Boat: Automatic Generation of Policy Code for Flume

Bill Harris Matt Elder
wrharris@cs.wisc.edu elder@cs.wisc.edu
May 16, 2008
Abstract and privileges indicating how the process may adjust its

label. Programmers must be ever aware of these mech-
Distributed Information Flow Control (DIFC) is a systemanisms to ensure that their code is both functionally cor-
level security mechanism that can simplify program seatect and secure. Even the simplest policies can quickly
rity but requires that a programmer supply policy code fecome difficult to program and it is difficult to ensure
any programs it helps to secure. Writing this policy codRat such code matches the programmers high-level de-
is not a simple matter, and is thus likely to consume sigired policy.
nificant programmer attention and introduce bugs. To solve this difficulty we proposBoat, a high-level

Thus do we implement Boat, a means to simplify DIF€pecification language for security policies and a sup-

programming. Boat reads a program’s C source and a ggrting source-to-source compiler. A Boat specification
icy specification, generates from these a system of c@onsists of a policy specification file and a small num-
straints, and solves those constraints to generate inshgr of annotations in the source program. The program-
mentation for the original C source. Thus, Boat augmenier directly specifies the functionality and security re-
the original program with added code to ensure that ggirements for their program in our high level language.
DIFC policy matches the programmer’s specification. Boat then analyzes the program and specification, repre-

sents both as constraints over Flume labels, and generates

. Flume code that enforces the desired policy.

1 Introduction We have implemented Boat as an extension to CIL [5],

)) o) a C parser and front-end. Our extension takes as input
Security-conscious systems and applications implemggly, the source programs to be analyzed and the specifi-
information flow control systems as mechanisms for €gtion generates and solves constraints, and carries out a
suring that sensitive data does not reach undesired partgQifyce_to-source translation. This translation instruments
the system or the outside world. Traditional Mandatogye code with the appropriate calls to the Boat runtime
Access Control (MAC)I[B] implements security policiey oy ensuring that it follows the specified policy. We
directly in the system. MAC is effective but inflexible, ag 5 e used Boat to analyze FlumeWiki, which is itself a
only a system administrator can define a security polig¥ sijon of MoinMoin Wiki [4]. We are able to succinctly

for the system to hold. express a desired policy of FlumeWiki in Boat's specifi-

Distri’tfuted Information Flow Control (DIFC) systemg.ation language and to use Boat to generate all necessary
[1,110,[3] provide an attractive alternative, as they permifye for setting labels before all relevant calls.
each application to define and enforce its own security

policies by detailing what data is sensitive and how that

data may be propagated. Such systems are flexible £&hd Related Work

powerful, but complex. For every system object such as

a process or file, the system maintains a seclaltglin- Numerous systems have implemented DIFC at the granu-
dicating what data the process may receive and transHaitity of processes and system objects. Asbe5ios [1] main-

mailto:wrharris@cs.wisc.edu
mailto:elder@cs.wisc.edu

tains two labels for every process: a receive laBeind 3 Flume

a send labeb. A label is a set otompartmentsa com-

partment can be any value in the $&t...,3]. An IPC Boat defines an annotation language that accompanies C

send from procesg to g succeeds if and only ifs is @ programs. Programmers express their high-level security

subset ofgr and every compartment value iy is less policy as a specification file and a few small program an-

than or equal to the corresponding compartment valuenatations. Boat then generates calls to the Flume API that

qr- If the send succeedsgs is then automatically updatedenforce the policy at runtime. Thus, some background in

by the system to be “at least as high"@s In this way, Flume is necessary to discuss Boat.

receive labels encode policies while send labels encodé&lume is a complete system for enforcing DIFC. Itis a

current states. primarily user-space program (called tfegerence mon-

itor) that interposes itself on communication between a

Flume [3] simplifies and extends Asbestos. It simplsecurity-critical program and the environment, including

fies by maintaining for every process a single label anther processes and system resources. We here summa-

reduces IPC checks to simple set inclusion, not individze key Flume functionality; the interested reader should

ual value comparison. It extends Asbestos by allowirgamine[[3] for more details.

the application to maintain for each IPC channel an end-

point. The label of an endpoint may differ (within con-

straints) from the label of the process, and Flume makdsl ~ Labels and Tags

IPC checks on the labels of endpoints. Flume also maiﬂhme maintains for every process and file a selagh

tains anintegrity labelfor every entity. Integrity labels e .
allow applications to succinctly specify policies such é:s?”ed alabel, along with information on what tags a pro-

Processp can only take input that originated from thes§®SS MaY add and remove from 'ts. Iapel. .A process may
request from Flume a fresh tag, which is simply a random

entities: ... More practically, Flume is implemented as™ . .
. . . unsigned long integer. Flume grants the tag to the process
a user-space process accompanied with a Linux SecugFg

Module, allowing it to work atop existing systems. In thF bng with privileges to add and remove the tag from its

current version of Boat, we focus on generating secunta}/ el. The process may then add the tag.tq the labels of
ocesses, and possibly grant them the privilege to add or

labels and enforce that the security labels of all endpoirﬁ’ts .
always equal that of the process. However, we planromove the tag from their own labels.
employ integrity labels and endpoints in future work.
_ _ _ 3.2 Pipes

Dataflow analysid [6] is a standard static analysis tech-
nique that we employ for reasoning about relevant prohe primary aim of Flume is to allow applications to en-
gram points. force security policies as they see fit. To do so, it can-

not merely provide facilities for manipulating tags. Flume

In [[7], Rehof and Mogenson defirdefinitesystems of must ensure that these tags are respected during IPC. To
constraints over lattice elements, present an algorithm ér this, Flume maintains a notion of what processes are
solving all definite constraint systems, prove that any sysenfinedversus which areonfined Flume allows an un-
tem that is not definite is NP-hard to solve, and give nemenfined process to communicate with the outside world
essary and sufficient conditions for a system to be definige. it wishes, but assumes that any data sent to an uncon-
We apply their work to show that the constraint systerfined process is effectively leaked outside of the system.
generated by our analysis are not definite and extend theiicontrast, Flume carefully monitors all IPC of a con-
algorithm with heuristics to derive an algorithm that rurfined process. It employs a kernel module written in the
reasonably well on our test cases. Constraint solving he&M [9] framework to monitor all relevant system calls
been used as the basis for many program analyses; forand prevent any communication that sidesteps the Flume
ample, subtyping constraints and lattice inequalities a&@l. A confined process P may thus communicate with
used to infer type qualifiers in CQual [2]. its child process Q over a pipe as follows:

1. P calls flume _socketpair(myfd, 4 Constraint Generation
theirtok, ...) to obtain a file descriptor
(myfd) and a tokentheirtok). Flume creates aFlume thus reduces its decisions to evaluating subset ex-
label formyfd ; by default, the label is initialized to pressions over labels. We propose that a programmer us-
the current label of the process. If the file is openedg the Flume system will have two desires that can thus
for reading, therSy; C S, must hold, if it is open also be expressed as subset constraints over labels:
for writing, S, € Syq must hold, and if it is open
for both, thenS;, = S, must hold. Security constraints: At some points in the program, the
programmer expects that data from one system ob-
2. Flume providespawn, its wrapper to the traditional ject cannot reach another system object.
UNIX fork call. spawn takes as one of its argu-
ments a vector of descriptor tokens to grant to tlinctionality constraints: At some points in the pro-
child at its birth. P thus passes the token to Q when gram, the programmer expects data from one system
it spawns it. object to reach another system object without being

3. Q callsflume _claim _token to exchange its to- blocked by Flume.

kgn fﬁr Itgimg descriptor that is the other end of thﬁﬂe programmer must ensure that their code adheres to
Pipe held by F these constraints along with the structural requirements

4. The parent and child may then communicate. Howf & valid Flume program. One of our key contributions is
ever, the file descriptors they use now actually poifte notion of a static representation and solution of these
to the Flume reference monitor. When P with déonstraints.
scriptor fd1 attempts a write to Q witlfd2, Flume

will check if S.. 8 4.1 Intraprocess Flow Constraints

fd1 & Ordz

holds. If so, the message is passed. If not, the md&e intraprocess structure of a single program implies a

sage is buffered but will be issued if and when tH€t of constraints that encode how the process may change

security labels satisfy the above condition. Notablifs own labels. At any point of execution, a process has its
unless the labels are equal, Flume cannot return @#rent security labeb,,, a labelS* containing all tags
accurate error code, as this could be used illegally Bjat it may add to5,, and a labelS™ containing all tags

P to glean information about Q when the labels di¢hat it my remove front),. Flume’s structure implies that,

tate that this should not be allowed. Thus, it is tHeetween two points of interestandb, the labels ab can

programmers responsibility to be sure that the cd¥e nogreaterthan their value at augmented by all labels
responding labels exhibit the correct relation, whidh S* and nolesstheir value ata with all labels inS~

they must accomplish without reliable dynamic feedaken away.

back from the resource monitor. More formally, we know a list of functions relevant for
Flume communication such apawn andwrite . We
3.3 Files generate a control-flow graph (CFG) of the program. For

simplicity, we assume that every node in the graph corre-
Flume includes a file system monitor that allows tags sponds to a single instruction. For a program pgiintthe
persist on files. When the Flume reference monitor déFG that contains a call to a relevant function, we gener-
tects a file system request likepen or mkdir , it for- ate a label variablé, that represents the security label of
wards the request to a file system monitor. The file systén@e process when it reaches this program point. Using a
monitor stores persistent label information about each fdandard dataflow analysis, we compute thepsietrr ev-
in the system; when access to a file is requested, it cheekg relevant program point. The setp is the set of all
the requester’s label against both the file's label and tleevant program points that can be the last relevant point
requested action to determine if it will allow the accessvisited before visitingp on some execution path. For all

q € p, we then generate the following two constraints: the statemerffoo->Foo means that any Foo process can
write to any other Foo procesBpo!->Foo means that
Sy € SpuS*t no Foo process can write to any other Foo process.
Sp CSeUS™ Between parsing the policy specification and producing
policy constraints lies R-process generation. Representa-
These constraints encode the relationship between the;gs processes, dR-processesare the pseudo-processes
bels at a program point and the labels at its predecess@jg.which we state our constraint satisfaction problem. R-
processes are made necessary by the generally unbounded
4.2 Specification Constraints nature of each process family: any single spawn point
may spawn an arbitrarily large number of processes, so
To use Boat, the programmer must annotate &pawn o1 a|| distinct processes can be directly represented. At
program point with a uniquéamily name and name the 5 high |evel, R-processes provide a way to embed some

destination family for eackwrite . To permit this, the tqrm of universal quantification in our constraint satisfac-
first argument tospawn andwrite is a literal string jgn system.

containing the required family name. That is, the spawn\ya puild a forest of R-processes such that:
corresponding to the process family “Foo” looks like

spawn("Foo", arglist...) ,and awrite to a pro- 1. There exists in the forest at least one R-process for
cess in the famlly “Foo” looks IikeNrite("Foo", each process fam||y, and
arglist...)

Boat uses these annotations to link the source code t&. For each parenthood relatidparent:Child in

the programmer-defined specification file. A Boat spec- the specification, every R-process of family Parent
ification has two parts: a list of process families, and a has two child R-processes of family Child.

set of family relationship statements. The list of process

families is presumed to contain all used families and We accomplish this by first finding each process fam-
be ordered by trustworthiness. Thus, Boat will prefer #ty which will be a root of some tree in this forest; that
grant privileges to families listed earlier in the list. is, any family which is not the child of any other fam-

Each relationship statement is: a family name, an opt For each root family, we generate one R-process; we
erator, an optional family modifier, and another familgenerate other R-processes via simple recursive decent
name. The possib|e Operators are-> |, <-, and<-> : down parent'Child rE|ati0nShipS. For example, Fiqgre 1
an arrow may be preceded by gor negation. The state-shows the tree generated from the parenthood relations
mentFoo:Bar means that processes in the family Fopo0o:Bar , Bar:Baz , andFoo:Frotz
may spawn processes in the family Bar. That is, Foo isS0, each R-process knows its process family name, its
Bar's parent familff] An arrow operator from a sourceParent R-process (unless it is a root), and its child R-
family to a target family means that a source process mgicesses (unless it is a leaf). We can now piece together
write to a target proces§oo<->Bar is a contraction of the entire constraint system:

Foo->Bar; Foo<-Bar . A negated arrow means that
a source process may not write to a destination proces&;'
Flume will disallow their communication.

The right-hand family name may be preceded by a fam-
ily modifier: the child operator, or the niece operator
\ . So, the statemeioo-> * Bar means that a Foo pro-
cess can write to any Bar process that it spawned, and the
statemenfoo!->\Bar means that a Foo process can-
not write to any Bar process that it did not spawn. Finally,

1This probably should be determined directly from the source code. fO!’ each program pOirkﬁ_ € Pandq € Q wherep
We mean to add this feature sodp. might write toQ andq might read fromP.

For each process family Foo, and for each R-process
P in Foo, generate a copy of the Foo family intrapro-
cess flow constraints specific I

2. For each pair of R-processésand(that the spec-
ification allows P to write to), generate the con-
straint

Sp C 5

lowing examples:

{1}y COu{1} and {1} C {1} U,
but {1} n{1} Z @n{1Hu ({1} nn).
{1} ¢ 0and {2} £ 0,
but ({1} N {2}) C 0

Thus, our general constraint system is NP-complete,
and the vanilla Rehof-Mogensen algorithm is not guar-
anteed to work on our system.

5.1 Solution Algorithm

Fortunately, we can apply knowledge specific to our ap-
Figure 1: A forest of R-processes, with links between pagrlication domain to arrive at a solution efficiently. We
ents and children. first give an overview of AlgorithnD presented in [7]1D
solves a set of set constraints of the fafhiC s whereE
is an arbitrary set expression afnb a set variable or con-
stant. D employs a simple worklist approach: it initially
maps all variables to the empty set value and maintains
a worklist of all constraints left to be solved. In a given
iteration, it selects a constraint from the list and evaluates
Sp £ 54 both sides of the constraint. If the valuebis a subset of
for every pair of program poinis € P andg € Q. the value ofs, then the constraint is already satisfied and
D moves on to the next constraint. If the constraint is not
satisfied, then the value bound4ds raised to be equal to
5 Constraint Solution the value forE' and all constraints for which appears in
the left hand side are added to the worklist.continues

We have now generated the full set of constraints that S fashion until it reaches either an empty worklist (in

would like to solve. The variables in each constraint afdch case it retumns its solution) or a contradiction (in

sets of security tags, at a particular program point in"4ich case it returns failure). _
particular R-process. Each constraint is in one of the fol-OUr @lgorithm maintains the same basic formasout
lowing forms: A C B, AC BUC, orA ¢ B. our constraints lie outside of the domain of constraints

Rehof and Mogensen have given necessary and SLH?F-‘ID can handle. As we iterate over our worklist, we do

cient conditions for a finite semilattice constraint satisfaB®thing if the constraint is already satisfied, adinlf a
tion problem to be NP-complete, along with an aIgorithﬁ‘PnStramt is not already satisfied, we implement different

(Algorithm D) to solve in polynomial time any such prob_behawors in different cases:

Iem.that is not NP-co.m_pIete. [7] Among cpnstraint satisy C B These constraints can be solved Bywe apply

fapuon prpblems on finite sets, a problem is NP—c.ompIete the same approach.

if its relations are not closed under set intersection. For

example, the constraint forrd C B is closed under setA C BuU C We need only to raise one & andC. For

intersection, because for any finite sdtsB, C, and D, if all constraints of this form, exactly one of eithBr

AC BandC C D,thenAnC C BN D. or C'is a variable denoting representative tags at a
However, the other forms in our constraint system are program point, and the other is a variable denoting

not closed under set intersection, as illustrated by the fol- a set of representative privileges. In the interest of

3. For each pair of R-processésand(that the spec-
ification requireP not to write toQ, generate the
constraint

granting programs least privilege, we prefer to raise
the value of the variable representing the program
point.

A ¢ B For such constraints, recall that each variable rep-
resents a label, which is simply a set of tags. The ap-
plication is free to generate new tags at will. So, for
a constraint of this form we can simply create a new
representative tag, adda to the current solution for
A, and note that must never be allowed to be 8.

6

If the constraint solver terminates with a solution, then vy
have a mapping from label variables to sets of represén
tative tags, oR-tags We must now generate Flume code

Instrumentation

Program module LOC
program analysis (boat.ml) 714
constraint solver (boat.ml}) 102

instrument.ml 273
spec.ml 205

Table 1: Lines of OCaml code per module

Jbin/cilly --doboat
--boat-spec=boat

_wiki.boat cgilaunch.c

Figure 2: The command for applying Boat to FlumeWiki

Implementation

that corresponds to such a solution. To do so, we partiti\é\ﬁ3 have implemented our system Boat as an extension of

the R-tags into two sets:

Per-child tags are R-tags that are held in exactly one
child variable in a family. We maintain a set of such ®
per-child tags for each family.

One-time tags are all other R-tags, which need only be
generated once. We maintain a global set of one-timee
tags.

Next, we generate run-time code that maintains a mapping
from R-tags to sets of Flume tags. It works as follows:

e Atinitialization, the code allocates each one-time tag ,
and maps its R-tag to a singleton set.

e At an invocation of the formspawn('Foo",
arglist) , the code notes all per-child R-tags of
Foo. For each per-child R-tag, it allocates a new
Flume tagl’, addsT" to the new label that will serve
as the child’s initial label, and addg to the set
of tags to which the parent’s R-tag maps. Boat re-
places the annotated call with the normal Flume call
spawn(arglist) 8

e At any other invocation of a relevant function, sa
one of the formwrite("Foao", arglist) , the
code examines the set of R-tags that must be
the label at this point, sets the label to hold a
of the corresponding Flume tags, and then cal
write(arglist)

the CIL parser and front end for C. The implementation is
organized into the following modules:

A program analysis module that carries out the in-
traprocess analysis on all given source files and gen-
erates intraprocess constraints.

A specification parser that parses an input specifica-
tion file and generates specification constraints.

A constraint solver that maps every variable in the
constraints to a set of tags.

An instrumenter that rewrites the code such that the
labels at each program point match the values de-
termined by the constraint solver. The implementa-
tion of this module is at the time of publication only
partially complete, generating initialization and pre-
write code. We instrument remaining code, such
as prespawn code, by hand.

Application

%e applied Boat to FlumeWiki (described in [3]), a Flume
implementation of the wiki MoinMoin. The high-level or-
ganization of the wiki is given in Figufg 3. As described
3 [3], when an HTTP request is received over the net-
work, a newhttpd process is spawned, which in turn
launches an instance efikilaunch

. wikilaunch

[httpd le—>|wikilaunchle—| wiki.py |

Port 80

httpd [¢—>|wikilaunchjle—>] wiki.py |

Figure 3: Structure of FlumeWiki

rc = flume_socketpair
(&input, &fdhandles->val[0],
)

/* setup CGI's labelset * [
S_label = label_alloc (1);
rc = label_set (S_label, O,
S_handle);
labs = labelset_alloc ();
rc = labelset _set S(labs,
S label);

[+ spawn the CGI =*/
rc = flume_spawn_legacy
(labs, fdhandles, ...);
/* send form information to cgi
if (cgl_form_len () {
rc = write (input, ...);
}

Figure 4: cgilaunch.c
wikilaunch wiki;
wikilaunch:wiki;

wikilaunch -> wiki;
wiki 1<-> wiki;

Figure 5: The specification for BoatWiki

*/

/* setup CGI's labelset * [
rc = flume_socketpair
(&input, &fdhandles->val[0],
o))
rc = flume_spawn_legacy
("wiki", fdhandles, ...);

/* send form information to cgi */
if (cgl_form_len () {
rc = write ("wiki", input, ...);

}

Figure 6: cgilaunch.c with Boat annotations.

is a small module that maintains the entire security pol-
icy of MoinMoin. It was created for 3] by factoring all
security-aware code from the considerably large (approx.
91,000 lines of code) and complicated MoinMoin code
into a single security critical module. Each instance of
wikilaunch launches its own unconfined child process
wiki.py and communicates with it.

A simplified version of the relevant code snippet from
cgilaunch.c (the actual home of thevikilaunch
code) is included in Figuig 4. This code is located inside
of the functiondo fork() , which is called whenever
the server wishes to create a cgi process to handle a re-
guest. At a high level, the code creates a socket pair. The
second block of code creates a new tag, adds it to a new
label, and passes that label as the initial security label in
the subsequent call gpawn. cgilaunch.c may then
later write to its child processes.

FlumeWiki is designed to adhere to multiple secu-
rity policies. One is that the data from no instance of
wiki.py should be able to reach another instance of
wiki.py . We focus on the specification of this policy.
We can specify this policy in the boat specification file
found in Figuré b and the added annotations given in Fig-
ure[§ that relate the process families in the specification
to the spawn sites in the code. The specification directly
corresponds to our desired security policy. The first line
declares the process family names. The second declares
that processes iwikilaunch are parents of those in
wiki . The third declares thatikilaunch should be

able to communicate wittviki . The last line states thatflexibility to expressible policies will break this algorithm.
processes in theiki family should not be able to talk toWe may require a more general solution.

each other. Although this work is preliminary, we have seen that
the analysis in Boat is capable of instrumenting large,
complex programs with high-level policies. The con-
struction of such systems appears to be quite difficult in
general, but useful tools can be carved out of this space.
Given the complexity of properly securing a system, evethe sort of tools programmers would need to comfortably

9 Future Work and Conclusions

with powerful underlying systems, tools like Boat ar@ork with DIFC appear to be feasible.

probably prerequisite to the common occurrence of truly
secure software. Of course, in the current rough state of

Boat (and, frankly, Flume), these tools are inadequate References

production use. They require much more polish and de-
sign. [1]

For example, the current version of Boat requires an un-
comfortable amount of repeated information. A polished
version of Boat would not require parenthood statements
in its specification file, as those relationships can be un-
earthed from the annotated source code. Clever program
analysis could even do away with the family annotationfz]
on everywrite by tracking the values of file handles and
file handle tokens.

Boat doesn't yet address integrity tags or the Flume file
system monitor. Generating constraints for integrity tags
is not particularly difficult, but finding desirable ways to
solve integrity constraints and Boat's current constraints
might. (3]

Our application of Boat involved a fairly large program,
but it involves only a small set of process families and
specification statements. It would be worthwhile to test
and improve the scalability of Boat. In particular, we
know that the specification constraint generator can pro-
duce a number of R-processes exponential in the number
of process families, and that this leads to an exponentifﬂ]
increase in the size of the set of constraints. If Boat were
to support a very large ecology of software, these scalabil-
ity issues would be a frequent hassle. Solving this thre4$]
requires an improved algorithm. The constraint solver it-
self runs in polynomial time on the size of its inputs, but
it is unclear that its actual performance is optimal. The al—6]
gorithm employed by Boat is a nice hack, but it probabl)l
leaves room for improvement.

We judge our method for converting R-tags to Flume
tags to be another nifty hack, but it's rather reliant on lim{7]
itations of the specification language. Probably, any gen-
eralizations in the specification language that grant greater

Petros Efstathopoulos, Maxwell Krohn, Steve Van-
DeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazkres, Frans Kaashoek, and Robert Mor-
ris. Labels and event processes in the asbestos oper-
ating systemSIGOPS Oper. Syst. Re$9(5):17-30,
2005.

Jeffrey S. Foster, ManueldRndrich, and Alexander
Aiken. A theory of type qualifiers. [fPLDI '99:
Proceedings of the ACM SIGPLAN 1999 conference
on Programming language design and implementa-
tion, pages 192-203, New York, NY, USA, 1999.
ACM.

Maxwell Krohn, Alexander Yip, Micah Brodsky,
Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,
and Robert Morris. Information flow control for
standard os abstractions. 3OSP '07: Proceedings
of twenty-first ACM SIGOPS symposium on Operat-
ing systems principlegpages 321-334, New York,
NY, USA, 2007. ACM.

MoinMoin. The moinmoin wiki engine, December
2006.

G. Necula, S. McPeak, S. Rahul, and W. Wimer.
Cil: Intermediate language and tools for analysis
and transformation of ¢ programs, 2002.

Flemming Nielson, Hanne R. Nielson, and Chris
Hankin. Principles of Program AnalysisSpringer,
1999.

Jakob Rehof and Torben ZA. Mogensen. Tractable
constraints in finite semilattices. BAS '96: Pro-
ceedings of the Third International Symposium on

Static Analysispages 285-300, London, UK, 1996.
Springer-Verlag.

[8] J. H. Saltzer and M. D. Schoeder. The protection
of information in computer systems. Rroc. IEEE
volume 63, pages 1278-1308, September 1975.

[9] "C. Wright, C. Cowan, J. Morris, and S. Smalley G.
Kroah-Hartman. Linux security modules: general
security support for the linux kernel. IRounda-
tions of Intrusion Tolerant Systems, 2003 [Organi-
cally Assured and Survivable Information Systems]
pages 213-226, 2003.

[10] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Maz&res. Making information
flow explicit in histar. InOSDI '06: Proceedings
of the 7th symposium on Operating systems design
and implementatiorpages 263278, Berkeley, CA,
USA, 2006. USENIX Association.

	Introduction
	Related Work
	Flume
	Labels and Tags
	Pipes
	Files

	Constraint Generation
	Intraprocess Flow Constraints
	Specification Constraints

	Constraint Solution
	Solution Algorithm

	Instrumentation
	Implementation
	Application
	Future Work and Conclusions

