thenA ∩ C ⊆ B ∩D.

However, the other forms in our constraint system are
not closed under set intersection, as illustrated by the fol-

lowing examples:

{1} ⊆ ∅ ∪ {1} and {1} ⊆ {1} ∪ ∅,
but {1} ∩ {1} 6⊆ (∅ ∩ {1}) ∪ ({1} ∩ ∅) .

{1} 6⊆ ∅ and {2} 6⊆ ∅,
but ({1} ∩ {2}) ⊆ ∅

Thus, our general constraint system is NP-complete,
and the vanilla Rehof-Mogensen algorithm is not guar-
anteed to work on our system.

5.1 Solution Algorithm

Fortunately, we can apply knowledge specific to our ap-
plication domain to arrive at a solution efficiently. We
first give an overview of AlgorithmD presented in [7].D
solves a set of set constraints of the formE ⊆ s whereE
is an arbitrary set expression ands is a set variable or con-
stant.D employs a simple worklist approach: it initially
maps all variables to the empty set value and maintains
a worklist of all constraints left to be solved. In a given
iteration, it selects a constraint from the list and evaluates
both sides of the constraint. If the value ofE is a subset of
the value ofs, then the constraint is already satisfied and
D moves on to the next constraint. If the constraint is not
satisfied, then the value bound tos is raised to be equal to
the value forE and all constraints for whichs appears in
the left hand side are added to the worklist.D continues
in this fashion until it reaches either an empty worklist (in
which case it returns its solution) or a contradiction (in
which case it returns failure).

Our algorithm maintains the same basic form asD, but
our constraints lie outside of the domain of constraints
thatD can handle. As we iterate over our worklist, we do
nothing if the constraint is already satisfied, as inD. If a
constraint is not already satisfied, we implement different
behaviors in different cases:

A ⊆ B These constraints can be solved byD; we apply
the same approach.

A ⊆ B ∪ C We need only to raise one ofB andC. For
all constraints of this form, exactly one of eitherB
or C is a variable denoting representative tags at a
program point, and the other is a variable denoting
a set of representative privileges. In the interest of

5



granting programs least privilege, we prefer to raise
the value of the variable representing the program
point.

A 6⊆ B For such constraints, recall that each variable rep-
resents a label, which is simply a set of tags. The ap-
plication is free to generate new tags at will. So, for
a constraint of this form we can simply create a new
representative taga, adda to the current solution for
A, and note thata must never be allowed to be inB.

6 Instrumentation

If the constraint solver terminates with a solution, then we
have a mapping from label variables to sets of represen-
tative tags, orR-tags. We must now generate Flume code
that corresponds to such a solution. To do so, we partition
the R-tags into two sets:

Per-child tags are R-tags that are held in exactly one
child variable in a family. We maintain a set of such
per-child tags for each family.

One-time tags are all other R-tags, which need only be
generated once. We maintain a global set of one-time
tags.

Next, we generate run-time code that maintains a mapping
from R-tags to sets of Flume tags. It works as follows:

• At initialization, the code allocates each one-time tag
and maps its R-tag to a singleton set.

• At an invocation of the formspawn("Foo",
arglist) , the code notes all per-child R-tags of
Foo. For each per-child R-tag, it allocates a new
Flume tagT , addsT to the new label that will serve
as the child’s initial label, and addsT to the set
of tags to which the parent’s R-tag maps. Boat re-
places the annotated call with the normal Flume call
spawn(arglist) .

• At any other invocation of a relevant function, say
one of the formwrite("Foo", arglist) , the
code examines the set of R-tags that must be in
the label at this point, sets the label to hold all
of the corresponding Flume tags, and then calls
write(arglist) .

Program module LOC
program analysis (boat.ml) 714
constraint solver (boat.ml) 102

instrument.ml 273
spec.ml 205

Table 1: Lines of OCaml code per module

./bin/cilly --doboat
--boat-spec=boat wiki.boat cgilaunch.c

Figure 2: The command for applying Boat to FlumeWiki

7 Implementation

We have implemented our system Boat as an extension of
the CIL parser and front end for C. The implementation is
organized into the following modules:

• A program analysis module that carries out the in-
traprocess analysis on all given source files and gen-
erates intraprocess constraints.

• A specification parser that parses an input specifica-
tion file and generates specification constraints.

• A constraint solver that maps every variable in the
constraints to a set of tags.

• An instrumenter that rewrites the code such that the
labels at each program point match the values de-
termined by the constraint solver. The implementa-
tion of this module is at the time of publication only
partially complete, generating initialization and pre-
write code. We instrument remaining code, such
as pre-spawn code, by hand.

8 Application

We applied Boat to FlumeWiki (described in [3]), a Flume
implementation of the wiki MoinMoin. The high-level or-
ganization of the wiki is given in Figure 3. As described
in [3], when an HTTP request is received over the net-
work, a newhttpd process is spawned, which in turn
launches an instance ofwikilaunch . wikilaunch

6



Figure 3: Structure of FlumeWiki

rc = flume_socketpair
(&input, &fdhandles->val[0],

...);

/ * setup CGI’s labelset * /
S_label = label_alloc (1);
rc = label_set (S_label, 0,

S_handle);
labs = labelset_alloc ();
rc = labelset_set_S(labs,

S_label);

/ * spawn the CGI * /
rc = flume_spawn_legacy

(labs, fdhandles, ...);
/ * send form information to cgi * /
if (cgl_form_len ()) {

rc = write (input, ...);
}

Figure 4: cgilaunch.c

wikilaunch wiki;
wikilaunch:wiki;

wikilaunch -> wiki;
wiki !<-> wiki;

Figure 5: The specification for BoatWiki

/ * setup CGI’s labelset * /
rc = flume_socketpair

(&input, &fdhandles->val[0],
...);

rc = flume_spawn_legacy
("wiki", fdhandles, ...);

/ * send form information to cgi * /
if (cgl_form_len ()) {

rc = write ("wiki", input, ...);
}

Figure 6: cgilaunch.c with Boat annotations.

is a small module that maintains the entire security pol-
icy of MoinMoin. It was created for [3] by factoring all
security-aware code from the considerably large (approx.
91,000 lines of code) and complicated MoinMoin code
into a single security critical module. Each instance of
wikilaunch launches its own unconfined child process
wiki.py and communicates with it.

A simplified version of the relevant code snippet from
cgilaunch.c (the actual home of thewikilaunch
code) is included in Figure 4. This code is located inside
of the functiondo fork() , which is called whenever
the server wishes to create a cgi process to handle a re-
quest. At a high level, the code creates a socket pair. The
second block of code creates a new tag, adds it to a new
label, and passes that label as the initial security label in
the subsequent call tospawn . cgilaunch.c may then
later write to its child processes.

FlumeWiki is designed to adhere to multiple secu-
rity policies. One is that the data from no instance of
wiki.py should be able to reach another instance of
wiki.py . We focus on the specification of this policy.
We can specify this policy in the boat specification file
found in Figure 5 and the added annotations given in Fig-
ure 6 that relate the process families in the specification
to the spawn sites in the code. The specification directly
corresponds to our desired security policy. The first line
declares the process family names. The second declares
that processes inwikilaunch are parents of those in
wiki . The third declares thatwikilaunch should be

7



able to communicate withwiki . The last line states that
processes in thewiki family should not be able to talk to
each other.

9 Future Work and Conclusions

Given the complexity of properly securing a system, even
with powerful underlying systems, tools like Boat are
probably prerequisite to the common occurrence of truly
secure software. Of course, in the current rough state of
Boat (and, frankly, Flume), these tools are inadequate for
production use. They require much more polish and de-
sign.

For example, the current version of Boat requires an un-
comfortable amount of repeated information. A polished
version of Boat would not require parenthood statements
in its specification file, as those relationships can be un-
earthed from the annotated source code. Clever program
analysis could even do away with the family annotations
on everywrite by tracking the values of file handles and
file handle tokens.

Boat doesn’t yet address integrity tags or the Flume file
system monitor. Generating constraints for integrity tags
is not particularly difficult, but finding desirable ways to
solve integrity constraints and Boat’s current constraints
might.

Our application of Boat involved a fairly large program,
but it involves only a small set of process families and
specification statements. It would be worthwhile to test
and improve the scalability of Boat. In particular, we
know that the specification constraint generator can pro-
duce a number of R-processes exponential in the number
of process families, and that this leads to an exponential
increase in the size of the set of constraints. If Boat were
to support a very large ecology of software, these scalabil-
ity issues would be a frequent hassle. Solving this threat
requires an improved algorithm. The constraint solver it-
self runs in polynomial time on the size of its inputs, but
it is unclear that its actual performance is optimal. The al-
gorithm employed by Boat is a nice hack, but it probably
leaves room for improvement.

We judge our method for converting R-tags to Flume
tags to be another nifty hack, but it’s rather reliant on lim-
itations of the specification language. Probably, any gen-
eralizations in the specification language that grant greater

flexibility to expressible policies will break this algorithm.
We may require a more general solution.

Although this work is preliminary, we have seen that
the analysis in Boat is capable of instrumenting large,
complex programs with high-level policies. The con-
struction of such systems appears to be quite difficult in
general, but useful tools can be carved out of this space.
The sort of tools programmers would need to comfortably
work with DIFC appear to be feasible.

References

[1] Petros Efstathopoulos, Maxwell Krohn, Steve Van-
DeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazìeres, Frans Kaashoek, and Robert Mor-
ris. Labels and event processes in the asbestos oper-
ating system.SIGOPS Oper. Syst. Rev., 39(5):17–30,
2005.

[2] Jeffrey S. Foster, Manuel Fähndrich, and Alexander
Aiken. A theory of type qualifiers. InPLDI ’99:
Proceedings of the ACM SIGPLAN 1999 conference
on Programming language design and implementa-
tion, pages 192–203, New York, NY, USA, 1999.
ACM.

[3] Maxwell Krohn, Alexander Yip, Micah Brodsky,
Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,
and Robert Morris. Information flow control for
standard os abstractions. InSOSP ’07: Proceedings
of twenty-first ACM SIGOPS symposium on Operat-
ing systems principles, pages 321–334, New York,
NY, USA, 2007. ACM.

[4] MoinMoin. The moinmoin wiki engine, December
2006.

[5] G. Necula, S. McPeak, S. Rahul, and W. Wimer.
Cil: Intermediate language and tools for analysis
and transformation of c programs, 2002.

[6] Flemming Nielson, Hanne R. Nielson, and Chris
Hankin. Principles of Program Analysis. Springer,
1999.

[7] Jakob Rehof and Torben Æ. Mogensen. Tractable
constraints in finite semilattices. InSAS ’96: Pro-
ceedings of the Third International Symposium on

8



Static Analysis, pages 285–300, London, UK, 1996.
Springer-Verlag.

[8] J. H. Saltzer and M. D. Schoeder. The protection
of information in computer systems. InProc. IEEE,
volume 63, pages 1278–1308, September 1975.

[9] ”C. Wright, C. Cowan, J. Morris, and S. Smalley G.
Kroah-Hartman. Linux security modules: general
security support for the linux kernel. InFounda-
tions of Intrusion Tolerant Systems, 2003 [Organi-
cally Assured and Survivable Information Systems],
pages 213–226, 2003.

[10] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazìeres. Making information
flow explicit in histar. InOSDI ’06: Proceedings
of the 7th symposium on Operating systems design
and implementation, pages 263–278, Berkeley, CA,
USA, 2006. USENIX Association.

9


	Introduction
	Related Work
	Flume
	Labels and Tags
	Pipes
	Files

	Constraint Generation
	Intraprocess Flow Constraints
	Specification Constraints

	Constraint Solution
	Solution Algorithm

	Instrumentation
	Implementation
	Application
	Future Work and Conclusions

